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CHARACTERIZATION OF THE STRUCTURES
WHICH ADMIT EFFECTIVE ENUMERATIONS™

ANGEL DITCHEV

-

In this paper a characterization of the partial structures with denumerable domains
which admit an effective enumeration is given.

Keywords: effective enumeration, extended effective enumeration, recursive model
1991/95 Math. Subject Classification: 03D45, 03C57

0. INTRODUCTION

In the Recursive Model Theory there are a lot of attempts to characterize
the structures which admit a recursive enumeration. There are some necessary
conditions and some sufficient ones [1. On the other hand, in many of them the
considerations are restricted to a given class of structures, for example, Boolean
algebras, partially ordered sets and so on [1]. Further, other definitions of recur-
sive enumerations are given [1-3] which restrict or extend the class of structures
satisfying these definitions, and attempts to characterize the corresponding class-
es are made. One of these definitions is the well-known strong constructivization
(recursive presentation) [1]. In [2] Soskova and Soskov have defined another notion
of effective enumeration (recursively enumerable (r.e.) enumeration) of a partial
structure. Thus they have succeeded to characterize the structure satisfying their
definition by means of REDS computability [2] with finitely many constants.

* Research partially supported by the Ministry of Education, Contract No M1-604, 1997.



In connection with this and some other results [4-6] there have been stated
many conjectures, but all of them have been rejected (cf. [7-9]).

In [7, 8], the structures with denumerable domains and unary functions and
predicates which admit effective enumerations have been characterized. It is nat-
ural, using the result in {7, 8], to try to generalize it. One possible way to do this
is the following: Let us consider the least set B*, which contains the domain B of
the structure and is closed under taking ordered pairs. Thus, we can consider all
finite Cartesian products of B as subsets of B* and we consider the basic functions
and predicates as unary functions and predicates on B*. In this case however, we
need to generalize the notion of effective enumeration and introduce the so-called
extended effective enumerations.

In Section 1 we give the necessary definitions.

In Section 2 we prove the following results: 1) Theorem 2.1 that a partial
structure with a denumerable domain admits an effective enumeration iff the cor-
responding structure on B* admits an extended effective enumeration} 2) Theorem
2.17 and Theorem 2.24 that a partial structure with a denumerable domain admits
an effective enumeration iff the family of the types of all elements of the extended
structure on B* has an universal r.e. set, which satisfies certain natural conditions.

1. PRELIMINARIES

In what follows, by N we shall denote the set of all natural numbers. Let II,
L, R be defined as follows:

G,5) =242 +1),  L((NG,4) =4 R(WG) =4,
L(?) = R(i) =1, for all even natural numbers.

Let us,note that for every natural number 7 exactly one of the following two
conditions is valid:

a) 7 is odd;

b) ¢ is even and ¢ = II(4;, i2), for some unique #; and 7.

Let U be a subset of N**! and F be a family of subsets of N*. The 'set U is
said to be universal for the family J iff for any a the set {Z | (¢,%) € U} belongs
to the family F and, conversely, for any A from JF there exists such an a that
A={Z|(a,T) € U}. If U is an universal set, then by U, we shall denote the set
{z](a,7) € U}.

If f is a partial function, Dom(f) denotes the domain and Ran(f) denotes the
range of values of the function f.

Let A = (B;6y,...,6k; F1, ..., F) be a denumerable partial structure, i.e. B is
an arbitrary denumerable set, 8y, ..., 0 are partial functions of several arguments
on B, and Fi, ..., F; are partial predicates of several arguments on B. We shall
identify the predicates with the (partial) mappings which obtain values 0 or 1,
taking 0 for true and 1 for false.

If every 6; (1 £ 7 £ k) and every Fj (1 £ j £ [) are totally defined, then we
say that the-structure 2 is a total one.
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Effective enumeration of the structure A is every ordered pair (a,B), where
B =(N; ¢1,...,9k; 01,...,01) is a partial structure of the same relational type
as 2, and « is a partial surjective mapping of N onto B such that the following
conditions hold:

‘i) Dom(a) is recursively enumerable and ¢,,..., @k, 01,...,01 are partial
recursive;

‘it) For all natural z;, ..., z,,,1 S 1 £ &,
a(pi(z1,. .., %a;)) = O (a(z1), . . ., a(zs;))-
(iii) For all natural z,, ..., z3;, 1 £ 5 £ I,
oi(21,. -1 %;) & Fy(a(zr), - .., al2s,))-

The next proposition is obvious.

Proposition 1.1. Let A =(B;b,...,.0u; F1,...., 1), A = (B; 0y,...,0;;
Fi,....F), %" = (B; 6;,...,0c; FY', .., F/") be partial structures such that

0, if Fy(s1,...,8,;) 20,
not defined, otherwise, :

0, ifFj(sl,...,sb,)E'l,
not defined, otherwise,

F‘;(Sh...,sb’)?.’{

Fj"(sl,...,sb,)a'{

gl :
If 2 admits an effective enumeration, then A’ and A" admit effective enumera-
tions, as well.

Let B be an arbitrary set, 0 ¢ B and By = BU {0}. Let in addition (-, ) be a
fixed operation ordered pair and assume the set By does not contain ordered pairs.
We define the set B* as follows:

a) For any a € By, a € B*;

b) If a € B* and b € B*, then (a,b) € B*.

Consequently, B* is the least set which contains the set By and is closed under
the aperation ordered pair (-,-).

On the set of all partially defined functions on B* we define two operations -—
composition and combination in the following way: :

a) The composition of the functions ; and ¢, is denoted by 14, and

p192(8) = p1(p2(s));
b) The combination of the functions ¢; and @, is denoted by (¢;,¢2) and

(21, 92)(5) = (p1(5), pa(s))-
The functions 7 and é are defined on B* as follows:

n({a,b)) = a; 6é({a,b)) =b, for any elements a, b of B*;
w(a) = é(a) = (0,0), ifa€ B;
7(0) = é6(0) = 0.




For any natural positive number k and arbitrary elements sy, ..., s; the ordered
k-tuple (si,...,si) 1s defined in the usual way:

(s1) =815 (51, Sk, Sk41) = ({815, Sk)» Sk+1)-

Let B¥ = {{s1,...,st) | s1 € B&...& s¢ € B; this way B* C B*. If p is a
k-ary partial function on B, then it is natural to think of ¢ as a partial function
on B or even on B*, and in addition if sy, ..., s; are elements of B, then we shall
write ¢({s1,...,s¢)) instead of ¢(s1,...,sx) and conversely; thus in this case we
can think of ¢ as a partial unary function on B*.

Let £ be the first order language which consists of £ unary functional symbols
fi,..., fr and [ unary predicate symbols T}, ..., T;. Let Ty be a new unary predicate
symbol which is intended to represent the unary total predicate Fy = As.0 on B*.

We shall define functional terms and functional termal formulae (in language
L) as follows: -

a) If f is a functional symbol in the language £, then f is a functional term;

b) If 7! and 72 are functional terms, then 7!72 and (7!, 72) are functional
terms; :
c) If 7 is a functional term and T is a predicate symbol, then T'(7) and —=7(7)
are functipnal termal formulae.

Let A= (B;0y,...,0k; Fy,..., F1) be a partial structure and A" = (B*; 0y, ...,
Or; F1, ..., F1) be the corresponding partial structure on B*. If 7 is a functional
term in the language £, we shall define the value ro+ of the term 7 in the structure
2A*, which will be a partial function on B*:

a)If f= fi, 1 £1 £ k, is a functional symbol in the language £, then fo- is
the function 6;; # .

b) If 7 = 772, then Ty- is the composition of the partial functions 74. and
7a+; If 7= (7', 7%), then 7q- is the combination of the functions 7. and 73..

Analogously, if IT is a functional termal formula in the language £, we define
a value g+ of the functional termal formula II in the structure A* and the value
g in the structure A" will be a partially defined predicate on B*:

a) f I = Tj(r), 127 <1, then the partial predicate Ily- is defined as
follows:

Mo (s) = Fj(ry+(s)) for any element s € B*;
b) If T = =T(7), where T is a predicate symbol, then the partial predicate
Il 1s defined as follows:
1, if T+ (s) =0,
g« (s) =< 0, if Ty« (s) 221,
not defined, if T+ (s) is not defined.

We assume fixed an effective coding of the functional terms and the functional
termal formulae of the language £. If v is a natural number, then we denote by 7¥
(I1°) the functional term (functional termal formula) with a code v.

If s is an element of B*, then Ty-[s] (the type of s) is the set of natural

numbers
{v |11, is a functional termal formula & II}.(s) = 0}.
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2. THE MAIN RESULTS

In this section we shall extend the notion effective enumeration.

Suppose a partial structure U = (B;0y,...,0k; Fy,..., F}) is given, where
f; is an aj-ary partial function on B, 1 £ 7 £ k, and F; is a bj-ary predicate
on B, 1< j £ and B is a denumerable set. We shall consider the structure
A* = (B*;0,,...,0c; Fy, ..., F1), where all the functions and predicates 6, ..., 0;
Fy, ..., Fy are unary on B*.

Eztended effective enumeration of the structure 2" is every ordered pair
(a”,B"), where B* = (N; ¢},...,95; 01,...,07) is a partial structure with
unary functions and predicates and a* is a partial surjective mapping of N on-
to B* such that the following conditions hold:

(i) Dom(a*) is recursively enumerable and ¢}, ...,¢}, 07,...,0] are partially
recursive;

(i) a* (¢} (z)) = 6;(a(z)) for all natural z,1 £ 1 £ k;

(iii) o7 (z) = Fj(a*(z)) for all natural z,1 £ j £ {;

(iv) a*~}(B) and o*~(B* \ B) are recursively separable and o*~'(0) = {0};

(v) There exist total recursive functions I, L’, R’ such that:

a) o*(Il'(z,y)) = (a*(z), 2" (¥));
b) If a*(z) = (a,b), then a*(L'(z)) = a and o*(R'(z)) = b.

We shall prove first the following theorem:

Theorem 2.1. Given a partial structure U = (B;0y,...,0k; Fy, ..., F1), where
B is a denumerable set, A admits an effective enumeration iff the corresponding
structure A* = (B*;0y,...,6k; F1,..., F1) admils an extended effective enumera-
tzon.

Proof. First, let A = (B;6y,...,0k; F1,..., Fi) admit an effective enumeration
(a,B). We define the mapping o* : N —» B* as follows:

a) a*(2(i + 1)) = ai), «(0)=0;

b) a"(II(il, 12)) =~ (a‘(z’l), a*(iz)).

The next lemmas follow from the definitions of a* and II.

Lemma 2.2. For any natural z and y the following conditions hold:

a) o (Il(z,y)) = (a*(z), a"(v));
b) If a*(z) = (a,b), then o*(L(z)) = a and o*(R(z)) = b.

Lemma 2.3. o*~!(B) and a*~'(B* \ B) are recursively separable.

The definition of a* shows that Dom(a*) is defined by the next inductive way:
a) 0 € Dom(a*) and if i € Dom(a), then 2(i + 1) € Dom(a*);

b) If i, € Dom(e*) and i; € Dom(a*), then II(#;, ;) € Dom(a”).

Therefore, '

Lemma 2.4. Dom(a™) is r.e.

11



Further, let the sequence of functions {Ilx}ten\ {0} be defined in the following
manner:

a) H](ll) = 2(21 + 1), )

b) Mes1(dn, ..y ik, ter) = (I, (24, . -, k), Thgr )-

The next lemmas are obvious.

Lemma 2.5. Leti,...,1; be natural numbers and a(iy) = s1,..., (i) = si.
Then o™ (g(iy, ..., 1)) = (s1,..., Sk).

Lemma 2.6. Ran(a®) = B*.
Let the functions ¢7,...,9%;07,...,07 be defined by the next' equivalences:
pi(z) 2y < 3ry...3zq,(y = Mi(pi(z1,...,24,)) & 2 =1,5,(z1,...,24,)),
$=1,...,&
oj(z) =y <= 3z1...35;,(y = 0j(21,...,2,) & =1y, (21,...,%7s,)),

2= Low s gl
From these definitions the next lemma follows immediately.

Lemma 2.7. ¢1,..., ¢, 01,...,0] are partial recursive functions.

Let N; ={Hk(i1,...,ik) |i1 eEN& ... & i GN}.

Lemma 2.8. Let ¢ € Dom(a*). Then for all natural k 2 1 the following
equivalence s true:
i €Ny <= a"(i) € B*. (*)

Proof. By induction on k.

Ifi € Ny, then i = II,(4;) = 2(4, +1) for some natural #; and o* (i) = a(i;) € B.

If a*(7) € B, then it is clear that ¢ = 2(7; + 1) and i € N;.

Let us assume that the equivalence () is true for some natural £ > 1.

If 7 € Nk-{-l., then 1 = Hk+1(i1,. bidig ‘ik, ik+1) = H(Ilk(i'l, ey ik), ik+1) and let
fix ¢ = M(4;,...,i). According to the induction hypothesis, a*(i') € B* and
a*kg1;+1) € B. Then a*(i) = o*(IM(Mk (i1, ..., &), ik41))) = (@*(¥),0*(ik41)) €
BT,

If a*(i) € B*+1, then o*(i) is defined by the second clause of the definition,
1. e. o(i) = (a*(i'), (")), where o (V') € B*, a*(i"") € B and i = II(#, i").
According to the induction hypothesis, ' € Ny and i” € N;. Thus i € Ni4,.

Lemma 2.9. Forany z €N the following conditional equalities hold:
a" (i (z)) = 6;(c"(z)), 1=1,...,k.

Proof. We shall consider two cases.

Case 1. z ¢ N,,. Then z ¢ Dom(yp;), 1.e. 0;(a*(z)) is not defined.

If z € Dom(a®), then o*(z) ¢ B®, i.e. 0;(a*(z)) is not defined. If z ¢
Dom(a*), then obviously ¢;(a*(z)) is not defined.
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Case 2. ¢ € Ng,. Then z =1I4,(4,...,14,,) for some natural ¢, ...,4,, and
a”(p*(2)) = o" (i(pi(i1, .-, 1a,)) = @iy, ..., ia,)) = i(a(ir), . .., alis,))
= 0:i((a(ir), -, ofia,))) = 0i(0* (g, (i1, - -, 4a,))) = Oi(a*(2)).

Lemma 2.10. For any z € N the following conditional equalities hold:
o;(z) = Fi(e*(z)), j=1,...,1L

Proof. Analogously to Lemma 2.9.

So, we have that if we fix I’ = I, L’ = L and R’ = R, then the conditions
(1) = (v) of extended effective enumeration are fulfilled.

Conversly, let a partial structure A = (B;60y,...,0k; Fy,..., F7) be given and
the structure A* = (B*;0,,...,0k; Fi1, ..., F}) admit an extended effective enumer-
ation (a*,B"), where B* = (N; ¢1,...,9%; 01,...,01) is a partial structure with
unary functions and predicates and « is a partial surjective mapping of N onto B*
such that the conditions (1) — (v) hold and the recursive functions Il’, L', R’ which

satisfy (v) are fixed.
We shall define an enumeration {«, B) of 2. For this purpose for every positive
natural number k we define the sets N, N} as follows:

t = {z |z € Dom(e*) & a*(z) € B¥}, N} ={z |z € Dom(a") & o*(z) ¢ B¥}.
Then
o*(z), if z € Nj,
not defined, otherwise.

az) = {

Lemma 2.11. Dom(«) is r.e.

In this case we define the sequence {II}};en (0} by means of the following
inductive definition:

) 3y = is; |

b) H;c-{—l(il’ ey ik, ik+1) = H’(H;(ll, .eery ik), ik+1).

Lemma 2.12. For every positive natural number k, if i € Dom(a) &...&
i, € Dom(a), then I} (iy,. .. i) € Dom(a*) & o* (I, (i1,...,ik)) € B¥ and

{a(ir),- : - yould; )y = o (ML (155 - o52)).
Proof. By standard unduction-on k.

Lemma 2.13. For every positive natural number k there ezists a recursive set
My such that N}, C My and Ny C N\ M.

Proof. By induction. If £ = 1, then let M, be a recursive set such that
a*~1(B) C M; and a*~'(B*\ B) C N\ M,. Then N, C M; and N/ C N\ M;.

Let us assume that there exists a recursive set M such that N, C M and
NY C N\ M. Set M1 = {z|L'(z) € My & R'(z) € My &z # 0 &z ¢ My}

If z € Ni,,, then z € Dom(a*) and a*(z) = (b1, b2), where a*(L'(z)) = &, €
B* and o*(R/(z)) = bz € B. Therefore, £ € My 4.

13



Let z € Ny, ,. Then 2 =0or z € M; or z ¢ M.
If 2 =0 or z € My, then it is obvious that z ¢ My ,;. :
If « ¢ My, then z ¢ Nj, since a*(z) = (by,by) = a*(L'(z)), a*(R'(z))).
“Therefore, by ¢ B* or by ¢ B, i.e. L'(z) ¢ My or R'(z) ¢ M,. Again z ¢ M,
and Lemma 2.13 is proved.

Let us define the functions ¢y, ..., vk, 01,...,07 in the following way:

(p,-(xl, A .,:Bai) =~ ()0;(11;‘.(181, ; ..,:L'a')), g s B

* (17! .
o,-(:cl,. ..,zbj) = aj(ll,,j(m, . ..,ij)), ] = 1,.. .,1.
Lemma 2.14. ¢y,...,9%,01,...,0; are partial recursive functions.

Lemma 2.15. For all i, 1 £ i £ k, and for any natural numbers z,,..., z,,
the following conditional equalities hold:

Pl By s oo %ag)) E 0i{a(21); s oo s E0;)); = 1yus i

Proof. a(pi(zy, ..., 2q,)) = a(pf (I}, (21, .. s za,)))
= o (] (Mg, (21, -, 24,))) =607 (a* (I} (21, ...,24,)) = 0:;({a(z1), ..., a(zq,)))
= 0i(a(zy),...,a(zs,)), i =1,..., k.

Lemma 2.16. For all j, 1 £ j £ 1, and for any natural numbers z,,...,zy,
the following conditional equalities hold:

Of( DLy s oxy) 2 Fylo(z1) oo 0(2n:)), F=1,..4,L
Proof. Analogously to Lemma 2.15.

Theorem 2.1 is proved.

Theorem 2.17. A partial structure A with a denumerable domain admits an
effective enumeration iff the family of the types of all elements of the structure A*
has an universal r.e. set U which satisfies the next conditions:

(1) The type of the element O is recursive set;

(1) If Ly = U{To+(s] | s € B} and Ly = U{Tq-[s] | s € B*\ B}, then L,
and Lo are recursively separable;

(ii1) There exist such total recursive functions ', L', R' that:

a) If Uy, = Ty-[s1] and Uy, = Ty+[s2], then Ta-[(s1,52)] = Uv(ey 22
b) If Tu-[(s1,52)] = Uz, then Upi(z)y = Ta+[s1] and Ugiz) = Ta-[s2].

Proof. Analogously to [8] suppose that the partial structure 2 admits an
effective enumeration («,B). Then the partial structure 2" admits an extended

effective enumeration (a*,B"), where B* = (N; ¢},...,¢}; 01,...,07). According
to (8] we can consider that a* is totally defined over N. A simple construction
shows that there exists a primitive recursive in {¢],..., ¥}, 0},...,07 } function ¥

such that for each functional termal formula I1Y with code v

Y(v,z) = My« (a"(z))

14



for all z of N. Consequently, ¥ is partially recursive. Then it is obvious that the
set ‘

U={(z,v) | ¥(v,z) Z 0 & v is a code of a functional termal formula}

1s r.e. and universal for the family of the types of all elements of the structure 2"
which satisfies the conditions (i) - (iii).

Suppose now that the types of all elements of the structure 2* are r.e. and
that the family of all these types has an universal r.e. set U! which satisfies the
conditions (i) — (iii). Let U = {(a,z) | U} is a type of some element of B}. It is
obvious that the set U is r.e. and satisfies the conditions (i) — (iii), as well. We may
~ assume that for every z there exist infinitely many y such that U, = U, [cf. 7, 8].

Set ' :

g; = 2013, 2); € =104
o(z,y) = 0(0, 0{z, y));
No = N\ (Ran(y])U...URan(p}) UIlp).

For any natural number z, let B, be the set {s | s € B & Tyg-[s] = Uz} of
all elements of B with type U, and a® be an arbitrary surjective mapping of Ny
onto B, satisfying the equalities °({y | Uz = Uy}) = Bz, ¢ € N. Evidently,
Dom(a®) = Np is r.e.

We define the partial mapping ¢* of N onto B* by the inductive clauses:

If € Ny, then a*(z) = o°(z);

fz=1(y),1 i<k a*(y) = sand b;(s) 2, then a*(z) 2 t;

If z =1(0,1l(z,y)), a*(z) = s1 and a(y)* = s2, then a*(2) = (51, s2).

The proofs of the next simple lemmas are analogous of those in (7, 8].

Lemma 2.18. For everyz € Nand i,1 < £k,

a(p; (z)) = a”((i, ) = 6;(a’(z)).
Let us denote by B the partial structure (N; ¢7,...,¥}).
Corollary 2.19. Let 7 be a functional term and y € N. Then

o (rg(y)) = 2+ (a"(¥)).

Lemma 2.20. There ezisls an effective way to define, for every z of N, an
element y of Ng.and a functional term 7 such that z = T5(y).

Lemma 2.21. There ezists an effective way to deﬁné, for every z of N, an
element y of Ny and a functional term T such that o*(z) = 1o+ (a*(y))-

Lemma 2.22. Dom(a)* is recursively enumerable.

Finally, let us define the partial predicates o},...,0; on N using the condi-
tional equalities .
0, if Fj(a*(z)) =0,
a;(z:) o2 { 1, if 2 Fj(a*(z)) =0,
undefined, otherwise,

15



j=1,...,1. Analogously, it follows:

Lemma 2.23. The predicates o7, ...,0] are partially recursive.

Thus, it is proven that (a*, (N; ¢1,...,¢%;01,...,07)) is an extended effective
enumeration of the structure A”.
It is easy to see that the next theorem is also valid.

Theorem 2.24. A partial structure % with a denumerable domain admits an
effective enumeration iff the family of the types of all elements of the structure A
has an universal r.e. set U such that there exist total recursive functions Il’, L', R’
satisfying the conditions:

*) If Wz- = Tg- [(31;52”; then WLI(,;) = Tm- [81] and WR:(,) = Tm* [82];

**) [f W;,;, = Tm° [81] and sz = Tqv [82], then Tz‘ [(81,82)] = Wﬂ’(xl,zz)-

Here we use W, to denote the e-th recursively enumerable (r.e.) set.
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The tautological variations of Hodge structure over Siegel upper half space, the open
quadric and the generalized ball are expressed explicitely by the variations of Hodge
structure of Weil hypersurfaces in projective spaces. That realizes all the abelian-motivic
variations of Hodge structure by families of Jacobians of plane curves, which are known
to be described by meromorphic differentials on the projective plane. As a consequence,
the geometric origin of a maximal dimensional variation of Hodge structure turns to be
sufficient for expressing it by meromorphic differentials on the projective plane.

Keywords: tautological variations of Hodge structure and J-Hodge structure, abelian-
motivic and hypersurface variations ' :
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For a smooth projective manifold X, defined over a field k C C of finite type,
Hodge has conjectured that H?*(X,Q)N HY*, w < dimg X, consists of the Q-
linear combinations of the cohomology classes of the algebraic submanifolds of X.
Let k be the algebraic closure of k and H2¥(X,Q;) C H*“(X, Q) be the subspace
of I-adic cohomologies, over which the action of the Galois group Gal(k/k) reduces
to multiplication by scalars. Tate has conjectured that H2*(X,(Q;) is generated
by the cohomologies of the algebraic submanifolds of X. For abelian varieties X,
Tate conjecture is known to imply Hodge conjecture (cf. Deligne [5]), but neither
of them is proved. Let X be a separable scheme of finite type over F, and X be
the scheme obtained from X by extension of the scalars to F_q. For primes [ # g,
the l-adic cohomologies H¥ (X, Q;) with compact support are acted by Frobenius
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automorphism ¢ € Gal(F,/F,), p(z) = z?. Weil conjecture asserts that the
characteristic roots of ¢! on H¥(X,Q)) are of absolute value ¢~ %. It is verified
for the abelian varieties and therefore, for any X whose cohomologies are expressed
through linear algebra constructions (by the cohomologies) of abelian varieties.
Hodge, Tate and Weil conjectures motivate the interest in the abelian varieties A
and their Hodge structures H¥(A,Z) = AYHY(A,Z) ~ AY A.

The present work concerns the variations of Hodge structure which are ex-
pressed by a special kind of abelian varieties, namely, by Jacobians of plane curves.
The members of a family J — S of Jacobians of plane curves, as well as the
infinitesimal variations T1°S, s € S, can be identified with subspaces of mero-
morphic differentials on P;. We exhibit explicit embeddings of the so-called tau-
tological variations over Siegel upper half space S(p), the open quadric Q(p) and
the generalized ball B(p,¢q), in the variations of Hodge structure of Weil hyper-
surfaces X C Py. Shermenev shows in [11] that the Hodge structures of X are
expressed by meromorphic differentials on P. So far, Kuga and Satake [8], Deligne
[4], Carlson and Simpson [3] have established that the aforementioned tautological
variations are expressed by abelian varieties. The abelian varieties are known to
be from the tensor category of the Jacobians of all curves (cf. [12]). On the other
hand, Rapoport [10] has classified the complete intersections Y, whose variations
of Hodge structure are exactly the tautological variations over S(p) or Q(p). All
such Y turn to be of Hodge level 1 or 2..Our X are of arbitrary Hodge level, equal
to dimg X, and we realize the tautological variations as proper subfamilies of the
variations of X.

The provided construction reveals that all the abelian-motivic variations of
Hodge structure are expressed by meromorphic differentials on P,. As another
consequence, the geometrically arising variations of maximum dimension turn to
be realized in the tensor category of Jacobians of plane curves.

1. PRELIMINARIES

1.1. TAUTOLOGICAL VARIATIONS OF HODGE STRUCTURE
AND J-HODGE STRUCTURE

Hodge structure on a C-vector space V = Vg ®¢ C defined over Q consists of
Hodge decomposition V = 51 V¥~%! compatible with the complex conjugation
Vw=ii = V4%~ and a non-degenerate bilinear polarization form ¥ : Vo ®¢ Vo —
@, which is symmetric for an even weight w or skew-symmetric for an odd w. Hodge
decomposition is orthogonal with respect to the Hermitian form ®(a, b) := ¥(a, b)
for a,b € V, and ®|yw-2i2i > 0, ®|yw-2i-1,2i41 < 0. J-Hodge structure on V =
Vo ®¢ C is Hodge structure with an endomorphism J : Vg — Vg, J? = —1d, such
that J is orthogonal with respect to ¥, unitary with respect to ® and compatible
with Hodge decomposition J : V¥~Hi — yw=ii,

The classifying space of Hodge structures on V with fixed bilinear form ¥,
Hermitian form @, and Hodge numbers h* := dimg¢ V¥ %! > 0 is the homogeneous
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space
($]-1

D(V,¥,®) = O(V,¥)nU(V,®)/ ] U(k) x (1 - e(w))O(hl 3] R),

where O(V,¥) is the orthogonal group of V with respect to ¥, O(hl3] R) =
0 (V[';“]'[‘?],\I'lv(.\gl,lgl), U(V,®) is the unitary group of V with respect to @,
U(h) = U (V¥ ®lyu-i,), and e(w) := w — 2[%] stands for the parity of the
weight w. N N

The semisimple linear automorphisms J|yw-..i split V¥~ = V7" o VLY

in +v/—1-eigenspaces with Vf“i'i =V Asa result, Hodge decomposition of
w S &

the U-isotropic V4 := Y V}'7"' determines completely Hodge decomposition of
i=0

V =V, @V, and the classifying space of J-Hodge structures on V turns to be
D(V,¥,8,7) ~ U +hZ +--- AL + B3 +--)JU(RS) x --- x U(hY),

where . N
k%, = dimg V™M,

UGS +h% 4, b + 83 + ) =U (Vy, Blv,)
UH) = U (Bl i)

The classifying spaces D = D(V, ¥, ®), respectively, D = D(V,¥,®,J) are
open subsets of quotients D = O(V, ¥)/P(V), respectively, D = GL(Vy,C)/P(V4)
of reductive complex algebraic groups G by parabolic subgroups P, stabilizing
Hodge filtrations F* := Zj?_,-Vj"‘f‘j, respectively, F} := ngivi’w-]' Hodge
decompositions of V, W, induce weight zero Hodge decompositions g€ = LieGC =
Yo, 8" with gh~f = {r € g%r(VIvI) C VHIwitiforall 0 < j < w}.
The parabolic subalgebras LieP = 5 ,5,8" . The holomorphic tangent bundle
THOD = TYOD|p = [GC xp (LieGC/LieP)]p contains an equivariant subbundle
ThD = [G® xp (g71! + LieP)/LieP] , associated with a non-integrable distri-
bution and called horizontal. As far as an arbitrary family of Hodge structures
with fixed ¥, ®, k' is induced by the tautological family over D, there is no loss
in regarding the base S of this family as a complex analytic subspace of I' \ D
for some discrete subgroup I' of the biholomorphism group G of D = G/G N P.
" Variation of Hodge structure is a family V — S, whose base S is locally tangent
to the horizontal distribution T7%D. The complete tautological families of Hodge
structures over D(V, ¥, ®) or, respectively, the complete tautological families of
J-Hodge structures over D(V, ¥, ®, J), which are variations of Hodge structure are

referred to as tautological variations.

Lemma 1. All the tautological variations of Hodge structure are
(1) Vs) = Z::O Vé(_;)" of rankVé(_pi)’i = p over Siegel upper half spaces S(p) =
Sp(p,R)/U(p) and
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(1) Vg(p) = z:;o Véz;; of rankVé’(Op) = rankvg'gp) =1, rankVé’ép) = p over
open quadrics Q(p) = SO(2,p)/SO(2) x SO(p).

All the tautological variations of J-Hodge structure are

(i) Vy, , = Z;‘l=o (Vi’_i'i + Vf“i'i ) of weight 1 < w < 3 and rankV;‘_"o = p,
ranlcV'j_’"l'l = ¢ over generalized balls B(p,q) = U(p, q)/U, x Uj.

The corresponding polarizations ¥p, vy, . are

(=1)*Ip

L

Proof. The existence of tautological variations is equivalent to 7°D = T* D
for the corresponding classifying space 2. In the case of w = 2k + 1 > 3 the
symplectic Lie algebra g© = o(V, ¥) has g=%2 # 0. For an even weight w = 2k > 2,
the indefinite orthogonal Lie algebra g€ = o(V,¥) = g~! + LieP if and only if
w = 2 and h® = 1. That justifies the classification of the tautological variations of
Hodge structure. In the case of J-Hodge structures one can assume that AS # 0,
after eventual shift (w—1,7) — (i, w—1i) of Hodge indices. Then T*°D(V, ¥, ®,J) =
T"D(V,¥,®,J) holds only when D(V, ¥, ®,J) ~ U(hS,hL)/U(RS) x U(hL). The
weights w < 3, since otherwise for 2 < j < w — 2 there follow hi =0and K =0,
contrary to the assumption A7 # 0. O

1.2. THE TAUTOLOGICAL VARIATIONS ARE ABELIAN-MOTIVIC

A variation is said to be abelian-motivic or expressed by abelian varieties if
it 1s a direct summand of a tensor polynomial with N-coefficients of variations of
Hodge structure of abelian varieties. All the tautological variations are expressed
by abelian varieties. More precisely: |

Theorem 2. (i) (obvious) The tautological variation Vs, is the variation of
Hodge structure of a polarized abelian variety A ~ H'(A,C) of dim¢ A = p.

(i) (Kuga and Satake (8], Deligne [4]) Let Ct(V, Wg(,)) be the even part of the
Clifford algebra C(V,¥g(p)) of the reference Hodge structure (V,¥g(,)) € Vo(p)-
Then there is a family A — Q(p) of 2P+ -dimensional abelian varicties such that
the variation of CH(V,¥g(,y) is

ct (VQ(p)’ ‘I’Q(p)) = E"dC+(V,‘1'Q(»))(-A)-
(ii1) (Carlson and Simpson [3]) The tautological variation of J-Hodge structure
V}_p'q is the restriction of Vs(pyq) to a holomorphically and equivariantly embedded

B(p,q) — S(p+q). Let E be the elliptic curve C/(Z + /—1Z), J be the endomor-
phism of H(E,C) induced from the multiplication by /=1 on E, E = E}.C 4. E!
be the constant family of the aforementioned J-Hodge structure and E™*(m) be the
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m-th tensor power of E™*. Then
Vi =Vi @E(w - 1)@V} @E>! (w - 1)

of weight w = 2 or 3 are expressed by V},p,q = GB-\';I.

1.3. COMPLETE INTERSECTIONS WITH TAUTOLOGICAL VARIATIONS
OF HODGE STRUCTURE

Let X319 C Pp.x be a complete intersection of hypersurfaces of degree
dy,...,dr. The primitive cohomologies H‘(X,‘,‘"""d",C)o, i.e., the cohomologies
which are not dual to intersections of X,‘f‘""'d" with subspaces P,,, C P,41, have
only nonzero components H"(X2 9 C),. From now on, under a variation of
Hodge structure of a complete intersection X419 we mean the variation of Hodge
structure on H™ (X3 C),. If b := dimg H" /7 (X314x), vanish for all j < i
and j > n — i, h* = h"~% # 0, then the integer n — 2i (which is one less that the
number of the non-trivial Hodge components of H"( X314 (), ) is called level
of X419 or of its Hodge structure.

Theorem 3 (Rapoport [10]). (i) All the complete families X:,ﬁé'(;)dk of X31sdk

C Pnyr, whose associated variations of Hodge structure are discrete quotienis of
level one tautological variations over Siegel upper half spaces S(p), are Xzzf_l’s(ﬂ),

.X221’12—,21,S(2n2+3n)’ X3 s(5) Xaz,lg(zo)’ X3 s(21) X3 530

(i1) The complete famlies :l‘é‘(;?" of X314k C Py, whose associated vari-
ations of Hodge structure are discrete quotients of level two tautological variations
over open quadrics Q(p), are depleted by the families X.i’é'(?lg), XZ’S(IQ), X;,Q(IS)

of K3 surfaces and the family X?,Q(zo) of cubic fourfolds.

2. EXPLICIT CONSTRUCTIONS

Let us fix some standard notations. The Hodge structure on the second coho-
mology group H?(P;,C) = H'}(P)) of tha projective line P or, equivalently, on
the cup product A2HY(E,C) = H"Y(E) A H>(E) of the first cohomology group
of the elliptic curve E = C/(Z + +/—1Z) is called Tate Hodge structure. The
constant family of Tate Hodge structures (over an arbitrary base) is denoted by
Q(1). If m € N, then Q(m) and Q(—m) designate the m-th tensor powers of Q(1)

and, respectively, @(;1) = Hom(Q(1),C). The polarization ¥¥ = (_1 1

of the constant family E of J-Hodge structures on E induces the polarization
g1 = YE @ ¥E = 1. In other words, all ¥@™) m € Z, coincide with the
multiplication by complex numbers. .

Theorem 4. For the Hermitian symmelric spaces
D=8(p)={z€Mat, ,(C) | ‘2=2,2'"Z< Ip} or
D =B(p,q) = {z € Mat, 4(C) | 2'Z2< L}, p<y,
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let 6 = p+ 1 or, respectively, § = q+ 1 and consider the hypersurfaces Xp(z) C
P2p+2, z € D, determined by the homogeneous equations

45 46-45 4j 46
21’ +Z Zi- 1+2622x1"’21 1 Ty + 35 |+, =0

i=~1
of degree d = 46. Quer the open quadric
D =0(p)={z € Mat,;(C) | |'22z| < 1,27z < 1 + |'2z|*}
define the family Xg(py of hypersurfaces

p—1

1 .
Xop)(2) = {"’ € Pap1 l Z (“2; g = % %501 To + T ) = 0}

i=0

:')f degree d = 4p. Let us denote by Hp the variations of Hodge structure of Xp
with polarizations Y2 Put Ws(p) ‘= 1, wo(p) = 2 for the weights wp of the
tautological variations of Hodge structure Vp, 6; for Kronecker’s delta and introduce

mp = p— 62 _wp. Then the components of the tautological variations of Hodge
structure are the subbundles

v L, wp =i C HmD-H yMp+wp—i ® Q(_mD)

of abelian-motivic variations, expressed by meromorphic differentials on P,, and
Up = ¥ @ W-mp)|,, " The tautological variations of J-Hodge structure have

1 1
—i ; i—j(w=1)p+l=i+j(w— g
v,;‘,’q CZ(Z%»—U“‘) H‘,’,}“p,q;( I @ Bl (w — 1) © Q(-p)

for1 < w < 3,0 <1< w, expressed by meromorphic differentials on Pjy, and

Uy, = UHserg @ WEw-1) g yQ-7)

w
vlvc

The proof is subdivided into several steps and presented by the rest of the
section.

2.1. A SMOOTH FAMILY A OF HYPERSURFACES OVER A PRODUCT OF BALLS

Lemma 5. All the hypersurfaces X(z) = {z € Pny1 | f.(z) = 0} with
homogeneous equations

(3] o d-1
f:(z) = Z 91+ dzzuzza 11’]2; + 2% | +e(n)zd =0
i=0 j=1

of degree d > n + 2 > 3, parametrized by the product of balls
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d-1
B(1,d - )3+ = { 2 € Mat(z}41,4-1(C) I Y laP <1, Vi0<i< [g-] ,

j=1

are smooth.

of.

01

Proof. One has to justify that the system of the polynomial equations

of.
Oy

afz . . n
2 s Eie =
D Owith0<:< [2} and

= 0 for an odd n has only the trivial solution

of.  0f.

)
O0zzi-1 Oz

Ty =2y=&, == 2y, = 0. As far as the pairs depend only on

. i n « . a
Toi-1, To9i, this system splits in [5] + 1 parts of two equations with two variables.

: To2-1 . 8
For z9;_1, x2; with |z9;—1| < |22i] # 0 one puts y := in order to express 512—
T L2

2 d-1 . d-—1 . . .
as o Zj—l J2i;y°77 +d = 0. According to Cauchy-Schwarz inequality,

d2 “ d-1 2 d-1 d-1 .
(3) =Tt < [Tl ) | e
j=1 j=1 j=1

Bearing in mind that z € B(1,d — 1)[31+! and |y| < 1, one infers that

2 d—-1
(gﬁ) <= (d-1)d(2d—1) 2d°

2 - 6 6’
J=1
which contradicts d > 3. Similarly, for zg;_;, zo; with |z9;| < |z2;-1] # 0 one

T = 0 into the form

introduces ¢t := . Then converting the equation

Toi-1 al‘zi-l

2 d-1 d-k
+ - E id— = d.
d o kzig—rt 0, one gets an absurd. (J

2.2. EXPRESSING THE VARIATION OF HODGE STRUCTURE OF X
BY MEROMORPHIC DIFFERENTIALS ON P,

Suppose that X,, of dimg X, = n > 2 is a hypersurface from the constructed
smooth family, X, _; is the intersection of X,, with the hyperplane z_; = 0, and Y}

: : . 2 —d-1 i
is the plane curve with homogeneous equation y¢ = y¢, + p ijl 20; y? i+ yg.
The presence of a rational map X,_; x Y; — X,,

(o 21 i :2n),(Y=1:Y0 1 ¥1)) — (ToyY=1 : ToYo :Z1Y1 ¢ ... TiY1 : ...  Tnl1)

of-degree d with singular locus (X1 N{zo = 0}) x (Y1 N {y1 = 0}) justifies the
next
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Lemma 6 (Shermenev [11], Shioda and Katsura [13]). In the notations, in-
troduced in Lemma 5, let us fiz a hypersurface X,, := X(2) of dimension n > 2 and
consider the complete intersections X,y = XpoN{z.) = 0}, X,_o := —)-(n_l N
{zo = 0}, the plane curve

d--1
2 L o
Y, = {yePz l y‘il+zzzojyil’y-{,+yg—yf=0},
g=1

and the points {p1,...,pa} :=Y1N{y1 = 0}. Then X, can be obtained by a blow up
B :Zy = Xpn—y xYy along Xn_2x{p1,...,pa} =2 dXp_2, a morphism { : Z; — Z,
of degree d and a blow down B, : Z3 — X, contracting ((Xn—1 X pi) = Pn_y X p;
to pi and ((Xpn-2 X Y1)~ Xn_2 X Py to Xn-».

" As an immediate consequence, the variation of Hodge structure of X is ex-
pressed by the variations of plane curves.

Corollary 7. Given a Fermat hypersurface

[3]+e(n)
Z =4 2 € Prajte(n) , Z =0

1=0

n
2
of H™(Z,C) = H™(Pi41,C) for 0 < m < k ~ 1 and H¥(Z,C) = H*(Py41,C) +
H*(Z,C),. Then the variation of Hodge structure of the family of smooth hyper-
surfaces X — Bop X By x ... X B[%l' defined in Lemma 5, 1s a direct summand

of

of dimension k := [ ] +e(n) — 1, let us denote by HE,,nq the constant family

> ' B)e. eH B oK e ([5] +1-5),

0<i<...<i,<[%]

where H'(B;) stands for the variation of the plane curves with homogeneous equa-
tions '

d—1
9 Y
vi+ 5Dyt + v 2 =0,
i=1
(2t1,...,2td-1) € By, and n;, i = (i1,...,1;), are natural numbers.

Proof. According to [5], if N — M is a finite map of equi-dimensional connected
manifolds, then H*(M, C) is a direct summand of H*(N,C), and if M’ is a blow up
of M along a closed submanifold T of codimension ¢, then H*(M’, C) = H*(M,C)
+ S22 H*(T,C) ® Q(i). By Kiinneth formula, the variation H"(Z2) of Z, =

i=1

Cﬂfl(Xn_l x Y1) is a direct summand of H*~1(B; x ... x B(2]) ® H(Bo) +
dH"~*(Byx. .. xB{g.])@Q(l). On the other hand, 7, = ﬂz“l(Xn) implies the equali-
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ty H™(Z2) = H™(Box Bix...xBa))+H" (B x...x B 2))®Q(1) for the variation
H"(BexByx...x B[.,.]) of /1’. Consequently, H"(Bp x .. .x B[n]) turns to be a direct
summand of'}il(Bo)®7’i"'1(81 X ... X Bpa))+(d— 1)’H" 2(81 . x Bz)) ®Q(1).

The proof is proceeded by induction on [g] O

2.3. EXPLICIT REALIZATIONS OF THE TAUTOLOGICAL VARIATIONS
BY THE VARIATION OF X

Let X be the family of smooth hypersurfaces, constructed in Lemma 5. Re-
stricting to the bounded symmetric realizations of

D = S(p) C B(1,p)* C B(1,4p + 3)**,
D = B(p,q) C B(1,¢)* C B(1,4q + 3)P*1,
D = Q(p) C B(p,1) C B(1,1)? C B(1,4p—1)",

specified in Theorem 4, one obtains the families ¥Yp = U,ep{z € Ppn41 | f2(z) = 0}.
Let Sp be the trivial family of polynomial rings S = Clz_y,z¢,2;,...,2z,] over D,

g’af:|-—1§i_<__n> C S,, z € D,

and Rp = Sp/Jp be the family of Jacobian rings. Denote by f the sheaf of
the equations f, of Xp(z), d := deg f,, A(i) := —(n+2) +d(n + 1 — i), and
Q= Z?_;_l(—l)‘z,'d:c-l AdzoAdzy A .. ./\d/:;,- A ...Adz,. Griffiths [6] shows that
the residue map .

Jp be the family of Jacobian ideals J, := <

H Q in—i i 1
Resp : R gy — Hp' ™" = Fp/Fp

is an isomorphism. Carlson and Griffiths [1] establish that the non-degenerate
pairing ¥HP - M TP x HTH * — M2, ie., the Serre duality map with values in
the constant family of H 2"(A.’D( )s (C) (C can be naturally identified with the

ring multiplication ’RD(' X 'RA(n =9 ’R,g IAAE2)

Lemma 8. In the notations from Theorem 4, let
VB(p,g) := v},p.q’ wa(p,g) = 1,
k(i,j) =1 +(1—9)(46 - 2—j), I(i,5) =426 - 2—j) + (1 —1)(26 + j).
Consider the holomorphic subbundles
Wgo+i,mo+wo-i C Hfgo-l-i,mo-}-WD-i 0<i< wp

generated by the global sections

Resp { [wD o JA(mD+')] L ; } ,

fmp+wp—-:+l
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where

i .o 5 W 2p+1 26_1
wP = 2F g9 ( I1 :c:) for 1< j < p,D=S8(p) or Bp,q);
t=1

2p 26—1
Bp.0)i k(i§) 1G] . .
UG£ZQ)t::x_g])xé;R (IIJH) fbrlfgjqu,
t=0

2p—2 2p+1-2i
weP)i . — ( H .7:,) fori=0 or2;

t=-—1

1 1 2p-2 2p—-2
w_,-Q(p)'1 = (5) (xgj—1+$§j) H Tt (H x‘) Jor0ss sp=1.

t#2j—1,2j t=—1

Then the bundles Wp = 3 +2 WP tomo+wo=i gimit polarization preserving iso-

morphisms
|

#p : Wp — Vp ® Q(mp),
WP (wy, wg) = ¥p @ WU™) (o (wy), op(w2))
for sections wy, wy of Wp. '

Proof. In the cases of D = S(p) or B(p,q) the claim is a straightforward
consequence of zf € Jp(z) fors > 46— 1,1 € {-1,0,2p+ 1}, z € D, and the fact

that the line bundles Rgo—z)(zp *3) are associated with the sheaves of sections

462

2p+1

H 2 + J(6-2)(a+3)

j=-1
For D = Q(p), r € {27 — 1,25} let us note that

| 0f: _ , 4p- .
oz, 4pz~" 4 2" lng-l-r € Jo(p)(2)

and the line bundle Rg’&p—z) 1s generated by

2p—2 ip—-2
T (H 21) I

t=—1

Applying repeatedly the aforementioned relations of the Jacobian rings, one com-
putes for j # k that

4p—-2
1 | -
ij'(P)'lw,f‘Z(p)’1 =3 H [(’331-1 +23) (z2-1221)" 3] ( H xt)

1=,k t,[ )5,k

26



4p—2

1 —21 [ 9

_ p—1_6p-3 6p—3_2p—1

=5 _(“’21-—13321 +Zy1 Ty ) H Tt
I=j.k

4p
t[EE)#£5
4p~2
zng 4p—1 _4p-3 4p-3 4p—1 '
_ < p—1, 4p— p~3_4p-
= 512p? (-”321-1“’21 + Ty 1 Ty ) H Ty ;
l=‘]’k tl[“%“]#])k

1e.,
I Qw1 _ %% I1 Q(p).1
w' ' — .—-; wl ’
1=j,k 256p° \ .Zj
However, 2'7z < 1+ |'2z]? < 14 1 for z = *(z0, 21,...,2p-1) € Q(p) reveals that

2,2

256p*

Ro(p)(z) that siffices for the vanishing of 1'L=j’k w,Q(p)’l, J # k. Similarly, the
expression

< 1. In the torsion free Jacobian rings

|22 < E::ol |zi|> < 1, whereas

4p-2
B 1
Q(p),1\° _ 2 2 \2 , \4p—4
, (wj =9 (Izj-1 = ij) (22j-172;) Tt
t#£25~1,2j5
' 4p—2
_z-
_ J 2p 6p—-4 6p—4_2p
P t#£2j—1,2j t=—1
4p—2
2} 4 4p—4 4p—4 4
_ P p— p—4_4p
= 392 ("’2:‘—1-"25 +w2,--1m2,-) H Tt +o
t#£2j—1,2j ‘
2
z4 2
1
= (wQ(p).) ol +o
16p J ;

2

—

16p2
That completes the proof of Theorem 4.

2
with < 1 forces (ij(p)'l)_ =0.0

3. CONSEQUENCES

3.1. ABELIAN-MOTIVIC VARIATIONS

Corollary 9. The following three tensor calegories are equivalent:
(I) the category A of the abelian-motivic variations of Hodge structure,

27



(II) the category AH of the abelian-motivic hypersurface variations of Hodge
structure, and

(IIT) the category JPC of the variations of Hodge structure, ezpressed by Jaco-
 bians of plane curves.

Proof. The inclusions JPC C AH C A are obvious. As far as A is generated
by the tautological variations of Hodge structure Vg(y) over Siegel upper half spaces
S(p), Theorem 4 implies that A C JPC. O

3.2. MAXIMAL DIMENSIONAL VARIATIONS

For Hodge structure H of weight w = 2k 41 > 1 let

odd § :hk 21hk 1—-28
i>0

and
pugdd = hk(hk +1)+ Ehk—l-—Zihk—Z—:zs"
i>0
In the case of w = 2k let
psven = th 1-2ipk—2-2i

120
u;ven .— h¥ + (hk-—l _ l)hk—2 -k th—3—2ihk-4—2i
i>0
for w > 4,
- k—2-2i3 k-3-2i
gt i=my+ ) ¥
i>0

1
with 73 := h* for h¥-1 = 1, I3 = :‘)‘-h"’hk_1 for an even h* and A*-1 > 1,

3 = %(h" —1)h*=1 4+ 1 for an odd A*¥ and h*~! > 1. According to [9] or [2], the

odd odd odd)

maximum dimension pu of a variation of Hodge structure 1s y°“? = max(u$

if w=2k+ 1, or pe¢" = max(p§ ", pgren, pgre™) if w = %.
The summands A/ hI~1, j < %)- , of g, including (h*~! — 1)h*~2 from usven

and (%hk> h¥=1 from 7z with an even h¥, hE=1> 1, are realized by appropriate

shifts of the tautologiéal variations of J-Hodge structure over the generalized balls
B(h7, /=), respectively, B(h¥~1 — 1,h¥=2), B(1h¥ h*~'). The tautological varia-

tion of Hodge structure Vg,xy provides a variation of dlmenSIOn —h" (h* +1) in the

case of u$%%. The tautological variation of Hodge structure VQ(hk) is an example of
dimension k¥ for pu3e™ or 3 with h¥-1 = 1. The non-symmetric domain

(R* —1)) C B(1,1) x B(h*~' -1, -2-(h’° - 1)) x B(1, §(h’° - 1)),

DO =

Q(r*,
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cut by the inequality *YY < (1 — [t|)%(I, - XX) for t € B(1,1), X €
B(h*~1 —1,4(h* — 1)), Y € B(1, 1(h* — 1)), is an instance of a variation of Hodge

: . & ,
structure of dimension §(h'c —1)AkF 141 in the case of fiz with an odd A*, R*=1 > 1.

If all Hodge numbers of H are greater than 1, Al*5) > 2 and Al¥] > 4,
then the results of [9] and [7] imply that all the maximal dimensional simply
connected variations of Hodge structure are isomorphic to products of the afore-
mentioned bounded domains. The lack of quasiprojective discrete quotients of
Q(h*=1, L(h¥ = 1)) (cf. [7]) reveals that the maximal dimensional variations, cov-
ered by Q(h*~1, L(h*¥ — 1)) x [T;5 B(R*~2~2%, h¥=3-2%) do not arise from geometry.
All the other maximal dimensional variations are direct sums of tautological ones,
so that Theorem 4 implies

Corollary 10. The geometrically arising mazimal dimensional variations of
Hodge structure with sufficiently large Hodge numbers are expressed by Jacobians
of plane curves. ’

Let us observe that our main result provides a “new” symplectic representation

of SO(2,p). Indeed, the inclusion Vg() C C(Vg(n), ¥o(p)) from Theorem 2 (ii)

induces a symplectic representation SO(2,p) < Sp(2P*!,R). Since a plane curve
1 ' : L

Y of degree 4p has genus 5(41) ~ 1)(4p — 2), Theorem 4 interprets as a realization

of SO(2,p) in a product of Mumford—Tate groups Sp((4p —1)(2p — 1), R) of Hodge

structures of such Y.
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A SEMANTICS OF LOGIC PROGRAMS
WITHOUT SEARCHING”

VESSELA BALEVA

A generalized version of the declarative semantics of Horn clause programs on abstract
structures is presented. The main feature of the semantics is that it does not admit
searching in the domain of the structure.

Keywords: semantics, logic programming, abstract structures
1991/95 Math. Subject Classification: 03D75, 68Q05, 68Q55

1. INTRODUCTION

In this paper we represent and study a semantics of logic programs on abstract
structures. A key feature for this semantics is that it does not admit searching in the
domain of the structure. We consider partial abstract structures with enumerable
domain. The main result is that the class of sets definable by logic programs (LP-
definable sets) coincides with the class of domains of Fridman functions in the
structure in some fixed point.

In order to prove this, we introduce several auxiliary terms. The names of
these terms and the relations between them are given on Fig. 1. An arrow between
two terms means that the first one implies the second one. Each arrow is labelled
by the number of the proposition where the corresponding implication is proved.

* This work is partially supported under Grant 1-604 by the Ministry of Science, Education
and Technologies.
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¥ Theorem 2 domains of
weak-computable Fridman functions

sets in fixed point
Theorem 1 Theorem 2
V-weak-admissible
sets
Theorem 3 Theorem 5
sufficient ) LP-definable
sets Proposition 15 sets

Fig. 1. Relations between the introduced terms

In Section 2 we introduce some basic notions needed in our considerations. In
Section 3 we define standard enumerations, which are the main tool in proving all
results in the paper. In Section 4 we prove the upper circle in Fig. 1 and in sections
5 and 6 the lower circle is proved.

For the sake of simplicity we consider only structures with unary functions,
predicates and parameters. All definitions and results can be easily generalized for
functions, predicates and parameters of arbitrary finite arity.

2. PRELIMINARIES

Let A = (B;01,...,0,;Z0,...,Z) be a partial structure, where the domain
of the structure B is a denumerable set, 0y,...,0, are partial functions of one
argument on B, ¥y,...,Y; are partial predicates of one argument on B, ¥y =
As.true and n,k > 0. Let B = (N;¢1,...,¥n;00,...,0%) be a partial structure
over the set N of the natural numbers. A subset W of N is said to be recursively
enumerable (r.e.) in B iff W = I'(p1,...,¢n;00,...,0%) for some enumeration
operator I (see [1]).

An enumeration of the structure 2 is any ordered pair («,‘B), where B =
(N;@1,...,¢n;00,...,0k) is a partial structure, oo = As.true, and « is a partial
surjective mapping of N onto B such that the following conditions hold:
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(1) The domain of a (Dom(«)) is closed with respect to the partial operations
B w5 sl
(1) a(pi(z)) ~ 8i(a(z)) for all z of Dom(a), 1 <1 < n;
(i) oj(z) & Zj(a(z)) for all z of Dom(a), 1 < j < k.

We shall assume that an effective monotonic coding of finite sequences and
sets of natural numbers is fixed. If ap,...,a, 1s a sequence of natural numbers,
by {(ao, .-.,am) we shall denote the code of the sequence ay,...,an and by E, —
the finite set with code v. We shall use the following notations. The letters s,¢,p-
will denote elements of B; z,y, z, u, v will be elements of N. We shall identify the
predicates with partial mappings taking values 0 (for “true”) and 1 (for “false”).

Let (o, B) be an enumeration of 2. We shall call the set .

D(®B) = {(i,z,y) : 1 <i<n & pi(z) ~ y}
U{{(j,z,e) :n+1<j<n+k &oj_n(z)~ec&ee€{0,1}}

a code of the structure 9B. It is clear that foreach W C N, Wisr.e. in B iff W is
r.e. in D(B). - :

Let A C B. The set A is called weak-admissible in enumeration (a, B) iff for
some 1. e. in B subset W of N the following conditions hold:

(*) W € Dom(a);
(x*) (W) = A.

A subset A of B is called V-weak-admissible in % iff it is weak-admissible in
every enumeration {a,B) of .

The equivalence between V-weak-admissible sets and the sets definable by logic
programs will be considered. The V-weak-admissible sets have an explicit charac-
terization which simplifies the considerations. '

Let £ = (fi,---,fa;T0,...,Tk) be the first-order language corresponding to
the structure 2, where fi,..., fn are functional symbols, Ty, ..., T are symbols
for predicates, T represents the total predicate Xy = As.0.

Let {Z,,Z,,...} be a denumerable set of variables. We shall use the capital
letters X, Y, Z to denote the variables.

If 7 is a te-m of the language £, then we shall write 7(Z) to denote that all of

the variables in 7 are among Z = (Z),...,2,). f 7(Z) isaterm and { = t,,...,1,
are arbitrary elements of B, then by ro(Z/t) we shall denote the value, if it exists,
of the term 7 in the structure 2 over the elements ¢y, ..., 1,.

Termal predicates in the language £ are defined by the following inductive
clauses:

(1) Tj(7), 0 < j < k, where 7 is a term, are termal predicates;

(i1) If IT is a termal predicate, then —II is a termal predicate;
(iii) If I and 1?2 are termal predicates, then II*&I1? is a termal predicate.

Let TI(Z) be a termal predicate and ¢;,...,¢, be arbitrary elements of B. The
value Il (Z /) is defined as follows:
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(i) M I = Tj(r), 0 < j < k, then Na(Z/%) =~ T (ra(Z/?));
(ii) If IT = M*&I12, where I1' and I1? are termal predicates, then
n(Z/), ifNY(Z/t)~0,
Oa(Z/t) ~{ 1, if IY(Z /1) ~ 1,

undefined otherwise.

Let IT be a termal predicate and 7 be a term. Then the term (II O 7) is
called conditional term. Let @ = (IL D 7) be a conditional term with variables
among X,..., X, and let s;,...,s, be arbitrary elements of B. A value Qy(X /3)
is defined as follows:

Qu(X/3) ~t & (Ma(X/3) >0 & ra(X/3) = 1).
Let fix an effective coding of expressions of £. The subset A of B is called

weak-computable iff for some r. e. set V' of codes of conditional terms {Q" },ev with
variables among Z,, ..., Z, and for fixed elements ¢;,...,¢, of B it is true that

s€EA & w(weV &Qy(Z/t)~s).

3. STANDARD ENUMERATIONS

In order to characterize the LP-definable sets in abstract structures, we shall
examine their prototypes in the enumerations of the structures. For this purpose
it is enough to restrict our considerations only to a special class of enumerations
called standard ones (see [4]). In this section we briefly introduce some definitions
and properties of standard enumerations.

Let o7, 1 < i < n, be the unary recursive function Az.(7,z), let N° = N\
(Range(p}) U ...U Range(p},)) and let a° be a partial mapping of N° onto B.

The partial mapping o of N onto B is defined by the following inductive
clauses:

If z € N° then a(z) ~ a%(z);

If z = (i,y), a(y) =~ s and 6;(s) ~ ¢, then a(z) ~t.

To the mapping a corresponds the set N, of natural numbers defined by:
If z € Dom(a®), then z € N;

If z = (i,y) and y € N,, then z € N,.

Let Dy,..., D, be unary partial predicates in N such that:

. 0) lf z ¢ Na’
Di(z) = § o, if £ € Ny and 0;(a(z)) is defined,
undefined otherwise.
The predicates Dy, ..., D, are used to describe the domains of the standard
enumeration functions ¢, ..., ¢, defined as follows:

; s @5 (), if D;(z) ~ 0,
#i(2) { undefined otherwise.
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It is clear that each ; isr.e. in {D;} and each D; isr.e. in {p;},1< i< n.
Let 01,...,0% be partial predicates in N satisfying the condition

z€ No = 0j(z) 2Z(a(z)), 1 <j<k.

Denote by B the partial structure (N;¢1,...,¢n;00,...,0k). Each enumera-
tion (o, B) obtained by the method described above is called a standard enumera-
tion. The mapping a° is called a basis of the enumeration (a,B). It is clear that
a® and the predicates o1, ...,0: completely determine the enumeration («,B).

For each natural z we define |z| as follows:

If z € N° then |z]| = 0;
If z = (i,y), 1 <i < n,then |z| = |y| + 1.

The next properties are proved in detail in [4].

Proposition 1. Let («,B) be a standard enumeration and 1 < i < n. Then
for each natural z, a((i, z)) ~ 0;(a(z)).

Proposition 2. For each standard enumeration (a,B), Dom(a) C Ng.

Proposition 3. Let (a,B) be a standard enumeration and 1 < ¢ < n. Then
for each natural z, a(p;i(z)) =~ O;(a(z)).

- Proposition 4. Fach standard enumeration is an enumeration of the struc-
ture 2.

Define the unary recursive function g in the following wa.y.:
If z € N, then g(z) = z;

If z = (i,y), then g(z) = g(y)-

Let B” denotes the structure (N;¢7,...,¢%).

Proposition 5. There ezits an effective way to define for each natural x and
each variable Y a term 7(Y) such that rg+(Y/9(z)) = z.

Proposition 6. Let 7(Y) be a term and y € N. Then for each standard
enumeration (a,B), a(re+(Y/y)) ~ ra((Y/a(y)).

Proposition 7. There ezits an effective way to define for each natural x
and each variable Y a term 7(Y) such that for each standard enumeration {a,‘B),

a(z) = ra((Y/e(g(2)))-

Let {a,B) be a standard enumeration. Denote by Rg the subset of N with
the following definition:

(j,z.e) ERp & (1<j<k) & oj(z)x¢)

or
(k+1<j<k+n& Dj_i(x)~e¢)).
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It is clear that the set W isr.e. in B iff it is r. e. in Reyg.

Proposition 8. There ezists an effective way to define for each triple u =
(7, z,€) and each variable Y an atomic predicate II(Y') such that for each standard
enumeration (o, B)

g(z) € Dom(a®) = (u€ Ry & Ma(Y/a(g(z))) ~ 0).

4. WEAK-COMPUTABILITY AND WEAK-ADMISSIBILITY

LP-definable sets are not convenient for direct examination. That is why we
introduce and characterize V-weak-admissible sets which are later proved to coincide
with the LP-definable sets. In this section we study the relation between V-weak-
admissibility, weak-computability and Fridman computability.

Theorem 1. If A s V-weak-admissible in A, then A is weak-computable.

Proof. Assume A is not weak-computable. We shall construct a standard
enumeration (o, B) of A such that A is not admissible in it.

To define the enumeration, we construct a partial surjective mapping a® of N°
onto B. The mapping o® will be constructed by steps. On each step g we define
" a partial mapping a, of N° onto B, a subset H, of N° and partial predicates

01,...,0} such that:

(1) Dom(a,) and H, are finite and disjoint;
(ii) ag < og41 and Hg C Hyya;
(iii) of,..., o} are partial recursive and defined exactly for those natural y for
which g(y) € Hy;

(iv) of Cof*' 1<j<k

o0
We take o® = Uo ayg.
q=

With the even steps we ensure that Range(a’) = B. With the odd steps
= 2n + 1 we ensure that if I, is the n-th enumeration operator and

(a,%:(N;pl,...,¢n;al,...,ak))

is a standard enumeration such that ay < o, HiNDom(a) = G, a;-’ Lo 1<i< &,
then for W = I'(R¢gg) at least one of the conditions (*) and () fails.

Let sg,s1,... be an arbitrary enumeration of B and g, z;,... be an enumer-
ation of N° ao(zo) = so and ag(z) be undefined for z # zo. Let Hy = & and
each of ¢),...,0) be the totally undefined predicate. Let ¢ > 0 and a,, H, be
07,...,0} defined for r < q. We have to consider the following two cases:

I. ¢ = 2n. Let z be the first element of the sequence zo, z;,... which does not
belong to Dom(ay-1) U Hy_1, and s be the first element of the sequence so, 51, ..
which does not belong to Range(ay—1). If such s does not exist, then let s be
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an arbitrary element of B. Define a4(z) ~ s and ay(z) ~ a4-1(z) for z # 2,
Hy=H,yando! =0!™' 1<j <k

II. g =2n + 1. Let E, be the finite set of natural numbers with code v. The
set E, is called g-consistent iff: '

(1) each element k of F, is equal to (j,z,¢) forsomen+ 1< j <n+k and
e€{0,1}or1<j<nande=0; '
(i1) if (j, z,€1) and (j, z,€2) belong to E,, then £, = ¢3;
(iii) if (j,2,€) € Ey, n+ 1< j <n+kand g(z) € Hyy, then 0! 7' (z) > c.
Let T',, be the n-th enumeration operator defined by W,, — the n-th r. e. set,
that is for each set R of natural numbers

z €TL(R) & Fv({v,z) e W, & E, CR).

Let u = (v, z) be element of W, Dom(ag-1) = {wy,...,wm},and Zy,...,Zn,
be distinct variables. Corresponding to u, we define predicates I1%(Z;, ..., Z,,) and
PY(Zy,...,2Zm) and a term 7%(Z1,...,2Zm) as follows. If E, is not g-consistent,
then IT* = P* = ~Ty(Z,). '

Further we consider the case when E, is g-consistent. We define II* in the
following way. If E, does not contain elements of the form (j,z,¢), such that
g(z) € Dom(ay-y), then II* = Ty(Z,).

Let (j1,z1,€1),..-,(Jp,Zp,€p) be all elements of E, such that g(z;) €
Dom(ag-1), 1 <i<p, and II'(Y}),...,[IP(Y,) be atomic predicates such that:

If g(z;) = w; for some j, 1 < j < m, then Y; = Z;;

For each standard enumeration (e, B), if g(z;) € Dom(«), then (j;, z;,€;) €
R & y(Y:/a(g(z:)) = 0. |

Define I1* to be the conjunction of II'(Y}),...,I?(Y,). Now we define P* and
¥ to follow the behavior of z.

If g(z) € Dom(ag—1), then P* = —Ty(Z;) and ™ = 2Z,.

If g(z) € Dom(ay-1) and g(z) = w; for some j, 1 < j < m, then let ¥ =
Z; and 7(Y) be a term such that for each standard enumeration (@, B), a(z) ~
Ta(Y/a(g(z))) holds. '

Define P* = [I*&Ty(7) and 7% = 7.

We have described a way to construct the r. e. sets {II*},ew,, {P*}uew, and
{r%}uew, for a given W,.

Denote a(w;) by t;, 1 <i < m, and let D be a subset of B such that s € D iff

Bu(u € Wn & P\;(Zl/tl, - .,Zm/tm) ~0& T&(Zl/tl, ‘ o .,Zm/tm) it S).

It is clear that D is weak-computable and hence D # A. There are two possible
cases.

Case 1. There exists s, which is an element of B, such that s€ A and s ¢ D."
In this case we have also two possibilities:
a. For some u € W,, u = (v, z), we have

H‘Q‘,(Zl/tl,...,Zm/tm)zO . (1)
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and

PY(Zy1[t1,y ..., 2m[tm) 0. (2) |
From (1) and (2) it follows that
g(z) € Dom(ay-1) = 7(Y/a(g(z)) is undefined. (3)

Let .
| L =Hy1U{g(y) | 373e((j, v.€) € By & g(y) ¢ Dom(ay-1))}.

We define ay = ay4-1. If g(z) € Dom(aq) then define Hy = L, else H, = H,_; U
{9(z)}. And, finally, we define oq 1 < j <k, by the following clauses:

If g(y) gE Hy, then o] (y) is undeﬁned

If g(y) € Hy\ Hy-1, then if (n+J,y,€) € E, we have o] (y) > ¢, else o} (y) ~ 0;

If g(y) € Hq-1, then o¥(y) ~ o~ (y).

It follows from (1) that E, is q-consnstent and hence o} (y) are correctly defined
and o}~ o of.

Let (o, B) be a standard enumeration such that a > oy, Dom(a)N Hy = 9,
0j 2 0],1<j<k, and let W = ['n(Rp). We shall prove that £, C Ry.

Indeed, let (j,y,€) € E,. If g(y) € Dom(ay), then g(y) € Dom(a) and (1)
yields (j,y,€) € Rg. If g(y) ¢ Dom(ay), then g(y) € H, and we also have 0 > o
and Hy N N, = D, hence (j,y,¢) € Rp.

Suppose that ¢ € Dom(a). Then g(z) € Dom(cag—1). From the definition
of 7¥ we obtain that 73(Y/a(g(z))) =~ a(z) and 75(Y/a(g(z))) is defined. This
contradicts (3), hence ¢ ¢ Dom(«a), which implies W ¢ Dom(a).

b. For each u € W, such that v = (v,z), I§(Z,/t1,..., Zm/tm) ~ 0 implies
Py(Zi[tr,. .-, Zm[tm) =~ 0. In this case let oy = ag_1, Hy = Hy-y and o} =

Jq'l 1 <j <k Let (a B) be a standard enumeration such that a > ag,
Dom(a)ﬂ Hy =@,0; >0{,1<j <k and W = [,(Rg). Suppose that there
exists z € W such that a(z) = 5. Then there exists u € W, such that u = (v, z)
and Ey, C Reg. From the definitions it follows that II§(Z; /t1,...,Zm/tm) ~ 0 and
hence Py(Z1/t1,...,Zm/tm) =~ 0.- We obtained a(z) =~ rm(Y/a(g(a:))) ~ s, which
contradicts the assumption s ¢ D. We conclude that A # a(W).

Case 2. There exists s € B such that s ¢ A and s € D. This implies the
existence of u € W, such that u = (v,z) and Py(Z1/t1,..., Zm/tm) =~ 0 and
Ta(Z1/t1,. .., Zm[tm) =~ 5. Then I{(Z,/t1,...,Zm/tm) ~ 0 and hence E, is
g-consistent. Let oy = a1 and

Hy=H, U {g(y) | 373¢((j, y,€) € Ey & 9(y) & Dom(a,-1))}.
We define the predicates o, 1 < j < k, by the following clauses:
If g(y) ¢ H,, then a}(y) is undefined;
If g(y) € Hy, then

€v lf(] y’ )GEU)
Uq(y)"‘ lfg(y)qu/Hq—l and (jayae)¢EIf) .
"q '(v), if q(y) € Hqor.
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Let (a,B) be a standard enumeration such that o > a,, Dom(a)NH, = &,
0j 2 05,1 < j <k and W =T,(Rg). Analogously to Case la, we can prove
that £, C Ry and hence x € W. From Py(Z,/t1,...,Zm[tm) =~ 0 and from the
definition of 7% it follows that z € Dom(a,) and a(z) ~ s. And s ¢ A implies
A # o(W).

Now we are ready to complete the proof defining the required enumeration.

oQ o o0
Let o = | ay, of = Uol, 1 <j <k and H= |JH, Let (,B =
g=0 ¢=0 ¢=0
(N;@1,...,¢n;00,...,0m)) be a standard enumeration with basis o® and

o3 (z), ife g N,,

Tl 0 <j<k.
%1{%) {zj(a(z)) olerwiss, =~ =I=H

Let F(2) be the class of all Fridman computable functions in 2.

Let %; = (B;;6%,...,05;%8,...,5%), i = 1,2, be two partial structures, where
the correspondmg functlons and predlcat% have the same arity. The mapping & of
B, onto B, is called a strong homomorphism iff:

(i) « is a surjective mapping;
(ii) k(6 (s1,..-,8a,)) = 62(k(s1),...,K(sq,;)) for each (s1,...,5q,) € By,
1€1<n;
(iii) Zi(s1,...,8;) < T2(k(s1),...,4(ss;)) for each (s1,...,5,) € BY,
1<j<k.
It is easy to show the following properties of the Fridman computability:

1. Invarianiness. If k is a strong homomorphism between ; and 2z and
#; € F(U;), then there exists 6, € F(2;) (of the same arity) such that
k(01(s1,...,54)) =~ 02(k(s1),...,K(sq)) for each (s1,...,54) € Bf.

2, Effectiveness. If A = (N;¢1,...,¢n;00,.. a'k) is a partial structure and
pEF (Ql) then ¢ is r. e. in the functlons and predxcates of &.

3. Substructure property. Let 2, and 2y be partial structures such that B; C
Bs. Let cp and 21 be the restrictions ofcp and 22 onB;,1<j<k 1<i<n, and
6, € F(Qll) Then there exists 6, € F(ng) such tha.t O1(81;:458,) 2= 02(31, ;s gl )
for each (s1,...,54) € BY.

Using these properties we are ready to establish a relation between V-weak-
admissibility and Fridman computability.

Theorem 2. A is V-weak admissible iff there exists § € F(A) such that A =
019, ...,t%) for some (19,...,1%) € B".

Proof Let § € F(2) and A = 6(%,...,t°) for some (J,...,t)) € B". Let
{(a,B) be an arbitrary partial enumeration of 2 and

B’ = (Dom(a); ¢}, ..., 0h;00,---,0%),
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where ¢} and o} are the restrictions of ¢; and o; on Dom(a),1<i<n,0<j<k.

Then « is a strong homomorphism between B’ and 2. Thus there exists ¢’ € F('B')
such that ¢’ is an a-prototype of . From the substructure property of Fridman
computability, there exists ¢ € F(B) such that p(z;,...,2,) ~ ¢'(z,,... ,z) for
each (z1,...,z,) € (Dom(a))". Because of the effectiveness of Fridman computabil-
ity, ¢ is r. e. in B. We obtained that A = a(¢'(z1,...,2,)), z1,...,2, € Dom(a)
and a(z;) ~t;,1 <i<r. Theset W = p(x;,...,2,)isr. e. in B, because ¢ is such
and ¢ > ¢'. Finally, W C Dom(a) and A = a(W), i.e. A is V-weak-admissible.

Now let A be V-weak-admissible. Then from the previous theorem, A is weak-
computable. Using the corresponding definitions, we can easily prove the “if” part
of the theorem. O

5. SUFFICIENCY AND. WEAK-ADMISSIBILITY

In this section we introduce the notion of sufficiency and establish the relation
between sufficiency and weak-admissibility.

Further we assume that the structure % = (B;0;,...,0,;%,..., k) is such
that the predicates Z,,...,E; take only value 0 (t{rue) wherever defined. This
assumption is not restrictive, because each predicate £ can be represented by the
following two predicates:

2(5) = {

The extra condition we impose is due to the syntax of Horn clause logic pro-
grams. The negative information of the structure cannot be used because a negation
in clause tails is not allowed. Let fix the structure 2 and modify some of the notions
introduced according to the new limitation.

A standard enumeration (a, B) is called positive iff oy,. .., 0 take only value
0 wherever defined. Further all the enumerations are assumed to be positive and
thus we can simplify the code of the structure considering the set

(B) = {{j,z) [n+1<j<n+kandoj_n(z) is defined }U
{(i,z) | 1 <1< nand Di(z) is defined}

instead of Reg. Note that (a,B) is a positive standard enumeration and W is r. e.
in B iff W = I'((*8)) for some enumeration operator I'.
The pair (o’, H') is called a finite part iff:

0, if £(s) =~ 6,

undefined otherwise, =0y L.

(i) o' is a finite mapping of N° onto B;

(i) H' is a finite subset of N° and Dom(o/)NH' = &.

The positive standard enumeration (a,B) eztends the finite part (o', H') iff:
(1) a2 d;

(i1) Dom(a)N H' = O,

(ili) oj(z) ~ 0 for each z € N such that g(z) € H', 1 < j <k.
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Let fix an arbitrary finite part (a’, H'), Dom(a') = {w,...,w,} and o/(w;) =
si, 1<i<r. Let ¢4,,...,¢;5, be new constants which we shall interpret as names
of 51,...,8r. Further we consider terms and predicates of the first order language
B [ w0 v Bas Fg e wip v B » o L)

The finite set with code v, E,, is called correct iff it consists only of elements
of the form (j, z) for some natural z and 1 < j < k +n.

- The next propositions are similar to the propositions for the standard enumer-
ations and have straightforward proves.

Proposition 9. Let ¢ € N and g(z) € Dom(a’). Then there ezists an
effective way 1o define a term * without variables such that each positive standard
enumeration (a,B) extending (o', H') satisfies a(z) ~ 74.

Proposition 10. Let 2z € N, g(z) € Dom(a’) and 1 < j < n+ k. Then
there exists an effective way for u = (j, z) to define an atomic predicate I* without
variables and negations such that for each standard enumeration (o,B) we have

(7,z) € (B) & Iy ~0.

We shall identify each finite set of atoms without variables with their conjunc-
tions. The empty set we shall identify with the logical constant true.
Let E be a correct finite set of naturals. By E we denote the set

{II* |u = (j,z) & g(z) € Dom(a’) & u € E}.

We shall call the set E appropriate for the finite part (a’, H')) iff it is correct and
Em ~ (.

Let W be ar.e. set and I' be the enumeration operator defined by W. The
notion of compatibility of a finite part and an enumeration operator introduced
below reflects the fact that in logic programs, where a search in the domain of the
structure is not allowed, only a finite information supplied by constants 1s available,
while W contains much more information which is not accessible.

The finite part (a’, H’) and the enumeration operator I' are compatible iff for
each u = (v,z) € W, such that E, is appropriate for (o, H'), we have g(z) €
Dom(a').

Let I’ be an enumeration operator and let the finite part (a’, H') be compatible
to I'. The subset A of B is called sufficient for (¢, H') and I iff: ‘

(i) For each positive standard enumeration (a,B) extending (o, H'), it is
true that a(C((B))) C A;

(1) For each s € A there exists a finite part (a”, H") such that o” > o,
H"” O H' and for each positive standard enumeration {a,B) extending

(", H") it is true that s € a(T'({'B))).
It is easy to show the following

Proposition 11. For each compatible finite part (o’, H') and enumeration
operator I there exists at most one subset of B which is sufficient for them.
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A class of sets P is called sufficient iff for each compatible finite part (o, H')
and enumeration operator I' there exists a set A € B which is sufficient for I" and

(o, H').
Theorem 3. Fach sufficient class contains all V-weak-admissible sets. |

Proof. Let B be a sufficient class and A ¢ P. We will prove that A is not
V-weak-admissible constructing by steps a positive standard enumeration in which
A 1s not weak-admissible. For the purpose we shall construct a partial surjective
mapping a® of N? onto B and a subset H of N° such that Dom(a®)N H = @.
The set H defines the predicates o1, ...,0r out of N,. Even steps ensure that
a® is a surjective mapping and the odd steps ¢ = 2n + 1 ensure that A is not
weak-admissible for the n-th enumeration operator I'y,.

Let sg,s;,... be an arbitrary ordering of elements of B and zg,z;,... be an
arbitrary ordering of elements of N°. Let ag(zo) = so and ag(z) be undefined
otherwise. Let Hy = . Now suppose we have defined (a;, H;), 0 < I < g. We
define (g, Hy) as follows:

[. ¢ = 2n. Then let H, = H,_; and s be the first element of the sequence
S0, 1, ... which is not in Range(ag-1) (if there is no such element, let s be an
arbitrary element of B). Let z be the first element of the sequence z¢, z;, ... which
is not in Dom(ag-1) U Hy—1. Then let ay(y) ~ ay-1(y) foreach y € N°, y # z
and a4(z) ~ s.

II. qA = 2n+1. Let I';, be the n-th enumeration operator. Consider the following
cases: -

Case 1. Ty, and (ay—1, Hy-1) are incompatible. Let W, be ther. e. set defining
I'n. Then there exists © € W, such that u = (v,z) and E, is appropriate for
(0g-1, Ho1) and g(z) ¢ Dom(a,). Let L = {o(s) | 3i((ii2) € Bu & o(v) ¢
Dom(ayg-1))}, Hy = Hy-1 UL U {g(z)} and oy = ay-;. Let (a,B) be a positive
standard enumeration extending (a,, H,) and h = (j,y) € E,. If g(y) € Dom(ay,),
then g(y) € Dom(aqy—1), hence ITh ~ 0 and thus h € (B). If g(y) € Dom(qay), then
9(y) € Hy—y. If k+1 < j < k+ n, then we obtain h € (B) from the definition
of extension, and if 1 < j < n, then we obtain this from the definition of standard
enumeration and from Dom(a®)N H, = @.

In this way we have proved that E, C (B), which implies z € I',,((B)). From
g(z) € H, it follows that z ¢ Dom(a), that is ['n((B)) € Dom(a) and A is not
weak-admissible in («, B).

Case 2. T and (ag-1,Hy_1) are compatible. Let D € P be the set which
is sufficient for I'y and (ag-1, Hg—1). Then D # A. In this case there are two
subcases possible:

a. There exists s € B such that s € A and s € D. Let oy = a4~ and
H, = H,_,. Sufficiency of D implies that for each standard enumeration («, B)
extending (ag—1, Hy—1) we have a(T'n({B))) C D. Then s ¢ a(T'»({(B))), which
means A # o(I',(('B))).
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b. There exists s € B such that s ¢ A and s € D. In this case there exists
a finite part (o', H') extending (ay—1, H,-1), that is o’ > ay_y and H' D H,_4
and for each positive standard enumeration extending (ovg_;, H,—1) it is true that
s € a(I'n((B))). Let oy = o’ and Hy = H'. Then for each standard enumeration
extending (o, H,) it is true that a(I‘n((‘B))) Z A

Finally, let a® = U By = U H, and o} U o], where

q ~ if g(z) e HQ) .
3(2) = {undeﬁned otherwise, lsjsk.

We define the predicates o, ..., 0 as follows:

_ Ej(a(x))’ if z € Ng,
ogie) == {o;(z) otherwise.

It is clear that the standard enumeration (o, B), determined by a° and oy, ...,
0, is positive, correctly defined and it extends the finite parts {(ay, H;), ¢= 0,1, ...,
which means that A is not weak-admissible in {a,B). O

6. LP-DEFINABILITY AND WEAK-ADMISSIBILITY

In this section we give a formal definition of LP-definable sets and for each
compatible enumeration operator I' and finite part (o/, H') we construct a logic
program (P, F') which defines a set sufficient for them. In this way we prove the
equivalence between LP-definability and V-weak admissibility.

Let fix a structure 2 which predicates are true wherever defined and let £ =
(fi,---, fa;To,...,Tk) be afirst order language corresponding to 2. Let £c be the
enrichment of £ with constants ¢;,...,¢c, and T¢ be the set of all terms without
variables of £c. We denote the set of all atoms of the form Tj(7), where 0 < j < k,
7 € T¢ and Tj(7y) =~ 0 (the last means that Tj(7) is true in ) by 8 (%).

Logic programs are called formulae of the form F'&...&F', where F* is an
universal closure of Horn clause, i.e. F* is of the form

VX, ...VX,(IIV-ﬂHI V..._‘Hn))

where n > 0 and II, Iy, . . ., II, are atomic predicates. We shall use the usual Prolog

notation
H - Hl,.‘--,nn.

for the Horn clauses. II is called a head and Iy, ..., II, — a tail of the clause.
Let F be a new predicate symbol which is not among Tg, ..., T;. For the sake
of simplicity F' is assumed to be an unary predicate symbol. All the definitions and
proofs can be easily generalized for the case of a higher arity.
By £, we denote the language of the logic program P. The symbols from £¢
contained in £p are interpreted in the usual way, that is P does not redefine the
predicates in £¢.
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The subset A of B is LP-definable iff there exist a set of constants C =
{c1,...,¢;} and a pair (P, F'), where P is a logic program and F is a new predicate
symbol such that

sEA & IT(r€Tc & °(A)U{P}F F(1) & 19 ~ 5),

where “+” means deducibility in the sense of first order predicate calculus.

Let fix a finite part (o', H') such that Dom(a’) = {w1,...,w,} and o'(w;) ~ s,
1 <1< r. Letcs,,...,cs, be names for s;,...,s,. We shall construct a logic
program P such that the set LP-definable by (P, F') and c;,, ..., ¢,, is sufficient for
(o', H") and I'. The program repeats the constructions in the proof of Theorem 1.

Let 0 and nil be new constant symbols, fo be a new unary functional sym-
bol and h be a new binary functional symbol. Let C = {¢;,,...,¢,}, £ =
{csyy.-rCs,.,0,nil, fo,h, f1,..., fasT0,..., Tk} and T be the set of all terms with-
out variables of £5. For each program P we consider Herbrand interpretations in
Lp with domain . If @ is a predicate symbol of £p and I is a Herbrand interpre-
tation of P, by I(Q) we denote the corresponding predicate of T. An interpretation
I of P is called a model for P iff all clauses of P are true in [.

For each natural n, by n we denote the term f'(0). Let N denote the set
{n|neN}

It is well-known (see [3]) that:

Proposition 12. For each r. e. subset W of N¥ and for each k-ary predicate
symbol Q) there exists a logic program P with the following properties: '

() If (21,-..,26) EW, the PFQ(2¢,:--Z;);
(11) There ezists a Herbrand interpretation I of P which is a model for P and

I(Q)(a1,...,ax) =0
& Jzy .. Fzi((z1,...,2x) EWkay =2, & ...ax = 7).

Such an interpretation for P we shall call standard.
We define a list to be an element of T such that: (i) nil is a list; (i1) if a is a
term and b is a list, then A(a,b) is a list.

We use the usual Prolog notation for lists.

Let cod be a new ternary predicate symbol and nat be a new unary pred-
icate symbol. Let Pcoq and Pna: be logic programs representing the r.e. sets
Cod = {(z,y,2) | = = (y,2)} and Nat = {z | g(z) ¢ Dom(a’)} by cod and
nat, respecti;ely, and

Py .
_t_%(y_j,c,j):-. L= PY
tau(X, fi(V)) - cod(X,1,Y), taw(Y,V). i=1,...n
Pcod-

The following proposition verifies the logic program Py using the method pro-
posed in [3].
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Proposition 13. Let z € N. Then Py - tau(z, 7)) iff g(z) € Dom(a’) and

Tr=T7*,

Proof. The “if” part is easily proved by induction on |z|. To prove the “only
if” part, let I be a standard Herbrand interpretation for cod. We define I on 7 as
follows:

(i) I(tau)(a,b) = 0,if a ¢ N ;

(i) I(tau)(a,b) =0,ifa € N,a =z, g(z) € Dom(a’) and b = 77,
(i1i) I(tau)(a,b) = 1 otherwise. :

It is easy to show that 7 is a model for Py. O

Consider the following program:

P

pi([]) - _

pi([X]Y]) - cod(X, j, Z), nat(Z),pi(Y). j=1,...,n+k

pi([X|Y]) - cod(X, j, Z), tau(Z, V), To(f;(V)), pi(Y). j=1,...,n

E([X]Y]) - QQ_d(X,l', Z),tau(Z, V),Tj_n(V),p_i(Y). j=n+1,...,n+k

Po. '

|

Proposition 14. Let E = {vy,...,u} be a correct finite set. Then for each fi-
nite set G’ of atoms without variables in £ it is true that Py F G’ = pi([v,, ..., 1))
iffG' D E.

Proof. The “if” part is easily proved by induction on I. To prove the “only
if” part, we define a class & of Herbrand interpretations of P,. The Herbrand
interpretation I belongs to class £ iff:

(i) I is standard for Pnq and the predicate symbols in Py are interpreted as in
the prove of the previous proposition;

(ii) Let a € X. If a is not of the form [v,, ..., ] for any correct set {v, ..., u},
then I(pi(a)) ~ 0. If a is of the form [v;,...,7] for some correct set E =
{v1,...,u}, then I(pi(a)) ~ O iff there exists a finite set of atoms without variables

G={B,...,B8,}, ¢> 0 of £, such that EC G and I(B;) ~0,1<j<q.

It is easy to show that each I of £ is a model of P;. Let G = {f1,...,05,}
be a finite set of atoms without variables of £, £ = {v1,..., v} be a correct set
and Py F G’ = pi([v,,...,y]). Let I € & be such that if 8 is an atom without
variables of £, then I(8) ~ 04 B €G. Since I is a model of P;, we have
I(pi)([vy,-.-,2]) >0, that is EC G. O |

Proposition 15. For each enumeration operator I' compatible with (o', H')
there erists a logic program P such that the set A, LP-definable by (P, F) and
C ={csy,---,Cs,}, is sufficient for (o', H') and T'.

45



Proof. Let I' be an arbitrary enumeration operator and W be the r. e. set which
determines T', i.e. if R is a set of natural numbers, then z € T(R) < Ju((u,z) €
W & E, CR). Let W, = {(u,z) | (4, z) € W and E, is correct}. It is clear that
Wi is r.e. set. Let @ be a new predicate symbol and P, be the logic program
representing W) by Q. Let list be a new binary predicate symbol and P; be a logic
program such that:

- (i) If uis a code of the finite set {vy,...,w}, [ >0, then Ps * list(u,[v,,...,2]);

(i1) There exists a Herbrand interpretation I of Ps, which is a model of Ps, and
if Ey = {vy,..., v} for some natural u, then I(list)(u,b) =06 b=[vy,...,1]).

Consider the following logic. program:

F(Y) -~ Q(Z),@(Z, U, X))ta_u(X! Y)’ TO(Y)’M(U’ V))E(V)

We shall use the next lemma, which proof is similar to the proof of the previous
propositions.

Lemma 1. Let G be a finite set of atoms without variables of £.. Then for
each term 7 without variables of £, P & G = F(7) iff there ezists (u,z) € W,
such that:

(1) g(z) € Dom(a’) and T = 77,

(ii) E, U{To(7)} CG.

Let A be defined by (P, F) and C = {c,,,...,¢s,}. Let (o, B) extend (o’, H'),
s € a(I'((!B))), = be such that a(z) =~ s and let there exist (u,z) € W) such
that E, C 8. This implies (Fy)q =~ 0. From the compatibility of I' and (o', H')
and the correctness of Ey it follows that g(z) € Dom(a’). And we also have
Ty ~ a(z) =~ s, hence (To(7"))a = true. From the above arguments we obtain
P+ E, U{To(r*)} = F(7%) and from the LP-definability of A it follows that
s € A, that is o(I'((*B))) C A.

Now let s € A. Then there exists 7 € T¢ such that 7q ~ s and (A)° UP F

H(7). From the reduction theorem it follows that there exists a finite set G of
atoms without variables such that Goy >~ 0 and P+ G = F(7). Hence, there exists

(u,z) € W, such that g(z) € Dom(a’), 7 = 7%, E, C G and 7§ ~ 5. Let
L={9(y) 1 (J,9) €E, &1<j<n+k&g(y) ¢ Dom(a')}.

Let o = o' and H"' ~ H' U L. Let (a,) extend (a”, H"). Then (a,B)
also extends (o', H'). Consider the set E, and let ¢t = (j,y) € E,. There are two
possibilities:

1. g(y) € Dom(ay), hence IT§ ~ 0, that is (5, z) € (B).
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2. 9(y) & Dom(ay), hence g(y) € H”. If 1 < j < n, then (j,z) € (B) from the
fact that (o, B) is standard and Dom(a)NH” = Q. Inthecasen+1<j<n+k
we also obtain (j, z) € (B) from the definition of extension.

Finally, we have proved that E, C (B), i.e. z € ['({8)). On the other hand,
a(z) ~ 15 ~ 79 =~ s or s € a(I'({(*B))). Thus we obtained that A is sufficient for
(¢/,H"Yand T'. O

We already proved the next theorem.

Theorem 4. Each weak-admissible set in 2 is LP-definable.

Theorem 5. If the set A is LP-definable by (P, H) and C = {c1,...,¢c.}, then
A is V-weak-admassible.

Proof. Let £c = (e1,...,¢r;f1,.-yfn;To,...,Tk) be a first order language
corresponding to A and T¢ be the set of the terms without variables of £¢. Let

SEA © (T €T &I(UUPE H(T) & 9y = 5). (%)

Fix an arbitrary partial enumeration (a,B) of 2A. We shall define a r. e. in B set
W of naturals such that W C Dom(a) and a(W) = A.

Let £ = (fi,---, fa;T0,..-,Tx) and let for each (¢;)o € B choose z; € N
such that a(z;) ~ (ci)a (there exists such z; since a is a surjective mapping). Let
K' = {z,...,z,}-and K = {Z | z € K'}, where Z is a new constant for each
z€ K ' and KNLec =D. Since K 1s a finite set, K isr.e. in B. Let Ly = LUK
and let B" be the enrichment of B in £x, where Z is interpreted as x. Consider
the set Tk of terms without variables of £x. For each term 7 of Tk we define a
term [7] of T¢ by the following inductive clauses:

(i)if 7 = Z for some Z € K, then [7] = ¢; ¢ a(z) = (¢i)a;

(i) if T = fi(r1), then [] = fi([v1]). '

It is easily seen that for each term 7 € Tk, g+ is defined iff [7]q is defined
and also that a(rg+) =~ [7]q.

Let ¢(B) = {T;(7) |0 < j < k & 7 € Tk & Tj([r]) € °(A)}. The set
a¢ (B) is r.e. in B, because for 1< j <kand €Tk the following equivalences
hold:

T;(r) € 07 (B) & Ti([7]) € 0°(A) & T;([r]a) =0
& 2,‘((!(7‘«3')) ~0) & Uj(TcB-) e~ (.

By changing each appearance of ¢; to Z; in P and 7 we obtain P and 7. Now

we define the set W by
zeW © I(FeTk &g ~z & (B)U{P}F H(7)).

From that definition it is clear that W is r.e. in B. Since Dom(a) is closed
with respect to ¢;, 1 < i < n, we have W C Dom(c). And finally, from the
constant theorem and reduction theorem it follows that a(W) = A, which proves
the theorem. O
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Now we are ready to state the main results of the paper as corollaries of the
theorems already proved.

Corollary 1. The subset A of B is LP-definable iff there exists € F(U) such
that A = 0(to1,...,tor) for some fized (to1,...,t0,) € B".

Corollary 2. The subset A of B is LP-definable iff A is weak-computable.

7. CONCLUSIONS AND RELATED WORK

The subject of this paper is a semantics of logic programs without searching
in the structure domain. The paper i1s a part of a more general exploration being
performed at the Department of Mathematical Logic of Sofia University. All these
works use the enumerations approach which is extremely suitable for problems of
finding normal form of objects obtained by certain kind of computations. In [3] is
considered a semantic, for which searching in the domain of the structure is allowed.
There are also results for more general parameterized semantics.
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Let % be a total abstract structure. We prove that if aset A C |{2%|™ is admissible in every

partial enumeration of 2 with semicomputable codomain, then 4 is semicomputable in
2 in the sense of Friedman — Shepherdson.
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1. INTRODUCTION

There are two major ways to introduce a notion of computable function on
an arbitrary abstract structure 2. Using the first one, which we may call explic-
it, computable functions are defined by means of relativized programs, generalized
algorithms, formulas, etc. The second approach, known as implicit, reduces the
problem to computability on natural numbers making use of various types of enu-
merations of the structure.

It turns out that most of the well-known explicit notions of abstract com-
putability can be characterized via enumerations. As a rule, when considering
computability without “search” over the domain, we need a suitable notion of par-
tial enumeration. A typical result of this type is the next theorem from [3], which

* This work was partially supported by the Ministry of Education, Science and Technologies,
Contract I 604.
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characterizes the semicomputable sets, 1.e. the sets, whose semicharacteristic func-
tions are computable in the sense of Friedman — Shepherdson ([1, 2]), using finitely
many constants from |2|.

1.1. Theorem. A set A C |U|" is semicomputable in A if and only if A is
admissible in every partial enumeration of 2.

Here an interesting question is whether there exists a subclass £ of the class
of all partial enumerations such that admissibility in every enumeration in & guar-
antees semicomputability, and further, whether there exists minimal such class.
This question is answered partially in [4], where it is proved that admissibility in
all partial enumerations with £J domains yields semicomputability. Here we show
that the same is true if we confine ourselves to the class of all enumerations with
19 domains and this is the minimal class with this property.

2. PRELIMINARIES

Let an abstract structure 2 = (B;0;,...,0¢,%,,...,X,,) be given, where the
set B is finite or denumerable, §; is a total function of a; arguments in B and ¥;
is a total predicate of b; arguments in B. The equality relation is not supposed to .
be among the initial predicates of 2. We shall write X;(5) = 0 ( 1 ) when X;(5) is
true (resp. false).

2.1. Definition. Partial enumeration of 2 is an ordered pair (f,B), where
f is a partial function from N (the set of all natural numbers) onto B,
B = (N;e1,...,0k,Q1,...,@Qm) 1s a total structure in the signature of 2, and
the following conditions hold for 1 <i <k and 1 <j < m:

(1) if 24, ..., zq; are in Dom(f), then pi(zy,...,24,) € Dom(f);
(2) f(wi(2y;-: -524;)) = Os(f(21),;- ',__"f(x“')) for z;, ..., xa,‘in Dom(f);
(3) Qi(z1,...,2;) <= Zj(f(ll};:~,f(3b,)) for zy, ..., zy; in Dom(f).

In other words, the pair (f,B) is'a partial enumeration of 2 if the mapping
f | Dom(f) is a strong homomorphism from B [ Dom(f) onto 2.

The set Dom(f) is called domain of the enumeration (f,B).

A set W C N" is semicomputable in B iff the semicharacteristic function of
W is Turing computable relative to ¢y, ..., 0%, Q1,...,Qm.

2.2. Definition. A set A C B" is admissible in the enumeration (f,B) iff
there exists a semicomputable in B set W C N™ such that for all z;, ..., z, In

Dom(f)
(z1,...,2n) EW <= (f(21),...,f(zn)) € A.

The set W is called an associate of A (in the enumeration (f,B)).
Next we introduce the notion of semicomputable set in the sense of Friedman
— Shepherdson [1, 2]. Say that the n-ary predicate II in B is elementary iff it is
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a finite conjunction of atomic predicates or their negations. Suppose that some
effective coding of all elementary predicates (of arbitrary number of arguments) is
fixed and denote by IIV the predicate with code v.

A set A C B" i1s semicomputable in U iff there exist constants ¢y, ..., ¢; in
B, 1 > 0, and an unary recursive function v such that for every v, y(v) is a code
of an elementary predicate with variables among X,,...,X,,Y),...,Y; and the
equivalence

(51,.-15n) € A = 30 (" (X1fs1,..., X /50, Vi /b1, .., Yi/t1) = 0)

is satisfied for every (s1,...,sn) € B".

3. STANDARD ENUMERATIONS

In order to save space, from now on we shall suppose that the initial functions
and predicates of the structure A = (B;#,,...,0k,X;,...,Xn) are unary. We shall
consider also subsets of B (instead of B™).

For our goal it is sufficient to confine ourselves to some special type of enumer-
ations, called standard enumerations [3]. To introduce the precise version of this
notion that we will need here, let us first fix some recursive coding (, ) of ordered
pairs of natural numbers, chosen in such a way that the decoding functions L and
R satisfy the condition |

L(z)<z & R(z)< z
for all z € N. (Take, for example, (z,y) = 2°(2y + 1).) We shall write sometimes
(z)o and (z); instead of L(z) and R(z), respectively.
Set
No=N\{(i,z) |1<i<k, z€ N}

Let fo be an arbitrary partial mapping from Ny onto B. Using a course-by-

value-recursion, define f as:

_ [ fo(z), z € Ny,
f(z) =~ {Gg(f(:co’)), x = (i,z0) for some 1 < i< k.

Now for 1 <i<k and 1 < j< m set
vi(z) = (i, z)
and
Q;(z) = Zj(f(z)), =€ Dom(f),
. arbitrary, otherwise.

It is an easy exercise to check that the pair (f,B = (N;¢1,..., ¢, Q1,-..,@m))
is an enumeration of 2. Every enumeration, obtained in the way just described, we
shall call a standard enumeration.

Let W C N is semicomputable in 2B. Since B is total, it is equivalent to the
fact that W = T'.((*B)) for some enumeration operator with index e, more precisely,

W = {z | v({v,z) € W, & D, C (B))},
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where W, is the e-th r. e. subset of N, D, C N is the finite set with canonical index
v and (B) is “the code” of B, i.e. the set, which consists of the codes (i,z,y) of
the triples (7, z,y), such that
(1<i<k&y=(,z)) V(k+1<i<k+m& Qi(z)=y).
Let root(z) be the recursive function such that
z, if ¢ € No,
ok = { root(zg), if z = (i,zo) forsome 1 <i<k.
Clearly, root(z) € Ny for every £ € N. Define F: N x B — B as
F(z s)={s' oS Py
: 0;(F(zo,8)), ifz = (i,zq) for some 1 <i < k.
So, thinking of z as a code of an one-variable term in the signature of %, F(z, s)
is the value (in 2) of this term, when its variable is evaluated to s.

Below we introduce appropriate notions of a finite part and a forcing relation.
Let 2q, 21, ... be an enumeration of the elements of Ny in an ascending order.

3.1. Definition. Finite part (of a standard enumeration) is an (m + 2)-tuple

T=(fr;Hr;91,..-,9m),
where f; is a finite function from N into B, H, C Ny is a finite set, Dom(f;)NH, =
&, Dom(f;)U Hy = {z0,...,21} for some ! > 0, and ¢, ..., gm are unary finite
predicates satisfying the additional condition
z € Dom(q;) = root(z) € H,.

The set Dom(f,;) U H, we shall call domain of 7 (to be denoted by Dom(7)).
If Dom(7) = {zo,..., 21}, then ! is the length of 7 (in symbols |7]).

Whenever 7 = (f;; Hr;q1,...,9m) is a finite part, £ € Ny is the first not in
Dom(7) and s € B, by 7 * s we shall denote the tuple (¢; H-;¢1,...,qm), where g
is the function with graph Gy U {(z,s)}. Clearly, 7 * s is a finite part.

Let 7 = (fr; Hr;q1,--.,qm) and 8 = (fs; Hs;7r1,...,7m) be arbitrary finite
parts. We introduce three types of partial relations between finite parts:

TCéd = fCfi& H,CHs& q1Cri & ... & gm C Tm;
76 & 7C8& fr = fis:
ré & v£ 6 & Hs = H;.
As usual, we will write 6 D 7,6 2> 7, ... for 7 C 6, 7 < 4, ete.
The enumeration (f,B = (N;¢1,..., ¢k, Q1,..:,Q@m)) extends 7 (r C (f,B))
iff f C f, H, CN\ Dom(f)and ¢; CQ;fori=1,...,m.
Now set ,
rlhu <> 3zFyFi(u= {i,z,y) & 1<i<k&y={i,z) V
u=(k+i,z,y) & 1<i<m& (gi(z)=yV
root(z) € Dom(f;) & L;(F(z, fr(root(z)))) = v));
7l D, <= Vu(u € D, => 7 IF u);

7k Re(z) <= Fv({v,z) € W, & 7 I+ D,).
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The next simple observation will be of use in the sequel.

3.2. Lemma. :

(1) 7k Re(z) & 7 C p = plF Re(x) (monotonisity);

(2) 7IF Re(z) & 7 C (f,B) = z € [((B));

(3) z € Te((B)) = 3Ir(r C (f,B) & 7k R(z));

(4) 7 C(f,B) &Vplp 27 = pH Re(z)) = z ¢ T.((B))

Proof. The verification of (1) - (3) is straightforward.

(4) Towards contradiction assume that z € ['¢(("8)). Then by (3) there exists
some & = (fs; Hs;71,..-,7m) such that é§ C (f,B) and é It R.(z). Since r =
(friHriq1,--.,9m) C (f,B) as well, the sets G = Dom(f,) U Dom(fs) and H =
H, U Hj are disjoint and G U H is an initial segment of Ny. It is clear also that
the predicates r; = ¢; Ur;, 1 < @ < m, are single-valued and the ordered tuple
& = (f-Ufs; HrUHg;ry,...,71.) is a finite part. We have 8’ D 8, hence &' IF R.(z).

It means that ¢’ I D, for some v with (v,z) € W,. Now consider the tuple
p = (fT) H U(G\ Dom(r));pla = ')pM)y where

pi=riU{{z,y) |z € G\ Dom(r)& Ju(u € Dy & u= (k+1i,2,y) )}
Clearly, p It D, and p > 7 — a contradiction. O

4. THE MAIN RESULT

In order to establish our result, we introduce a suitable notion of normal form
of a subset of B.

4.1. Definition. A set A C B has a normal form, if there exist a finite part
6 and a natural number e such that if z € Ny is the first not in Dom(§), then

SEA < Jp(p2bxs&plk R(z))
for every s € B.

Now the rest of the paper is devoted to the proof of the next theorem.

4.2. Theorem. Let A C B. The following conditions are equivalent:

(1) A 1s semicomputable in U,

(2) A s admussible in every enumerdtion (f,B) such that N\ Dom(f) is
semicomputable in ‘B, :

(3) A has a normal form.

Proof. The implication (1) = (2) follows immediately from the definitions.
To see that (3) = (1) holds, take into account the next two observations:
(a) The set R = {(e,z) | pIF Re(z)} is semicomputable in 2.

23



(b) In order to find (if it exists) a finite part p such that p > 7 (with 7 fixed),
it is sufficient to search over natural numbers (notice that for the more common
inclusion “D” this is not true). More precisely:

p2T &5 JHIr ... in(HI H: &1 29[ & .o.¥m DG, &
(fr; H;ry,...,7m) is a finite part).

The interesting part of the theorem is the direction (2) => (3), which now we
prepare to prove using some auxiliary lemmas.

Indeed, assume that (2) holds, but the set A does not have a normal form. We
are going to construct a standard enumeration (f,B) in which A is not admissible
and such that N \ Dom(f) is semicomputable in B.

Clearly, A # @ — check that the empty set has a normal form. Therefore,
if T'.((*B)) is an associate of A, then W, # &. So it will be sufficient to consider
only the indexes of non-empty r. e. subsets of N. As it is well-known, every set of
this type can be enumerated by some unary primitive recursive function. We will
need in fact gome uniform procedure that enumerates the elements of nonempty
r.e. sets. So consider U(n,z) — the universal for all unary primitive recursive
functions. By the S)'-theorem, there exists recursive function o:

We(e) = Range(Az.U(e.x)).

Our aim is to construct successively a sequence of finite parts (%) C M C ... such
that for every enumeration (f,B) of ¥ and every n it is true that ‘

if 7(2n+1) ¢ (f,B), then I'y(,)({®B)) is not an associate of“A. . (%)

It is clear from here that if (f,B) is an enumeration, such that (") C (f,B)
for every n, then A is not admissible in 2. Indeed, assuming the contrary, we will
have an index e such that I'.({B)) is an associate of A. Since W, # &, there exists
n with Wy(n) = We.. Therefore I's(,)((B)) is an associate of A, which contra-
dicts (*).

Let us fix some enumeration sg, sy, ... of the elements of B. Now we are going
to define the sequence {r(") }n satisfying (*). The definition is by induction on n.

Set (0 = (f(o);H(O);qgo), . .,qsr?)), where f(%) is the function (with graph)
{(z0,50)}, H® = @& and all q§°’, i » g qS,?) are unary predicates with empty do-
mains. Assuming that 7(3") = (f(z");H(zn);qszn), ...,qS,':""), n > 0, is already

determined, we define 7(27*1) and 7(27+2) a5 follows.

Let z € Ny be the first which does not belong to Dom (r(z")). By assumption
A does not have a normal form, so there exists s € B such that exactly one of the
next two conditions holds:

¢ s€A&Vp(p 2T xs => pW Ry(n)(2));
oo sg A& Ipp>rPMxs & plr Ry(n)(7)).
In the first case put

T(2n+1) — T(2n) X 5.
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If the second case holds, take some finite part p such that

p2T®™xs & plF Ry(n)(z)

and set 7(27+1) = p,

Let us notice that this rather arbitrary choice of the above p is sufficient only
to establish (x). To claim that the codomain of (f, B) is semicomputable in B, we
will further have to choose p more carefully.

Let s be the first in the list sg, 81, ..., which is not in Range (r(2"+l)). Set

T(2n+2) — T(2n+l) % 5.

Now let (f,B) be an enumeration which extends 7{(?"*+1) In order to establish

(%), assume that T'(,)((®B)) is an associate of A in (f,B). Then for every z €
Dom(f)

z € I‘,(n)((%)) <> f(z) € A. (4.1)

Now let z € Ny be the first not in Dom (7(2")).

By definition f(2**+1)(z) = s, hence z € Dom(f). According to the choice
of s we have that either e or ee is true. Suppose first that s € A & Vp(p >
M x s = p I Ry(n)(z)). By Lemma 3.2 (4) z & Lo(n)((B)), so using 4.1, we
obtain f(z) = s ¢ A — a contradiction. Therefore it is the case s ¢ A & 3p(p >
") x5 & p Ik Ry(n)(z)). According to Lemma 3.2 (2) z € To(n)((B)) and again
by (4.1) f(z) = s € A, which is also impossible.

Now set

fo -_—Uf(n), H =UH("), qi :Uqf") forl <i<m.

n

Obviously, Dom(fo) U H = @ (otherwise there will be some n such that z €
Dom (f(™) & = € H™) and Dom(fo) U H = No. Notice also that with the even

steps of the definition of {r(")}n it is ensured that fy is a partial mapping onto B.
Define the predicates Q;,1 < 7 < m, as

Ti(f(z)), if z € Dom(f),
Qj(z) = { g;(z), if z € Dom(g;),
0, otherwise.

. This definition is correct since for any 1 < 7 < m:

z € Dom(f) <= root(z) € Dom(fy) <= root(;?) ¢ UH(") =

Vn (z ¢ Dom (qg."))) & z ¢ Dom(q;).

Now putting

N {fo(x), if z € Dom(fo),
= 0060, 2= (20 for some 1< i <,
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we obtain a standard enumeration (f, B = (N;Az.(1,z),...,  z.(k,2),Q1,...,Qm))
of U. It is clear that for arbitrary n:

fCfcfad™CeCQ 1<i<m & H™ CHCN\ Dom(f).

Therefore 7(*) C (f,B) for every n, which immediately brings us to the conclusion
that A is not admissible in B.

The work done so far repeats in essence the respective proof in [3]. Our aim is
to show that if we choose more precisely the finite parts p (when it is the case ee),
then we may claim that N \ Dom(f) is semicomputable in B.

Set for brevity

TIF Pe(z) <= 7IF Ry(e)(2).

We have by definition
TIF Po(z) <= Jv({v,z) € W) & 71+ D,) <=
FH3w(U(e,t) = (v,2) & 71k Dy)) <= 3t((U(e, 1)1 = = & 7IF Deye,1)),)-

Put
Tl Po(z) <= 3o (to <t & (Ule,t0))1 = & 7IF Dy(e,t0))o) -

Obviously,
7 Ik Pe(z) <= 3t(7 Ik Pe(z)).

The first ¢ with 7 |-, P.(z) may be thought of as the first step at which the validity
of the fact that 7 i P.(z) is established.
For a finite part 7 = (fr; Hr;q1,...,9m) With [7| = w put
1= (Fr; Hr U{Zw41, .- 2041} 91, - - -1 qm) -

Clearly, for each { > 1, 7 is a finite part, too.
The next lemma will be of use when constructing the modlﬁed sequence {r(") }n.

4.3. Lemma. Suppose that 3p(p > 7 & p I+ P,(z)). Then there exist | > 1
and p* = 1 such that p* Iki_y Pe(2).

Proof. Let p Ity Pe(z), where p = (fp; Hp;q1,-..,9m)- Set I = max(lp,t + 1),
where lo = |p| — |r]. We claim that the finite part '
= (f,-; H: U {erH-l,  Bg z|,|+,};q1, 4 Wi qm)

fulfills the requirements of the lemma.

Indeed, we have f,. = f,,, o+ = H; and g¢; extends the i-th initial predicate
of i for 1 <i < m,sop* %= 7. Besides, p* D pand [ — 1 >, hence p* IF_; P(z).
O -

Now we make the following refinement in the definition of the odd members of
{'r(")}n. Again assuming that 7(?") is already defined and denoting by z,, the first

number in the list zg, 21, ..., which is not in Dom (7(?®)), we will have that there
exists p, € B such that

seA&Vp(pZ'r(z")*pn =% plF Pn(zn)) or
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s¢A&3p(p>r(2")*pn &pll’Pn(:c,,)). ;

Set for brevity 7 = 7(?*) x p,. If the first of the above two cases holds, set
r(27+1) = 1 otherwise start to look for the least { > 1, for which there exists
p" = m with p* IFi_; P,(z) (the definition of 7; is given immediately before Lemma
4.3). It follows from that lemma that such [ exists. Now put r(27+1) = p* where
p* = m and p* Ik Pe(z).

Now let (f,B = (N;¢1,...,90%,Q1,...,@Qm)) be a standard enumeration, ob-
tained from the sequence {T(")}n in the way described before. We have that A is
not admissible in (f,B), so to complete the proof of the theorem, it remains to see
that. N \ Dom(f) is semicomputable in B.

Let us notice that

z € N\ Dom(f) <= =z & Dom(f) <= rooi(z) ¢ Dom(fy) <= root(z) € H.

Since root(z) is a recursive function, it is sufficient to see that the set H =
U H™ is semicomputable in ‘B.
For t,l € N set
Bk Po(z) = o3v(lo <1 & Ule,lp) = (v,z) & Yu(u € D, =>
FiFy(u=(i,z,y) & (1 <i<k &y=(i,z)) V
(k+1<i<k+m&Qi(z) =y & root(z) < 2)))).
Below we describe a procedure P that generates effectively the elements of the
~ set. H, asking questions of the type «gy(t) P(z)?.
Obviously, the set R = {(¢,l,¢,z) | B! E; P.(z)} is decidable in B, so the set
generated by P is semicomputable in 8.
Let I, = |k (7(2")) + 1. Then z, = 2z, in particular zg = z;. Informally, the
procedure for generating N \ Dom(f) is the following.
We should begin with asking questions

B(o+) £y Py(z0)?, Bt E, Py(z0)?, ...

in order to find (if it exists) the first ¢ such that BUe+*+1) &=, Py(xz0). If such ¢ does
exist, then according to the construction of 7 we put H® = {z;,41,..., 21,4441}
Since zj,4+¢4+2 and zj,4¢43 are added to Dom (f(?)) and Dom (f(3)), resp., they are
not in H. So we should set I} = Iy +t + 3, z; = 2, and then start searching for ¢
with B D £, Py (2y).

Here the problem is that we do not know in advance whether there exists ¢
with BUe++1) &= Pi(z4). So if two unsuccessful steps in this search are done (i.e.
when BUotDE ) Py(zo) and B2, Py(z)), we decide temporarily that such t
does not exist and start simultaneously a similar procedure for seeking the first
t< 1 BOHHD e P(z))for i =lp+2and 2 =z ,ie Iy =3 and 2} = z3. If
such t < 1 again does not exist, we repeat the same for n = 2 and so on. Meanwhile,
if we have found (for example for n = 0) some #o such that Botto+D) &, = py(g),

we interrupt all started procedures for finding out ¢t with pllitttl) g, P;(z}) for
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¢ > 0. Then we print numbers z;,41, ..., Zig4to+1, S€t lh = o+t + 3, z; = z,,
start searching for ¢: B+t Pi(z}) etc.

However, this least to with B+t |, pi(2,) could be found after we have
come across some (let say) ¢;: Bhttt+1) Fi, Pi(z}), where I} and z} are calculated

under the wrong supposition that,‘v't‘B('°+‘+l)#,Po(zo). So, on the one hand, our
algorithm requires the respective set {z,:l T s e s 3 zl',+tn+l} to be printed right after

such a t; has been found (since it is supposed to be the set H(®)). On the other
hand, the “real” H®) may be different (and in fact is different). However, thanks to
the special choice of (1) (to be long enough), it turns out that the printed numbers
2P gl -y 24ty 1 actually belong to H(!) and hence to H.

Below we describe formally the procedure P that generates H. There the
function g(n,t) is intended to be such that z, = zy ) for sufficiently large ¢,

namely t > |[7(2»=1)|. The function G(¢,n) from the program P is used to code the

information about questions of the type “B(*) k, Py(y)?” for every n < y (v, y
depending on answers of similar questions for the numbers less than n).
Set

(i) =v1; (- ¥n1) = (Y15, ¥n)s Ung1) forn > 1.

Let Az.(z); be the recursive function such that if 2 = (y;,...,y.) and i € {1,...,n},

then (z); = yi, and (z); = 1 — otherwise. We shall obtain G(¢,n) in the format

(o, ..., yt), where each y; will indicate (if ¢ is large enough) whether z; € H(™) or

not (writing y; = 0if z; € H™ andy; =1ifz € Dom(fy)). The value G(t+1,n)

will depend on the last member y, of G(t,n), which is in fact R(G(¢,n)). Since

certainly zop € Dom(f) and zp = z;, we put G(¢,0) = (1) and g¢(¢,0) =1 for ¢t = 0.
Here follows the exact description of the procedure P.

t:=0; G(£,0):=(1); ¢g(t,0):=1; 1: n:=0;
2:if R(G(t,n)) =0 then
if g(t,n) =1+ 2 _
then G(t + 1,n) := (G(t,n),1); g(t + 1,n) :=g(t,n); t :=t+1; go to 1
else G(t+ 1,n):= (G(t,n),3); g(t+ 1,n) :=g(t,n); n:=n+1; go to 2 fi
else
if R(G(t,n)) =1 then
if g(t,n) =t+2 .
then G(t + 1,n) := (G(t,n),1); g(t+1,n) :=g(t,n); t:=t+1; go to 1
else if g(t,n) =1t+1
then G(t + 1,n) := (G(t,n),1); G(t+1,n+1) :=G(t+ 1,n);
gt +1,n):=g(,n); g +1,n+1):=t+3; t:=t+1;go to 1
“else if Bk, Pp(zg4(1,n))
then G(t+1,n) := (G(t,n),0); print(zi41); G(t+1,n+1) := G(t+1,n);
gt +1,n):=g(t,n); g+ 1,n+1):=t+3; t:=t+1;go tol
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else G(t+1,n) := (G(t,n),2); g(t+1,n) :=g(t,n);n:=n+1; go to 2
fi 11 11
else
if R(G(t,n)) =2
then | := 1t — g(t,n); if BV E, Pr(24(t,n))
then G(t+1,n) := (L'(G(t, n)),0,...,0); print (Zg(e,0)+15 Zp(t,n) 421 - - 5 Zt41);
I+1
G(t+1,n+1):=G(t+1,n); g(t+1,n) :=g(t,n); g+1,n+1) :=t+3;
t:=t+1;g0 tol ,
else G(t + 1,n) := (G(t,n),2); g(t+1,n) :=g(t,n); n:=n+1;go to 2 fi
else G(t + 1,n) := (G(¢,n),3); g(t+ 1,n) :=g(t,n); n:=n+1;go to 2
£1 £1 1.
Let us mention that some of the assignments in the above program are redun-
dant. They are put there only to facilitate the verification of the algorithm.
Denote by OQutput(P) the collection of all numbers, printed by P. We have to

prove that _
r € H <= =z € Output(P). (4.2)

By an immediate inspection of P one can notice that for every ¢, n
g(t,n) <t+2 & g(t,n) < g(t,n+1).

Set
i (2n)
S(n) = {0, 1f3p(p.2 7428) % p, & p ik Po(z,)),
1, otherwise.

To establish the first direction of (4.2), we will make use of the fact that
G (|7(3n+1)| n) is the code of the characteristic function Cy of H, restricted to the
first |7(27+1)| 4 1 members of Ny. In order to prove this, the next more common
observation will be needed.

4.4. Lemma

(1) For each t > |7an—1)l, 9(t, n) |72 4 1 (|7 = 0);

(2) For each t > |7(**V| G(t,n) = (vo, ..., yt), where

(0, ifi < |r+)| & 2; € HOnHD),
1, ifi<|r@+D)| & 2 ¢ HOnHD),
2, ifi> |2tV & S(n) = 1,

(3, if i > || & S(n) = 0.

N

Yi

Proof. Induction on n. (1) The case n = 0 is obvious. In order to check (2) for
n = 0, we shall separately consider the cases S(0) = 0 and S(0) = 1. If the latter
1s true, 1.e.

Vp (p > xpy = p Po(Zo)) ,
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then B(*) &, Py(z) for no u > 1 and v. So for every t, G(t,0)=(1,1,2,...,2).
1
Now suppose that S(0) = 0 and denote the finite part 7(®) xpg by 7. According
to Lemma 4.3 there exists least { > 1 for which there are finite parts p* such that
p* 2 m and p* IF—y Po(zg). Let us remind that by construction (1) = p~, where
p” satisfies the last conditions. We claim that
G(t,0)=(1,1,2,...,2) foreach1<t<i+1 (4.3)

t—1

G(+1,0)=(1,1,0,...,0). (4.4)

l

and

Indeed, assuming that (4.3) does not hold and looking at the program P, we may
claim that there 1s a step ¢t < [ such that 1 < ¢ < [ with B+ Po(zo).
From here, there exists 6 C (f,B) with |§] =t + 1 such that § I,y Pp(z). Since
7 C (f,B), we may assume that § > 7. We have || =t+1and 6§ > 7. In
addition, é Ity_q Po(zo) and t < ! — a contradiction with the choice of .

To see that (4.4) also holds, recall that () Ir_; Py(zo), |7V = 1 + 1
and 71 C (f,B). So B+ E,_, Py(zo), and as we have just seen, [ is the
first one witih t.;lis property. Hence at step ¢t = [ we shall have for the first
time that Bt E,_; Py(z¢), so G(t +1,0) = (L(...,L(G(t,0))...),0,...,0) =

: “f‘)

t
(1,1,0,...,0), or G(I+1,0)=(1,1,0,...,0).
t !

Clearly, I > 1, hence R(G({ 4+ 1,0)) = 0. Then for every ¢t > I we shall have

G(t+1,0) = (G(¢,0),3), in other words, G(t+1,0)=(1,1,0,...,03,...,3).
R EEne

Now suppose that for each j < n (1) and (2) are true. In particular, for | =
|7(2n+1)| we have that G(I,n) = (yo, ..., ), where y; = Cy(z), 0 < i < I. Suppose
first that S(n) = 0. According to the construction of 7(2+1) and the program P, at
‘step ¢ with 2+1 = |7(?»*+1)| we have G(t+1,n+1) = G(t,n) and g(t+1,n+1) = t+3,
in other words, G(I,n + 1) = (yo,...,y) and g(I,n + 1) = |[7(?**+1)| 4 2. From the
latter, g(I,n + 1) = |7(>**+2)| 4+ 1, and since g(t,n+ 1) = g(I,n + 1) for every t > I,
(1) is established for n + 1. From here z,41 = 2, 2n42)|41 = Zg(t,n41) for t > L.

By the induction hypothesis, for every t > l and i < n we have that R(G(t,1)) =
2 or 3 if S(i) is 1, resp. 0. Further, R(G(I,n)) = 0 and hence for every ¢ > [,
R(G(t,n)) = 3. From here, for every t > I there will not be situations that
may cause changes in G(t,n + 1), due to the extension of an assignment of the
type G(t + 1,#+ 1) := g(t + 1,7) for some i < n. In other words, the value
of G(t + 1,n + 1) depends uniquely on the answers of the questions of the type
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BV E,_(1ranen)41) Pat1(2ns1)?” (recall that gt,n +1) = [r?*+2)] 4 1, as we
have already noticed).

Now to complete the verification of (2) for n + 1, we proceed in essence as in
the case n = 0. The second case S(n) = 1 is treated similarly. O

Our last lemma, which asserts that the program P is correct, completes the
proof of the theorem.

4.5. Lemma. H = Oulput(P).
Proof. For the first inclusion, recall that H = UH("), where H® = @,
n

H®) = gCn=1) and HO ¢ HM C ... Soif & € H, then there exists n such that
z € H?"t1) and z ¢ H("). Further, z = z; for some j < |7(>"*+1)|. According
to Lemma 4.4, G (|7("+)| n) = (yo, . . -y Yjr(ansn))) With y; = 0. Since z ¢ H(®n)
j > |7(®»)|, then at step t with ¢ + 1 = |72"*!| the number z; will be among the
numbers, printed by P. o

Towards proving the inclusion Qutput(P) C H, let us notice that

zj € Output(P) <= In3t ((G(t+1,n)); =0& g(t,n) <j<t+1).
Then it is sufficient to show that
(In3t (G(t,n)); =0) = z; € H. (4.5)
Define the predicate T" as follows:
T(n) <= Vj((3t(G(t;n)); =0) = z; € H).

We are going to establish V¢T'(n) using induction on n. From here it follows (4.5)
for arbitrary j.

To facilitate the inductive step, we suppose that when an assignment of the
type G(t+1,n+ 1) := G(t + 1, n) is executed, the value G(t+ 1,n) is assigned also
to G(t+1, k) for every k > n+1 for which there exists step [ < ¢, at which G(l, k) is
determined. In other words, instead of single assignment G(t+1,n+1) := G(t+1,n)
we perform the finite list of assignments

Gt+1,n+1):=G({t+1,n),
G(t+1,n+2):=G(t+1,n),

G(t+1,n") := G(t +1,n),

where n’ > n can be found effectively.

Let In(l, {yo,..., %)) = (¥o,-..,y) for [ < t. The validity of T(0) follows
from the proof of Lemma 4.4. We obtained there that for ¢ < |7()| we have
G(t,0) = (1,1,2,...,2), so if for some j there exists t such that (G(¢,0)); = 0,

t—1

then t > |7(1)|, hence (G(t,0)); = Cu(zj), i.e. Cu(z;) =0and z; € H.
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Now let for some »n > 0 and some j there exists #o such that (G(to,n)); = 0.
Clearly j < top. We may assume that for every k < n and every t, (G(t,k)); # 0
since otherwise we can apply the induction hypothesis for that k.

If for every t > tp In(to, G(t,n)) = G(to,n), then for t > |‘r(2“+1)] we will have
according to Lemma 4.4 that

(G(to, n)); = (In(to, G(t,n))); = (G(t,n)); = Cu(z;) = 0

hence 2; € H.

Now assume that there exists t' > to with In(to, G(t' + 1,n)) # G(to,n) and.
suppose that ¢’ is the first one with that property. Clearly, j > g(tp, n) — otherwise
we will have that (G(g(to,n —1),n — 1)); = 0, which contradicts the choice of n.
So the fact that G(to,n) # In(to,G(t' + 1,n)) is not due to an assignment of the
type G(t + 1,n) := (L'(G(t,n)),0,...,0) at step ¢t = ¢, since at the preceding step

141
t' — 1 we would have (G(t/,n)); = 2 (if [t +D| - |7(27)| > 2) or (G(t',n)); = 1 (if
IT(2n+1)‘ |T(2")| = 2)

Therefore the change of G(t' + 1,n) is caused by an assngnment of the type
G(t+ 1,n) := G(t + 1,no) for some ng < n. It is easy to see that this is preceded
by an operator of the type G(t + 1,ng) := (L'(G(¢,n0)),0, .. .,0) at the same step

t =t', where l =t — g(t, no). In other words,
G(t' + 1,n0) = (L' (G(t', ny)),0,...,0
( 0) = (L(G(t', no)) )
I+1
forl = t'—g(t', no). From here, for g(t’', ng) < ¢ < t'+1 we have (G(t'+1,ng)); = 0.
We may claim that g(t’',no) = g(o,n0) — convince yourselves that any change
of g(t,ng) for tg < t < t’ will produce changes in In(to,G(t,n)) and take into
consideration that t’ is the first one with that property.
Further, we have g(to,n0) < g(to,n), since ng < n. So
g(t',no) = g(to, o) < g(to,n) < j

and, obviously, j < tg < t'. Hence (G(t' + 1,n0)); = 0 and using the induction
hypothesis T'(ng) we conclude that z; € H. O
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In this paper we give a construction of a family of Baer subplanes of the Hughes plane
H of odd square prime order ¢, ¢ > 5, which are not isomorphic to its well-known
desarguesian Baer subplane Hy [1, 5.4].
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1. DEFINITION AND MAIN PROPERTIES OF THE HUGHES PLANES

We recall the well-known properties of the Hughes plane H over an arbitrary
regular nearfield R of odd square prime power order g? [1]:

a. H is a projective plane of odd square prime power order ¢, and it is of
Lenz—Barlotti type .1 [1, 5.4]. ' ‘

b. Let P := {P = (z1,z3,23)R, z; € Z(R), i = 1,2,3}; T := {all the rest

points}; L(1) := {L7, i = 0,1,2,...,r — 1}; L(t) := {L}, t € R\ Z(R), i =
0,1,2,...,r—1}. ’

Then the points in the set P together with the lines joining them (that are the
lines of the set L(1)) form a desarguesian Baer subplane Hy of H.

c. The projective group of Hy is faightfully induced by the collineation group
I' = GL3(¢) (GL3(g) is the group of nonsingular (3,3)-matrices with elements in
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Z(R) = GF(q)). Every central collineation of Hy extends to a central collineation
of Hmnl.

d. The full collineation group G of H has two points — P and 7", two lines —
L(1) and L(t), and two flag orbits. Also, G is a semidirect product I'. Aut R; this
product is direct iff ¢ is prime (1, 5.4].

Further we .consider the case when ¢ is an odd prime > 5 and we use the
notation F = GF(q). Let f = 22—« be an irreducible polynomial over F. Then one
can describe the quadratic extension ® = GF(¢?) of F as follows: ® = {az+b, a,b €
F, z — aroot of f}. '

Let 0 be a primitive element of ®. Then ®&* = &\ {0} = &5 U ®x, where &5
(®n) is the set of squares (nonsquares) in ®,i.e. ®s = {u:u€ &, u= 0% ke N}
and &y = {u:u € ®*, u=0** 1N}

Let K be the regular nearfield of order ¢ with the same elements as ®, in
which the addition is the same as in ®, while the multiplication, denoted by o, is
defined as follows: wou = uw if u € 5 and wou = uw? if u € Oy [2].

Since a? = « for each @ € F', we have aou = au when o € F' and u € K. It
is known that the centre Z(K) is just the field F. |

Let H = H(K) be the Hughes plane over K. The points of H are all ordered
triples P = (21, 22,23) = (z1,Z2,23) 0k = (z10k,z00k,z30k), k € K* = K\ (0),
z; €K, i=1,2,3, and (z1, 22, 23) # (0,0, 0).

The theorem of Singer [3] gives us the existence of a transformation

3 3 3
(z1,2,23) — (E ayjzj, E azj, E asj-’l?j), a;j € F,
1 =1 j=1

j=

such that the mapping (21, z2,23) = P + AP = (aj;z1, . .., a33z3) is a collineation
vy of order r = ¢% + g + 1 of the desarguesian plane 7(q) of order g over the field F.

The basic lines L of H are defined by the equations
Li:zy+tozg+z3=0, te{®\Flu{l}. (1)
The point P = (2, 23, z3) o k is incident with the line L; iff the triple (21, z2, z3) is
a solution of (1). The remaining lines of H are L;'i, i=0,1,2,...,r—1, and A'P

is incident with L}, i =0,1,2,...,7 — 1, iff P is incident with L, [2).

2. AUTOMORPHISMS OF THE NEARFIELD K = K(¢?)

It is quite evident that the automorphism group Aut K is isomorphic to Z,.
Indeed, on the one hand, |AutK| < 2 [1, 5.2.2]. On the other hand, it is easy
to check that the mapping ¢ : K — K, defined by the correspondance az + b —
(az +b)? = —az + b, is a nontrivial automorphism of K, usually called conjugation
in K.
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3. THE MAIN RESULT

Let x = x(S, L) be an arbitrary homology of order two of H with centre S and
axis L (since o(x) = 2 and ¢ is odd, S is not incident with L). Actually, S € P and
L e L(1).

From 1.c, d and 2 it follows that there exists a collineation ¥ = oy, where
o € AutK, ¢ # id. That gives us a reason to investigate the geometry of the
Y-invariant points and lines of H. The main result in this paper is the following
statement:

Theorem. The -invariant points and lines of H form a Baer subplane © =
7(S,L) of order q of H, non-isomorphic to the subplane Hy. '

Since the group Aut K is flag-transitive, it is sufficient to prove the theorem in
the case when the homology x has as an axis the line L; : 2y + 22 + z3 = 0 and as
a centre an arbitrary point S € P which is not incident with L;.

Let x* be an arbitrary homology of H with centre S = (a, b,¢) (a,b,c € F) and
axis L;. Then the action of x* over the points of H can be presented as follows:

x*:#'ok™ =A%z, k"€ K\ {0},

where the column vector Z = (21, z3, 3)' is an arbitrary point of H, ' = (2}, 25, z5)*
is its image under x*, and the matrix A* € GL3(¢) has the form '

[a+p a a
A" = ( b b+ p b ) .
c c c+p

where p € F. Let us point out that a + b + ¢ # 0 since S is not incident with L.

We denote by 2 the element 1+ 1, where 1 is the unit element of the multipli-
cation in F (and, respectively, in K). Since the characteristic of F is odd, 2 # 0.
Then the homology x = (S, L;) of order two with centre S = (a, b,c) and axis the
line L is defined by the matrix

2972(a—b—c) a a
A= b 29-2(b—a—c) b .
¢ ¢ 29"2(c—a—b)

If the collineation ¥ fixes some quadrangle (four points, no three of which are
incident with one and the same line) pointwisely, then 1 maps to itself some proper
subplane of H. We will show that there exist four points, no three of which are
incident with one and the same line, and which are invariant with respect to .

The v-invariant points and lines are exactly these, which the homology x maps
onto their conjugated ones, respectively. With the line L, are incident precisely ¢+1
different points of the orbit P. Obviously, these points together with the centre
of ¥ — the point S = (a,b,c) — are invariant with respect to the collineation .
If the 1-invariant points and lines of H form a Baer subplane, then every point
of the supposed subplane will be incident with exactly ¢ + 1 different y-invariant
lines. Since all basic lines L;(1) are incident with the point P; = (1,0, 1), one can
expect that there exist ¢ + 1 y-invariant ones among them. That is why we have

67



to find the number of lines L;(1), which are mapped under the homology of order
two x = x(S, L1) in their conjugated lines Lio = (L;)?, respectively.

Let L; # Ly, L, : T, +tozo+z3 =0,t € K\F. Since the line L; is different from
the line y = 0, an arbitrary point T, not incident with L;, T # P, has coordinates
(zy,1,—(zy + 1)), z; € K. Then x(T) = T’, where T = (29"%(a—b—c)z;, +a —
a(zy+1),2972(b—a—c)—bt,cz) +c—29"%(c—a—b)(z; +t)). Therefore x(L,;) = L},
L, = P, T and the element ¢’ € K \ F is uniquely determined by the equation

t'o(m+bt) = 2m + b — mt, (2)
where m = 2972(a — b+ c). Hence m € F and m depends on the coordinates of the
centre S = (a, b, c) only. |

Now we will find the number of distinct solutions of the equation (2) when
t' = t?. It is conveniant to consider two cases with respect to b: b =0 and b # 0.

Case 1. Let b =0, 1.e. S = (a,0,c). In this case the equation (2) is of the form

mt' = m(2 —t). (3)

Here m = 29-?(a+c) and since S is not incident with Ly, a4+ ¢ # 0,1i.e. m # 0.
Therefore m~! € F* and (3) yields that

t'=2-1t. (3')

In general, each t € K\ F is of the form ¢t =dz+e,d€ F*, e € F. As it was

mentioned above, we are looking for the solutions of (3') when ¢’ = ¢7, i.e. when
t' = —dz + e. Then from (3’) we obtain that

~dz+e=—-dz+2~e. (3")

Hence d is an arbitrary element of F* and e = 1. These solutions give us exactly
q — 1 distinct L¢-lines (t = dz+ 1, d € F*), which are mapped under the homology
X in their conjugated ones, respectively.

Case 2. Let b # 0, 1.e. S = (a,1,¢). Now from (2) we have the following
equation when t? = t’, namely
to(m+1)=2m+1—mt. (4)
Here m = 297%(a+ ¢ — 1) and since a+ 1+ ¢ # 0, m # —1. As t has the
representation ¢ = dz + e, so that t = —dz + e, d € F*, e € F, the relation (4)
immediately gives :
(-dz+e€)o(dz+m+e) = —-mdz +2m — me + 1. (4")
For the result of multiplication in the left-hand side of (4’) we have two possi-
bilities, namely,

(=dz+e)(dz+m+e) ifdz+m+e€ Pg,

(I_dz+e)o(dz+m+€)={(dz+e)(dz+m+e) ifdz+m+e€®n.

If we assume that dz + m + e € ®p, then for d and e we have from (4’) that
(m + 2¢)dz + d?2% + e(m + €) = —mdz + 2m + 1 — me. Since z? = a, we obtain

(m + 2e)dz + ad® + e(m + €) = —mdz 4+ 2m + 1 — me. (4")
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Hence e = —m, i.e. e # 1, and d?a = (e — 1)?, ie. d # 0. Therefore
a = [d"'(e—1)]?, i.e. @ is asquare in the field F, but this contradicts the choice of
«. Therefore, if there exists a solution of the equation (4’), then dz + m + ¢ € ®s.
Suppose that dz +m + e € 5. Now (4’) is reduced to

ad? = e + 2me — 2m — 1. (4"

We transform the right-hand side of (4”) as follows: €? + 2me —2m — 1 =
e? +2me+m? —m? —2m — 1 = (e + m)? — (m + 1)?, and then (4"") becomes

(—a)d® + (e + m)? = (m+ 1), (5)

where m # —1 is a fixed element of F and a = 22

Let 7 be a quadratic character of GF(¢) (¢ — odd), i.e. n(c) =1 ifcisa square
in GF(¢) and n(c) = —1if ¢ is a nonsquare in GF(g). Define the function v on GF(q)
by v(b) = —1 if b € GF*(¢) and v(0) = ¢ — 1. Let N(a13? + a2y = b) (b € GF(q),
aj, a2 € GF™(g)) be the number of the solutions of the equation ay? + asy? = b
in the field GF(g¢). Then [4, 6.24]

N(a1y? + agy? = b) = g + v(b)p(—aia3).

In the case of the equation (5) in the variables y; = d and y = e + m we have
@) = —a, @z = 1 and b = (m + 1)2. Since m # —1 and « is a nonsquare in GF(qg),
v((m+ 1)?) = —1 and n(—aya2) = n(a) = —1. Therefore N((—a)d? + (¢ +mn)? =
(m+1)?) =q¢+1. .

The solution (0, 14 m) of the equation (5) gives the line L; and to the solution
(0,-2m — 1) = (0, —(a + c)) corresponds the line SP; : z; — (a + ¢)zy + z3 = 0,

For each of the remaining ¢ — 1 solutions (d, e + m) of the equation (5) we will
prove that dz+(m+e) € ®5. Suppose that (d;, e; +m) is a solution of (5) such that
u=diz+(m+e) € By, ie. u=0" Then vou =uu? = (—a)d?+(e; +m)? =
(m+1)?, ie. D+ = (;m 4 1)?) and therefore gla*=1)/2(2H41) = (4 1)9-1 =
1. But, on the other hand, gl(¢°-1/2(21+1) — (=1)2#1 = —1. It turns out that
1 = —1, which contradicts the oddness of the characteristic of the field F = GF(q).
Therefore every solution (d, e + m) of the equation (5) with d # 0 gives an element
w =dz+ (m+e) € &s. That means there exist exactly ¢ — 1 distinct basic lines
'L ( # L;) invariant with respect to the collineation .

Now it is easy to find y¥-invariant points, no three of which are incident with
one and the same line. Let. P; € P, i =1,2,3, be three different points which are
incident with the axis L; of the homology of order two x = x(S, L) and differ from
the point (—1,0,1). Then the points S, Py, Py, T = SP3 N L; have the desired
property, L¢ is an arbitrary invariant with respect to the ¥ basic line different from
L, and S = (a, b,¢) is the centre of x.

Hence for any point S € P and any line L € L(1), S non-incident with L, the
points and lines of H invariant with respect to the collineation ¥ = oy form a Baer
subplane m = m(x) of H of order g (x is the homology of order two w1th centre
S and axis L, 0 € AutK, o # id). It is clear that this subplane 7 = 7r(x) 1s not
isomorphic to the well-known Baer subplane Hg of H with respect to the group
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Aut H. Otherwise there exists an element ¢ € Aut H such that ¢(Pq) = Ty, where
Py and Ty are arbitrary points from the orbits P and T, respectively. Hence Aut H
acts transitively over the set of all points of H, which is inadmissible in any Hughes
plane.

It is naturaly to ask whether the subplanes of the kind 7 = 7(x) are isomorphic
to each other with respect to the automorphism group of the plane H. We claim
that the answer of this question is positive.

Let S; and S; be arbitrary points of P and L!, L? be lines of L(1), S; be non-
incident with L* (i = 1,2). Denote by x; the homology of order two with centre S;
and axis L! (i = 1,2). Let m; = mi(x;) be the subplane generated by the collineation
¥i = ox; (i = 1,2). If there exists an element ¢ € Aut H such that ¢(S;) = S, and
¢(L') = L?, then ¢(m1) = m».

Due to the fact that the group Aut H is flag-transitive, it is sufficient to consider
only the case when the axis of x; and x3 is the line L; : z; +z2+ 23 = 0, the centre
Sy of x; has coordinates (1,0,0), and the centre Sy of 3 is an arbitrary point from
the orbit P non-incident with L;. Then Sy has coordinates (a, b,¢), a,b,c € F and
a+b+c#0. .

In order to prove that the subplanes 3 = 7(x;) and 7, = m(x2) are isomorphic,
it is sufficient to show that there exists an automorphism ¢ € Aut H which maps
certain quadrangle of 7; into a quadrangle of 7.

In the case when S; = (a,0,b), the points 'Sy, Sz and P; = (-1,0,1) are
incident with the line 2o = 0. Then the isomorphism between the subplanes m;
and 7, is realized by the elation ¢; = ¢,(P;,L;) with centre P; = (—1,0, 1), axis
L; and ¢(S;) = Sz. It is obvious that in this case both subplanes 7, and 7, contain
the lines of the form L; : 2 +tozy+ 23 =0, where t =dz+1,d € F*.

Let the points P2 # P3 be in the orbit P, P, and P3 be incident with L;,
_and suppose that P, # P; and P3 # P;. The line S;P, intersects an arbitrary
line Ly, € m, t; = diz+ 1, dy € F* at a point Ty € m;, and the line S;P;
intersects the same line L;, € 72 at a point Ty € 7. Then the points S;, P,
P3, Ty form a quadrangle in m; and the points Ss, P, P3, Ty — quadrangle
in m3. Since the point P; is incident with all the lines L;, €;(L:) = Ly, hence
61(81, Pz,Pa,Tl) = (SQ, PQ,P3,T2) which gwes us that 6(1\‘1) = 9.

Let S; = (a,1,¢). Since Sy is non-incident with Lj, a4+ ¢+ 1 # 0 and the
line S;S; intersects the line L; at the point P12 = (=1 — ¢, 1,¢). Similarly, the
isomorphism between the subplanes w; and 7, is realized by the elation ¢, =
£2(P12,L;) with centre P;2, axis L; and €2(S;) = Sz. This elation is given by the

matrix
a -1-c ~1—c
B::(l at+e+2 1 )
c c a+2c+1

Actually, we have that each point G; € m; which is incident with the line S; P,
is mapped under the elation €, into a point Gy € w5 which is incident with the line

SoP;.
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The homology of order two x; = x1(S1,L1) with centre S; = (1,0,0) is given

by the matrix
21-2 1 1
L= 0 -29-2 0 :
0 0 —29=2

The line S;P; € L(1) has an equation zo = 0 and therefore it differs from
the line z3 = 0. Then each point G # S; which is incident with the line S;P;
has coordinates (dz + e,0,1), d,e € F. The point G belongs to the subplane m
iff x1(G) = o(G). Hence the points G; of m, incident with the line S;P;, have
coordinates (dz — 1,0,1), d € F (when d = 0, G; = P;).

The homology of order two x2 = x2(S2,L1) with centre S3 = (a,1,¢) and axis
L; 1s given by the matrix

2"%(a—c—1) a a
D= 1 99-2(~1 — a — ¢) 1 )
¢ - 297%c—a-1)

The equation of the line Sy3Py € L(1) is ) — (a + ¢)z2 — 3 = 0 and it is easy
to see that the points Gy € w3, which are incident with S;P2, have coordinates
(dz+a,1,—-dz+c¢),d €F. '

We have €(G,) = G, where the coordinates of the point G’ are (adz — (a+ ¢+
1),dz,cdz+(a+c+1)),a+c+1+#0. If d#0, then the point G’ has coordinates
(adz—(a+c+1),dz,cdz+ (a+c+1))o(dz)™}, that is G' = (—(a+c+1)(dz)"* +
a,1,(a+c+1)(dz)"! +¢). Since (d2)~! = dz, G' = (d* + a,1,~d"* + c), where
d* = —(a+c+1)d, d* € F.

Ifd=0,then Gy =P, =G = (—(a+c+1),0,(a+ c+1)). Hence G’ is
incident with S,P; and G’ € m». )

Let P be an arbitrary point in the orbit P, let P be incident with the line L;
and P, # P # Py,. That is why the point P belongs to the subplane m; as well
as to the subplane 7. Then the elation €2 = £2(P;2,L;) maps the quadrangle
(P12,P,S;,Gy) of m; onto the quadrangle (P12,P,S2,G, = G’) of m3 (S1 # Gy #
P12, S, # Gy # P12).

In this way we have proved that the subplanes 7; and 7, are isomorphic with
respect to the automorphism group of H.
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t. INTRODUCTION

Reactive systems are programs whose main role is to maintain an ongoing
interaction with their environment, rather than to produce some final result on
termination. Such systems should be specified and analysed in terms of their be-
haviour, i.e. the sequences of states or events they generate during their operation.
A reactive program may be treated as a generator of computations which, for sim-
plicity, we may assume to be infinite sequences of states or events [1]. Typical
examples of reactive systems are real time process controllers, signal processing
units, digital watches and video games. Operating system drivers and mouse inter-
face drivers are examples of reactive programs too. Lustre [4], Esterel {2, 3], Signal
[5] are programming languages devoted to program reactive systems.

Determinism is an important characteristic of reactive programs. A determin-
istic reactive program produces identical output sequences when fed with identical
mnput.
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In this paper a synchronous imperative programming language named SLRS
(Synchronous Language to Reactive Systems) is considered. It is based on the
synchrony hypothesis: each reaction is assumed to be instantaneous and therefore
atomic in any possible sense. Control transmission, signal broadcasting, and el-
ementary computations are supposed to take no time, making the outputs of a
system perfectly synchronous with its inputs [2]. After a brief overview of the Pure
SLRS we define its behavioural semantics.

2. THE PURE SLRS LANGUAGE

In this section we describe the Pure SLRS language intuitively and by exam-

ples.
A SLRS program:

program P;
declaration part

interface part
body
end P.

has a declaration part that declares the external objects used by the program, an
interface part that defines its input and output, and a body that is an executable
statement.

Declaration part. Data declarations declare the constants, types, functions, and
procedures that manipulate data. They are written in the host language (Pascal
or C).

Interface part. The interface part

input I1 {, In};
output O1 {, On};
input relations;

defines program’s input Iy, ..., I, and output O, ..., O, signals.

The basic object of the language is a signal. Signals are used for communication
with the environment as well as for internal broadcast communication. There is a
special signal called tic. It is assumed to be always present. In Pure SLRS there
are only two kinds of interface signals: input and output signals.

Input signals come from the environment. They cannot be produced internally.
They are declared in the form

input 11 {, In};

Qutput signals are directed towards the environment of the program by the
produce statement. An output signal declaration has the form

output O1 {, On};
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Input relations are assertions that can be used to restrict input events. That
is very important for program specification and verification.

A SLRS program specifies a relation between input and output signals. It is
activated by repeatedly giving it inpuf events. These events consist of a possibly
empty set of input signals assumed to be present. For each input event, the program
reacts by executing its body and by outputting the produced output signals that
form the output event. We assume that the reaction is perfectly synchronous and
deterministic. A reaction is also called an instant.

The kernel statements in the language are:
e Statement skip:

skip
It performs no action and terminates immediately.

e Statement stop:
stop
It performs no action‘®and never terminates.

e Statement produce:
produce S
where S is a signal. It emits S and terminates immediately.

e Statement sequence:
sequence stat;, stat, end
where stat; and staty are any statements. The statement stat, starts instantly when
the statement staf; terminates. The sequencing operator takes no time by itself.
e Statement parallel:
parallel stat; , staty end

where stat; and stat; are any statements. The statements stal; and stat, are start-
ed simultaneously when the parallel statement is started. The parallel statement
terminates when its both branches are terminated.

o Statement ifp-then-else-end:
ifp S then statl else stat2 end

where S is a signal, stat; and stat, are any statements. The then and else parts -
are optional. If some of them is omitted, it is supposed to be skip statement.
The presence of S is tested and the then or else branch is immediately started

accordingly.
e Statement cycled-end:
cycled stat end

where stat is any statement. The body stat of a cycled-end starts immediately
when the cycled-end statement starts and whenever stat terminates, it is instantly
restarted. A cycled-end never terminates. :
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e Statement watching-do:
watching S do stat end

where stat is any statement and S is a signal. S is called a guard. The statement
stat 1s executed normally until staf terminates or until future occurrence of the
signal S. If stat terminates just before S occurs or at the same time as S, so does
the whole watching-do statement and the guard has no action. Otherwise, the
occurrence of S provokes immediate preemption of the body stat and immediate
termination of the whole watching-do statement.

Ezample. Let define

await S =4¢r watching S do stop end.
When await S starts executing, it retains the control until the first future reac-
tion where S is present. If such a reaction exists, the await statement terminates
immediately. Otherwise it never terminates.
Ezample. Let us consider the statement

watching I1 do

sequence
watching 12 do
sequence
await 13,
produce O1
end
end,
produce O2
end
end

If 11 occurs before I2 and I8 or at the same time as them, then the external
watching-do preempts its body and terminates instantly. In this case no signal is
produced. If I2 occurs before I$ or at the same time as it, but before /1, then
the internal watching preempts its body, OI is not produced even if I3 is present,
02 is produced and the external watching instantly terminates. If I3 occurs just
before 11 and I2, then the await statement terminates, O is produced, the internal
watching-do terminates since its body terminates, 02 is produced and the external
- watching also terminates.

e Statement run-uniil:
run stat until X

where stat 1s any statement and X is a parameter. The body stat starts instant-
ly and determines the behaviour of the run-until statement until it terminates or
executes ezt X. Then the execution of stat is preempted and the whole run-until
constructor terminates. If body of a run-until statement contains parallel compo-
nents, the run-unt:il is exited when one of the components executes an ezit X, the
other component is preempted.
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Ezample. Let consider the statement

run
parallel
sequence
await I1,
produce O
end,
sequence
await 12,
exit X
end
end
until X

If 11 occurs before 72, then O is produced and run waits for I2 to terminate. If 12
occurs before 7/, then the whole statement terminates instantly, the first branch is
preempted and O will never be produced. If /1 and I2 occur simultaneously, then
both branches do execute and O is produced.

Run-until statement provides a way for breaking loops:

run
cycled ... exit X ... end
until X

Notice that the statement

run
sequence
run
parallel
exit X,
exit Y
end
until Y,
produce O
end
until X

is ambiguous. We must define what it means to exit several run-until statements

simultaneously.
Priorities between run-until statements — only the outermost run-until state-

ment matters, the other ones are discarded.
In the above example the internal run-until is discarded and O is not produced.

e Statement local:
local S {, Si} in stat end

where S and S; are signals and stat is any statement. It declares a lexically scoped
signal S {, S;} that can be used for internal broadcast communication within stat.
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At each reaction, a signal has a single status — present or absent. The following
law determines the status of local and output signals: A local or output signal 1s
~ present in a reaction if and only if it is produced by ezecuting a produce statement
in that reaction. The default status of a signal is to be absent.

3. THE BEHAVIOURAL SEMAI\TTICS OF THE PURE SLRS

This semantics defines program execution reaction by reaction using Structural
Operational Semantics technique [6]. It defines transitions of the form

P —— P/,

[, O .
where P is a program, I is an input event, O is the corresponding output event,
and P’ is the new program, i.e. the new state of P after reaction to I. The sequence

P P . P i ma's
Il: Ol 1 12) 02 n In+l, on+1
defines the reaction. Oy, Oy, ..., O, ... to an input sequence Iy, I, ..., I, ..

The programs P; are called derivations of P.
The transition

P T3 P’

is defined using the following auxiliary relation:

stat —E-T“‘-—"* Statl

where stat is the body of P, stat’ is the body of P’, F is the current event in
which stat reacts, £’ is the event composed of the signals produced by stat, ¢ is an
" integer (¢ > 0) that codes the way in which stat terminates or exits, and S is a set
of integers. S is called a stopset and t -— a termination level’ They are defined
below. The current event E is composed of all signals that are present at a given
reaction. By the law, which determines the state of local and output signals, £
must contain the set E’ of produced signals. The auxiliary relation is defined by
structural induction on statements by means of inductive rules.

The connection between the transition and the auxiliary relation is as follows:

{ g4 . /
P 43 P if stat fUouT(adg, Ot 5 Stat

for some t and S.

Termination level. To determine the termination level, it is useful to label the
ezit X part of a run-until X statement with the corresponding level t 4 2, where t
(t > 0) is an integer and is equal to the number of the run-until statements which
one must traverse to reach the run-until X statement [2].

Ezample.
run
parallel
exit X : 2,
run
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parallel
exit X : 3,
exit Y : 2
end
until Y
end
until X

The first exit X and the ezit Y are labelled 2 since there is not intermediate run-
until statement to traverse, while the second ezit X is labelled 3 since one must
traverse the run-until Y statement to reach the run-until X statement.

Definition. The termination level t of a statement stat is defined as t(stat),
where:

t(skip) = 0,
t(stop) = 1,
t(produce X) = 0,
t(stat;) if t(stat;) >0,
t(staty) if t(stat,) = 0,
t(paralle] stat,, stat; end) = max{t(stat,), t(staty)},
t{cycled stat end) = 1 if t(stat) = 0,
t(cycled stat end) = t(stat) if t(stat) > 0,
t(watching X do stat end) = t(stat),

0 if t(stat) = 0 or t(stat) = 2,
t(run stat until X) = ¢ 1 if t(stat) = 1,

1—1 if t(stat) =1i,1> 2,

t(sequence staty, stat, end) = {

tlexit X : 1) =1,
t(local X in stat end) = t(stat).

The termination level of the statement of the above example is 0.

Stopset. We number all occurrences of the stop statement in stat by different
integers from 0 to n, n > 0. A stopset S is a subset of [0..n] that satisfies the
following condition: If stal; and stafy are the two statements of a sequence or two
branches of an ifp-then-else-end statement, then S cannot contain an occurrence of
stop in stat; together with an occurrence of stop in stat,. Notice that S = & when
t#1and S# < whent=1. :

Inductive Rules:

(IR1) skip R skip;
(IR2) stop : 1 E o T T stop : 1;
(IR3) produce X B0 o skip;
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stat; 5o e stat]
and
g /
(IR4) staty B F s 5, staty .
— /0
sequence stat;, staty end E, B UE, & 5; stats
. ]
(IR5) stat) BB oS stat], t; >0 .
sequence stat;, stats end B s Sequence stat], stat; end’
) 10 Y1, 91
N /
gtatl AT stat)
and
” /
(IR6) stats BB 6, 5, stats
3 1" " }
parallel stat,, stat; end B BB, w5 paral]el staty, stat end
where S = S1 US,, if max(ty,tz) <1, and  stat” — stat!, ift; #0,
D, if max(t;,ts) > 1 . : skip, ift; = 0;
, stat ————— stat’, t> 0
(IR7) — ;
cycled stat end —5 55~ sequence stat’, cycled stat end end
. !
(IRS) X € E and stat; R stat] '
A N 7
ifp X then stat; else staty, end BB s stat]
R /
(1RS) X ¢ E and stat; BT S stat’, |
: ‘ -5
ifp X then stat; else stat; end BB sy stat),
stat ————— stat’
(IR10) . =Bt S — ;
watching X do stat end e ifp X else watching X do stat’ end end
R !
stat EE. 6o stat
and
t=0o0rt=2
(IR11) . —
run stat until X- N skip
stat m stat’
and
(IR12) (t=1and t’::l)or(t>2§ndt’=t-—.1) .
run stat until X ———— run stat’ until X ’
(IR13) exit X :1 oo SWop;
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! e /
X ¢ E' and stat EEGX] T8 stat

local X in stat end e local X in stat’ end ’

(IR14)

/ /
X ¢ E' and stat —— K F TS » stat

local X 1n stat end Y local X in stat’ end

(IR15)

Definition. A program is locally correct if its body and its substatements are
such that each local and output signal can have a single status for any input event
that satisfies the input relations.

Definition. A program is correct if all its derivations are locally correct.

Correctness obviously implies determinism. In the sequel, we will consider a
correct program P. For technical reasons (see Theorem 1 below), we assume also
that the body of P never terminates, adding a trailing stop if it is necessary. This
does not change the observable behaviours.

Let stat be a statement, S — a stopset, and stat’ — a derivation of staf. We
will define term R(stat:S) equal to stat’, i.e. by means of the operator R we recover
the derivation stat’ from stat and S. The argument of the operator R is a term
labelled S. A labelled term stat:S is obtained by labelling the subterms of stat
either S+, or S—. A subterm is labelled S+ if and only if it contains at least one
occurrence of stop which number is in S, otherwise, the subterm is labelled S—.
The labels are redundant, but they make the proofs simpler to write.

Definition. R(stat:S—) = stat

R(skip:S) = skip

R((stop:1):S) = stop:i

R((produce X):S) = skip

R(sequence stat;:S+, stat,:S— end) = sequence R(stat;:S+), stat, end
R(sequence stat;:S—, staty:S+ end) = R(staty:S+)

R(parallel stat;:S+, stat,:S+ end)= parallel R(stat;:S+), R(stat2:5+) end
R(parallel stat;:S+, staty:S— end) = parallel R(stat;:S+), skip end
R(parallel stat;:S—, stat,:S+ end) = parallel skip, R(stat2:S+) end

R(ifp X then stat;:S+ else staty:S— end) = R(stat;:S+)

R(ifp X then stat;:S— else stat2:5+ end) = R(staty:S+)

R(cycled stat:S+ end) = sequence R(stat:S+), cycled stat end end
R(watching X do stat:S+ end) = ifp X else watching X do R(stat:S+) end end
R((run stat until X):S) = run R(stat:S) until X

R((local X in stat end):S) = local X in R(stat:S) end.

Theorem 1. Let stat be the body of a correct program and stat never termi-
nate. Let S be a stopset in staf. Then for any transition of the form

R(stat:S) » stat

E E, 1¢8
the stopset S’ contains only stops occurring in stat’ and stat’ = R(stat:S’).
| P g

83



Proof. Let E' is a given current event. The proof is by structural induction on
stat. All cases are similar, so we will consider the sequence and the watching-do
statements as examples.

(1) Let stat = sequence staly, stat, end. There are two main subcases:

— If stat:S = stat:S+ = sequence stat,:S—, stat:S+ end, then ‘R(stat:S)':
R(stat2:5+). By correctness and by the hypothesis that stat stops, R(staty:S+)
has a unique transition

R(stat:S+) = R(stat:S)

’
— stat’,

E,E 1S .
where S’ is a non-empty stopset that contains only stops in staty. By induction,
stat’ = R(stat,:S’) (1)
and S’ contains only stops in stat’. Since S’ is non-empty and is a stopset in stats,
R(staty:S’) = R(sequence stat,:S'—, staty:S + end) = R(stat:S’).  (2)
The result is achieved as a consequence of (1) and (2).

— If stat:S = stal:S+ = sequence stat;:S+, stat;:S— end, then R(stal:S) =
sequence R(stat,:S+), staty end. By correctness and by the hypothesis that stat
stops, R(stal;:S+) has a unique transition

R(stat,:S+) » stat],

E, E, 1,8
where S’ is a non-empty stopset that contains only stops in stat,. By induction,

stat| = R(stat;:S’) | (3)
and S' contains only stops in stat|. By (IR5) we have

sequence R(stat;:S+), stat; end O U
sequence stat], staty end = stat’. - (4)
From (3) and (4)
stat’ = sequence stat}, staty, end = sequence R(stat;:S’), staty end
= R((sequence stat, stat; end):S’) = R(stat:S’)

and the result is achieved.

(i1) Let stat = watching X do stat; end. There are also two main subcases:
— If stat:S = stat:S~—, then R(stat:S—) = stat.
By correctness and by the hypothesis that stat stops, stat, has a unique transition

R(stat;:S) = stat,; stat],

EE, LS
where S’ is a non-empty stopset that contains only stops in stat;. By (IR10) we
have

stat —s— 1fp X else watching X do stat} end end = stat”.

E, E,
By induction,
stat] = R(stat;:S'),
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and by the fact that S’ is a non-empty stopset that contains only stops in stat;,

stat’ = ifp X else watching X do stat} end end
= ifp X else watching X do R(stat; : S'+) end end
= R(stat : §).
— If stat:S = stat:S+, then R(stat:S+) = ifp X else watching X do R(stat,:5+)

end end. By correctness and by the hypothesis that stat stops, R(sfat;:S+) has a
unique transition

R(statl S+)

& /
5E, 1,5 Statn

where S’ is a non-empty stopset that contains only stops in staf;. By induction,
stat] = R(stat,:S’) '
and S’ contains stops in stat|. By (IR10) and (IR9) (X ¢ E) we have

R(stat:S+) = ifp X else watching X do R(stat;:S+) end end

B E 15 ifp X else watching X do stat] end end = stat’.

Then
stat’ = ifp X else watching X do R(stat;:S’) end end = R(stat:S’).

Theorem 2. Let P be a correct program and stat be its body. Then any
derivation stat’ of stat is equal to R(stat:S) for some stopset S and there are only
finitely many derivations.

Proof. We shall use induction on the length of a transition sequence. Let the
derivative stat’ of stat be produced by means of the following sequence:

stat = stat; — -+ —— staty —er——e— stat’.

If n =0, stat’ = stal = R(stat:D) and the result is achieved.
Let stat, = R(stat:S’) for some stopset S’. Then

R(stat:S") ——F5——5— stat’.

By Theorem 1,
stat’ = R(stat:Sy)

and the result is achieved.
The finiteness property is obvious since there are only finitely many possible
stopsets in stat.

We can therefore completely replace a program P by its reaction graph con-
sidered as a finite state automaton with derivatives as states.
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DIRECT CONSTRUCTION OF MINIMAL ACYCLIC
FINITE STATES AUTOMATA ‘

STOYAN MIHOV

This paper presents automaton construction algorithms based on the method for direct
building of minimal acyclic finite states automaton for a given list [2]. A detailed pre-
sentation of the base algorithm with correctness and complexity proofs is given. The
memory complexity of the base algorithm is O(m) and the worst-case time complexity
is O(nlog(m)), where n is the total number of letters in the input list, m is the size
of the resulting minimal automaton. Further we present algorithms for direct construc-
tion of minirnal automaton presenting the union, intersection and difference of acyclic
automata. In the cases of intersection and difference only the first input automaton has
to be acyclic. The memory complexity of those construction algorithms is O(m), and
the time complexity is O(n log(m)) for union and O(nj + nlog(m)) for intersection and
difference, where n; is the total number of letters in the first automaton language, n is
the number of all letters in the resulting automaton language and m is the number of
states of the resulting minimal automaton. For construction of minimal automata for
large scale languages, in the practice our algorithms deliver significantly better efficiency
than the standard algorithms.

Keywords: minimal acyclic finite states automaton, construction of minimal automa-
ton

1991/95 Math. Subject Classification: 68Q68, 68Q45

1. INTRODUCTION

The standard methods for constructing a minimal finite states (FS) automaton
proceed in two stages. On the first stage a deterministic FS automaton is built and
on the second stage this automaton is minimized. For an overview on the modern
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automaton construction and minimization methods see [6, 7). Those methods have
the serious backdraw that the intermediate automaton is huge in respect to the
corresponding minimal one.

For many practical applications the construction of large scale acyclic automa-
ta is an important task. Methods for construction and minimization of acyclic
automata can be found in [3, 4]. Nevertheless, the Revuz’ algorithm (which deliv-
ers the best efficiency) is also a two stage method and has the above mentioned
backdraw. Therefore the use of Revuz’ method for construction of very large au-
tomata is difficult.

We shall present bellow methods for direct construction of minimal automata
where the whole construction is performed in one stage and no intermediate au-
tomata are built. Our methods are based on the method for direct construction of
minimal automaton for a given lexicographically sorted list [2]. First we shall intro-
duce the mathematical framework which is presented in more details in [2]). After
that we present in details the corresponding algorithm and give correctness and
complexity proofs. We proceed with a detailed presentation of the algorithms for
direct construction of minimal automaton presenting the union, intersection and
difference of acyclic automata. Those algorithms are direct descents of the base
algorithm. At the end, we give some experimental comparisons of our algorithm
with the corresponding Revuz’ algorithm.

2. MATHEMATICAL CONCEPTS AND RESULTS

Definition 1. A deterministic FS automaton is a tuple A = (£, S,s, F, p),
where:

e ¥ is a finite alphabet;

e S is a finite set of states;

o s € S is the starting state;

e ' C S is the set of final states;

e i1: S x X — §is a partial function called the transition function.
The function p is extended naturally over S x £* by induction:
#‘(r’ 6) - r, ] -
" pu(p*(r,0),a), in case p*(r,o) and pu(p*(r,0), a) are defined,
p*(r,oa) = .
not defined otherwise,

where r€ S, 0 € X%, a € L.

We will work with a definition of FS automata with a partial transition func-
tion. The only difference from the definition with a total transition function is the
absence of the necessity to introduce a dead state (a non-finite state r, for which
Va € ¥ (u(r,a) = r)). Later, we will use !u(r, o) to denote that u(r, o) is defined,
and when writing p*(r,0) = z, we will mean 'u(r, o) & p(r,0) = z.
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Definition 2. Let A = (X, S, s, F, u) be a deterministic FS automaton. Then
the set L(A) C X*, defined as

L(A) = {0 € S* [14*(5,0) & u*(s,0) € F},
is called the language of the automaton A or the language recognized by A.
Two automata A and A’ are called equivalent when L(A) = L(A’). An au-

tomaton is called acyclic when Vr € S Vo € £% (u*(r,0) % r). The language of an
acyclic FS automaton is finite.

Definition 3. Let A = (X, S, s, F, u) be a deterministic FS-automaton.

1. The state r € S is called reachable from ¢ € S when Jo € £~ (p*(t,0) = 7).

2. We define the subautomaton startmg in s €S as:
Aly =(E,5, s, FNS', plsixs),

where S’ = {r € S| r is reachable from s'}.

3. Two states s;,52 € S are called equivalent when L(Al,,) = L(Als,).

Definition 4. The deterministic FS automaton A = (X, S, s, F, p) with lan-
guage L(A) is called minimal (with language L(.A)) when for every other deter-
ministic FS automaton A’ = (X,5,s’, F’, y') with language L(A’) = L(A) it holds
11 < 1]

From the classical FS theory the following theorem is well-known:

Theorem 5. A deterministic F'S automaton with non-empty language s min-
imal if and only if every state is reachable from the starting state, from every
state a final state is reachable and there are no different equivalent states. There
exists an unique (up to isomorphism) minimal automaton for a given language of
FS automaton.

MINIMAL EXCEPT FOR A WORD AUTOMATA

Bellow we will assume that a finite alphabet ¥ is given and there is a linear
order in ¥. Later, writing lexicographical order of words in £*, we will understand
the lexicographical order induced by the linear order of X. |

Definition 6. Let A = (X,S,s, F, ) be an acyclic deterministic FS automaton
with language L(A). Then the automaton A is called minimal ezcept for the word
w € T* when the following conditions hold:

1. Every state is reachable from the starting state and from every state a final
state is reachable.

2. w is a prefix of the last word in the lexicographical order of L(.A).
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In that case we can introduce the following notations:
w=wiws .. .wfl, where wA € L fori=1,2,...k, (1)
3 =5 1 =ptg,wl); 8 =p0tvd); . = pl, wd), (2)

T=07 ... L) 3

3. In the set S\ T there are no different equivalent states.
4. VreSvie{0,1,...,k}Va€ZS(u(r,a) =t; o (i>0&r =ti_1 &a = wf)).

Bellow, when working with minimal except for a given word automaton, we will
use the notations (1)~(3) introduced in the former definition. In case the notation
is not ambiguous, we will write t;, w; instead of t#, w#*. Clearly, if an antomaton
1s minimal except for two different words, one is a prefix of the other.

Proposition 7. Let the automaton A = (X, S,s, F, u) be minimal ezxcept for
w. Then: :
- 1.VreS\TVa€eX(lu(r,a)— u(r,a) e S\T).
2. p*(s,0) =t > o = wiws ... Wi

Proposition 8. An automaton which is minimal ezcept for the emply word €
1s minimael.

Lemma 9. Let the automaton A = (%, S, s, F,p) be minimal ezcept for w =
wwy ... wk, w # €. Let there be no state equivalent to t; in the set S\ T. Then A
is also minimal except for the word wiwy ... wg~q.

Lemma 10. Let the automaton A = (X,5,s, F,p) be minimal ezcept for
w=wWy ... wg, w# €. Let the state p € S\ T be equivalent to the state ty. Then
the automaton A’ = (X,5",s, F', i) defined as follows:

8 = §\ {4k},
Fl'=F\ {t},
p(r,a), in case r # tx_1 Va# wp and p(r,a) is defined,
p(r,a) =< p, in case r = g1, @ = Wy,

not defined otherwise,
is equivalent to the automaton A and i1s minimal ezcept for the word wyw, ... wi—.

Theorem 11. Let the automaton A = (£,5,s, F,u) be minimal except for
W' =wiwy ... wn. Letp € L(A) be the last word in the lezicographical order of the
language of the automaton. Let w be a word which is greater in lezicographical order
than 3. Let w' be the longest common prefiz of ¥ and w. In that case we can denote
W= WWe ... WnWnel ... Wk kK > m. Then the automaton A" = (X,5,s, F', i)
defined as follows:

tm+1,8m42, - - -, Lk are new states such that SN {tymy1,tmy2,---,tk} = 9,
S, =SU {tm+1atm+2) . °1tk}1
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F'=FU{tk},
g o mceaser=1t;, m<i<k-1, a=wy,,

4 u(r, a), in case r € S and p(r,a) is defined and
r;ﬁ tmVa # Wm+1,
| 25 not defined otherwise,

#(r,a) =

is minimal except for w and recognizes the language L(A)U {w}.

Lemma 12. Let the automaton A = (X,S,s, F,pu) be minimal ezcept for
w=wiwz... wg. Then forty (refer to the notation introduced in Definition 6) the
following statement holds:

tx s equivalent tor € S\ T — ((tk EF—rel)

& Va € S ((~1u(te, @) & ~1p(r, ) V (Yu(te, @) & Y(r, @) & p(te, @) = p(r, ).

The proofs of the above results are presented in [2].

3. ON-LINE ALGORITHM FOR BUILDING A MINIMAL FS AUTOMATON
FOR A GIVEN LIST

First we describe the method informally and give an example. After that we
give the pseudo-code in a Pascal-like language (like the language used in [1]) with
correctness proof.

Let a non-empty finite list of words L in lexicographical order be given.. Let
w(®) denote the i-th word of the list. We start with the minimal automaton which
recognizes only the first word of the list. This automaton can be built trivially
and is also minimal except for w(*). Using it as basis, we carry out an induction

on the words of the list. Let us assume that the automaton A™) = (X,S, s, F, )

with language L(™) = {w() | i = 1,2,...,n} has been built and that A¢ (n) is
minimal except for w(™). We have to bulld the automaton A1) with language
LD = {u0) | i=1,2,...,n+ 1} which is minimal except for w("+1),

Let w’ be the longest common prefix of the words w(®) and w("*Y). Using
several times Lemma 9 and Lemma 10 (corresponding to the actual case), we build
the automaton A’ = (%,5’,s, F', u’) which is equivalent to A™) and is minimal
except for w’.” Now we can use Theorem 11 and build the automaton A(®+1) with
language L(*+1) = L0V U {u(*+1)} = {u() | i = 1,2,...,n+ 1} which is minimal
except for w(m+1),

In this way by induction we build the minimal except for the last word of the
list automaton with language the list L. At the end, using again Lemma 9 and
Lemma 10, we build the automaton equivalent to the former one, which is minimal
except for the empty word. From Proposition 8 we have that it is the minimal
automaton for the list L. To distinguish efficiently between Lemma 9 and Lemma
10, we can use Lemma 12. (O
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Let us describe now the algorithm more formally. We will presume that there
are given implementations for Abstract Data Types (ADT) representing the au-
tomaton state and the dictionary of automaton states. Later, we presume that
NULL is the null constant for an arbitrary abstract data type.

On automaton state we shall need the following types and operations:

1. STATE is pointer to a structure representing an automaton state.

2. FIRST_CHAR, LAST_CHAR : char are the first and the last char in
the automaton alphabet. We will assume that the chars are sequentially given in
lexicographical order.

3. function NEW_STATE : STATE returns a new state.

4. function FINAL(STATE) : boolean returns true if the state is final and
false otherwise.

5. procedure SET_FINAL(STATE, boolean) sets the finality of the state to
the boolean parameter.

6. function TRANSITION(STATE,char): STATE returns the state to which
the automaton transits from the parameter state with the parameter char.

7. procedure SET_TRANSITION(STATE char, STATE) sets the transition
from the first parameter state by the parameter char to the second parameter state.

8. procedure PRINT_AUTOMATON(file,STATE) prints the automaton
starting from the parameter state to file.

Having defined the above operations, we make use of the following three func-
tions and procedures: ‘ .

~ function COPY _STATE (s: STATE) : STATE;
{ copies s to a new state}
var ,
r: STATE,
¢ : char;
begin
:= NEW_STATE,;
SET_FINAL(r,FINAL(s));
for ¢ := FIRST_CHAR to LAST_CHAR do
SET _TRANSITION(r,c, TRANSITION(s,c));
return(r);
end; { COPY_STATE}

procedure CLEAR_STATE (s : STATE);
{ clears all transitions of s and sets it to non-final one }
var ¢ : char;
begin
SET_FINAL(s,false);
for ¢ := FIRST_CHAR to LAST_CHAR do
SET_TRANSITION(s,¢,NULL);
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end; { CLEAR_STATE}

function COMPARE_STATES (s1,s2: STATE) : integer,
{ compares two states} ;
var ¢ : char;
begin
if FINAL(s1) < FINAL(s2) then return(-1)
else if FINAL(s1) > FINAL(s2) then return(1);
for ¢ := FIRST_CHAR to LAST_CHAR do
if TRANSITION(s1,c) < TRANSITION(s2,¢) then return(-1)
else if TRANSITION(s1,c) > TRANSITION(s2,¢) then return(1);
{ here we compare only the pointers }

return(0);
end; { COMPARE_STATES}

The ADT on Dictionary of automaton states uses the COMPARE_STATES
function above to compare states. For the dictionary we need the following opera-
tions: ‘

1. function NEW_DICTIONARY : DICTIONARY returns a new empty
dictionary; '

2. function MEMBER(DICTIONARY,STATE) : STATE returns state in the

dictionary equivalent to the parameter state or NULL if not present;
3. procedure INSERT(DICTIONARY,STATE) inserts state to dictionary.

Implementations of the above ADTs can be found in {1]. Later we assume that
the time complexity of PRINT _AUTOMATON is proportional to the size of the au-
tomaton and all other operations on Automaton states including COPY_STATE,
CLEAR_STATE and COMPARE_STATES are performed in constant time. De-
pending on the concrete implementation of the dictionary, we could have different
bounds for the time complexity of the operations. Using a typical implementation
by, e.g., AVL balanced trees, we will-have a logarithmic time complexity for the
MEMBER and INSERT operations and the size of the dictionary will be propor-
tional to the number of its elements.

Now we are ready to present the pseudo-code of our algorithm.

Algorithm 1. For on-line construction of minimal automaton presenting the
input list of words given in lexicographical order.

program Create_ Minimal_FS_Automaton_for_Given_List (input, output);
var '

MinimalAutomatonStatesDictionary : DICTIONARY;

TempStates : array (0. MAX_WORD_SIZE] of STATE;

InitialState : STATE;

PreviousWord, CurrentWord : string;

i, PrefizLengthPlusl : integer;

-~ O Ot S o =
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10
11

12

13
14
15
16

17 -

18

19
20
21
22
23
24

25
26
27

28

29
30

31
39
33

34
35

36
37
38
39

40
41

42
43
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function FindMinimized ( s : STATE) : STATE;
{ returns an equivalent state from the dictionary; if not present —
inserts a copy of the parameter state to the dictionary and returns it}
var r: STATE:
begin '
r := MEMBER(MinimalAutomatonStatesDictionary,s);
if r = NULL then begin
r:= COPY_STATE(s);
INSERT(7);
end;
return(r);
end; { FindMinimized}

begin
MinimalAutomatonStatesDictionary := NEW_DICTIONARY;
for i := 0 to MAX_WORD_SIZE do
TempState[s] := NEW_STATE;
PreviousWord .=,

CLEAR_STATE(TempState[0]);

while not eof(input) do begin
{loop for the words in the input list}
readIn(input, Current Word);

{ the following loop calculates the length of the longest common}
prefix of CurrentWord and PreviousWord}
g = I
while (i<length(CurrentWord)) and (i<length( Previous Word)) and
(Previous Word[1) = CurrentWord[1]) do
t:= 1+1;
- PrefirLengthPlusl = 1,

“~

{ here we are minimizing the states of the last word }
for i := length(Previous Word) downto PrefizLengthPlus! do
SET_TRANSITION( TempStates{i-1], Previous Word(],
FindMinimized( TempStates|i]));
-{ this loop initializes the tail states for the current word}
for i := PrefizLengthPlusl to length( CurrentWord) do begin
CLEAR_STATE( TempStates(i));
SET_TRANSITION( TempStates[+-1}, Current Word[1),
TempStates[i));
end;
SET_FINAL( TempStates{length( Current Word)], true);

PreviousWord := CurrentWord,
end; { while}



44 { here we are minimizing the states of the last word}

45 for i := length( Current Word) downto 1 do

46 SET_TRANSITION( TempStates[i-1], Previous Word[3],
FindMinimized( TempStates{i)));

47 InitialState := FindMinimized( TempStates|0});

48 PRINT_AUTOMATON(output, InitialState);

49 end. :

Now we will prove the correctness and calculate the time and space complexity
of the algorithm.

Theorem 13. Given a lexicographically sorted list of words in the inpui file,
Algorithm 1 builds the minimal FS automaton for the list and prints it out on the
output file.

Proof. To prove the theorem, we carry out an induction on the words of the
input list. :

In lines 20-24 the algorithm initializes the Dictionary of states of the minimal
automaton to the empty dictionary and the temporary states. In line 24 Temp-
state[0] is initialized to a non-final state with no transition. This corresponds to
the automaton for the empty language. Line 27 reads the first word from the input.
Because of the initialization in line 23, we have that at that moment Previous Word
is the empty string. Hence PrefizLengthPlus! will be set to 1 in lines 29-32. The
loop in lines 33-35 will not be triggered and the loop 36-40 will construct a chain
of states for recognizing the first word. In this way the algorithm constructs the
minimal automaton for the language consisting of the first word in the input list.
Clearly, this automaton is also minimal except for the first word wM. In that
moment the automaton is minimal except for w(!) and the states to,t1,...,1) are
presented in Tempstate. In line 42 the first word is assigned to the string Previous-
Word.

Now we will show that the loop in lines 25-43 adds the next word from the list
to the automaton and produces a minimal except for this word automaton.

Let us assume that on stage j the algorithm has built the automaton recog-
nizing {w() | i = 1,2,...,j — 1}, which is minimal except for wU~1). The states
to,t1,...,tx are presented in the array TempStates, all other states of the automa-
ton are in MinimalAutomatonStatesDictionary and PreviousWord is w(=1).

Being in line 27, the word w() is read from the input file into Current Word.
The loop 28-32 calculates the longest common prefix of PreviousWord and Cur-
rent Word with values at that moment w0~ and wU). We will show that the loop
33-35 builds the equivalent automaton minimal except for the longest common pre-
fix of wl=1) and w), In downward order the transition to the state t; is replaced
by a transition to the state which returns the function FindMinimized, where i
varies from the length of PreviosWord to PrefizLengthPlusl in reverse order. The
function FindMinimized searches a state equivalent to the argument in MinimalAu-
tomatonStatesDictionary. Here the conditions of Lemma 12 are fulfilled, therefore
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the use of COMPARE_STATE in the function MEMBER. will identify the equiv-
alent to t; state. If such a state exists, it is returned as result. This corresponds
to the condition of Lemma 10. In the other case, the function copies the state
and inserts it into MinimalAutomatonStatesDictionary. The copy of the state is
returned as result. This corresponds to Lemma 9. According to those lemmata, in
both cases the new automaton will be equivalent to the former and minimal except
for the shorter prefix. After finishing the loop, we have an automaton recognizing
{w® ] i=1,2,...,5 — 1}, which is minimal except for the longest common prefix
of w0~ and wl),

The loop 36-40 simply constructs a tail of states in the array TempStates in
order to recognize CurrentWord. In line 41 the last state is marked as final. This
corresponds exactly to the conditions of Theorem 11. Therefore we have built the
automaton for the language {w() | ¢ = 1,2,...,5} minimal except for the word
wl). After assigning w() to PreviousWord in line 42, we are closing the main loop.

From the induction we have that after finishing the loop 25-43 the algorithm
will build the automaton for the input list which is minimal except for the last
word. The lines 44-47 in the same way as the loop 33-35 build the equivalent
automaton which is minimal except for €. From Proposition 8 we have that this is
the minimal automaton for the list. Line 48 prints the automaton on the output
file. O

Theorem 14. Algorithm 1 builds the minimal automaton for a given alpha-
betically sorted list of words in O(nlog(m)) time, where n is the total number of
letters in the input list and m 1s the size (number of states) of the resulling minimal
automaton. The space complezity of Algorithm 1 is O(m).

Proof. For each letter from the input list the algorithm passes either through
line 31 or through lines 38-39. Each of the statements of those lines are performed
in constant time. In case we have passed through the lines 38-39, we later have to
pass through line 35 or 46. The time complexity of the lines 35, 46 depends on the
time complexity of FindMinimized. By using balanced tree implementation of the
dictionary we have that the complexity of FindMinimized is logarithm of the size
of the dictionary. The dictionary has at most m elements, where m is the number
of the states of the minimal automaton for the list. Hence the time complexity of
the whole algorithm is O(n log(m)).

Clearly, the space needed by the algorithm is equal to the size of the dictionary
of states of the minimal automaton plus the size of the TempStates array plus the
constant size of the other fixed-size variables. TempStates is proportional to the size
of the longest word in the list and in the case of using balanced tree implementation,
the size of the dictionary of states of minimal automaton is proportional to the
number of states of the minimal automaton. Clearly, the size of the longest word
in the list is lower than the size of the minimal automaton representing this list.
Therefore the space complexity is O(m). O

The main advantage of our method is the excellent. space to time proportion.
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4. ALGORITHMS FOR. DIRECT CONSTRUCTION
OF MINIMAL AUTOMATON PRESENTING UNION, INTERSECTION
AND DIFFERENCE OF ACYCLIC AUTOMATA

The standard methods for construction of automaton presenting union, in-
tersection and difference are building first a temporary automaton which states
are Cartesian product of states of the input automata. This temporary automa-
ton in general is huge with respect to the resulting minimal automaton. Here we
will present a new method for direct constructing the minimal automaton which
drastically improves the efficiency.

By traversing an acyclic deterministic FS automaton in depth first by choosing
the transitions in lexicographical order we can produce the automaton language in
lexicographical order. Using this property, we can produce the lexicographical -
ordered list which is union, intersection or difference of the languages of the input
automata. Using this list as input for Algorithm 1, we can construct directly the
minimal automaton for the union, intersection and difference. Moreover, we do not
have to build explicitely the whole lists in the memory. We can proceed word by
word using only the top words of the lists. Bellow we give the formal description
of our algorithm.

We will need the following declaration:

type States_Stack = array [1.MAX_WORD_SIZE+1] of STATE — type
array of automaton states.

We will use array of states for representing automaton path. If we have a word
w: string, we will have S[i+ 1] = TRANSITION(S[i], w(#]), i = 1,2,...,lenght(w),
where S{0] is the initial automaton state.

For producing the language of an automaton word by word, we will use a
function which for a given word and corresponding path returns the next word in
lexicographical order in automaton language. ’

Algorithm 2. Given a word and a corresponding automaton, path returns
the next word in lexicographical order in the automaton language.

We will assume that from any automaton state a final state is reachable.

function NEXT_AUTOM_WORD(S : States_Stack; var w : string) : boolean;
var

¢ : char;

sp : integer;

function FIND _FORWARD_WORD : boolean;
begin
¢ := FIRST_CHAR;
while (¢c<=LAST_CHAR) and (TRANSITION(S[sp], ) = NULL)
do ¢ := succ(e); |
if c>LAST_CHAR then return(false);
S[sp + 1] := TRANSITION(S[sp], ¢);
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sp := sp+ 1;

w := concat(w, ¢);

while not FINAL(S[sp]) do begin
¢ := FIRST_CHAR,
while TRANSITION(S[sp],¢) = NULL do ¢ :=succ(c);
S[sp + 1] := TRANSITION(S[sp], ¢);

sp:=sp+1;

w := concat(w, ¢);
end; '
return(true);

end;
begin

sp = length(w);
if FIND_FORWARD_WORD then return(true);

repeat _
if sp = 1 then return(false);
 sp:=sp—1; ‘

¢ := w{length(w)];
delete(w, length(w), 1);
while (¢ <= LAST_CHAR) and (TRANSITION(S[sp],¢) = NULL)
do ¢ := suce(e);
until ¢ <= LAST_CHAR;
S[sp + 1] := TRANSITION(S[sp], ¢);
sp = sp+1;
w := concat(w, ¢);
if not FINAL(S[sp))
then return(FIND_FORWARD_WORD) else return(true);
end;

Theorem 15. For a given word and a corresponding automaton, path Algo-
rithm 2 finds the next word in lezicographical order in the automaton language and
returns true or returns false in case there are no more words.

We can proof the above theorem by induction on the words in the automaton
language.

We will use the above function for producing the lexicographically sorted list
representing the union, intersection and difference of automaton languages.

Algorithm 3. For producing the next word in lexicographical order of the
union of two acyclic automaton languages.

We shall need the following global variables: -

98



var
pl, p2, f1, f2 : boolean,;
sl, s2: States_Stack;
wl, w2 : string;

We shall assume that they are initialized by the following procedure:

procedure INIT_NEXT_WORD;
begin

s1{1] := init_statel;

s2[1] := init_state2;

wl ="

we ="

pl := true;

p2 .= true;

f1 := true;

f2 .= true;
end;

init_statel, inil_state2 are the initial states of the two automata. In that case the
function NEXT _WORD produces in the variable w the next word in lexicographical

order of the union list or returns false in case there are no more words.

function NEXT_WORD(var w : string) : boolean;
begin
if not fI and not f2 then return(false);
if p! then f1 := NEXT_AUTOM_WORD(s!,wl);
if p2 then f2 := NEXT_AUTOM_WORD(s2,w2);
if not fI/ and not f2 then

return(false) _
else if (f1 and f2) and (w! = w2) then begin
w:=wl;, -
pl := true;
p2 := true;
end else if not fI or ((f7 and f2) and (w! > w2)) then begin
w = w2, :
pl := false;
p2 := true;
end else if not f2 or ((f/ and f2) and (w! < w?2)) then begin
w = wl,
pi = troe;
p2 .= false;
end;
return(true);

end;
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The function NEXT_WORD proceeds as follows: in the variables p1, p2 we
mark the necessity for reading the next word from the corresponding automaton.
In the variables f1, f¢ we mark the ending of the corresponding automaton. In case
both automata are traversed, the function returns false. In the other case the two
current words from the automata lists are compared. In case the words are equal,
we return one of them and mark in p/, p2 that on the next call of the function the
words from both lists have to be read. In case one of the words preceeds the other,
we return that word and mark the corresponding automaton in order to read the
next word from it. In case one of the automaton [anguages has finished, the other
is listed until both are finished.

We have to note that the function NEXT_WORD returns word by word the
list of the words in the union of the two input automata without using any extra
memory for generating the lists. The time for listing the words in the union is
proportional to the sum of the lengths (in letters) of the languages of the input
automata. This follows from the next facts. To list the words, in the union the
paths are traversing from the 1nitial to the final states in the input automata. The
sum of all those paths in an automaton is equal to the number of all letters in the
automaton language. U

For producing the list of the intersection or difference of two automata, we
proceed similar to the method above. But we shall present a more efficient method
which is applicable also in case the second automaton is not acyclic.

First we present an additional function which returns true in case the word is
recognized by the automaton and false otherwise.

function RECOGNIZE_WORD (w: string; s: STATE) : boolean;
var 1 : integer;
begin
§ =1
while 1 <= length(w) do begin
- if TRANSITION(s, w[i]) = NULL then return(false);
s := TRANSITION(s, wl[7]);

=14 1
end;
return(FINAL(s))

end,;

The funé-tionality of the above function is clear. We have only to note that the
recognition time for a word is proportional to the length of the word.

Algorithm 4. For producing the next word in lexicographical order of the
intersection of an acyclic deterministic FS automaton with a deterministic FS au-

tomaton language.

We shall need the following global variables:

var
f1: boolean;
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sl : States_Stack;
wl : string;

We shall assume that they are initialized by the following procedure:

procedure INIT_NEXT_WORD;

begin
s1[1] := inil_statel;
\owgd =t
f1 := true;
end;

init_statel, init_state? are the initial states of the two automata. In that case the
function NEXT_WORD produces in the variable w the next word in lexicographical
order of the intersection list or returns false in case there are no more words.

function NEXT_WORD(var w: string) : boolean;
begin :
if not fI then return(false);
repeat
f1:= NEXT_AUTOM_WORD(s1, wl);
until not f/ or RECOGNIZE_WORD(wl, init_state2);
if not fI then return(false);

w:= wl;
return(true);
end;

In that case the function NEXT_WORD proceeds as follows: word by word
the first automaton language is listed in lexicographical order. In case the current
word is recognized by the second automaton, this word is returned as the next word
in the intersection. , '

- Here we have to note that the function NEXT_WORD produces the intersec-
tion list word by word without using extra memory for generating the whole lists.
The time for producing the intersection list is obviously proportional to the number
of all letters in the first automaton. (J '

For deriving an algorithm producing the next word from the difference of an
acyclic deterministic FS automaton with a deterministic FS automaton, we have
to make in the above algorithm the following change:

until not fI or RECOGNIZE_WORD(w1, init_state2);
have to be exchanged with |

until not fI or not RECOGNIZE_WORD(wl, initi_state2);

There will be almost no changes in the functionality of the algorithm and the time
complexity for producing the difference list will be again proportional to the number
of all letters in the first automaton language.

Let us present now the algorithm for direct construction of minimal automaton.
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Algorithm 5. For direct construction of minimal automaton presenting the
union, intersection or difference of acyclic automaton languages. (In case of inter-
section and difference, only the first automaton has to be .acyclic.)

We shall use as base Algorithm 1. We assume.that the global variables
init_statel, init_state? are given, which represent the initial states of the first
and second automaton. We shall assume also that the global variables of Algorithm
3 or Algorithm 4 and the corresponding functions NEXT_AUTOM_WORD,
NEXT_WORD, INIT_.NEXT_WORD, RECOGNIZE_WORD are defined. We
need further the following changes of Algorithm 1:

1. Between lines 24 and 25 we have to call the initialization procedure
INIT_NEXT_WORD;

2. Line 25 has to be changed to
while NEXT_WORD(CurrentWord) do begin.

3. Line 27 has to be deleted.

The only difference between the above algorithm and Algorithm 1 is the use
of an input list which presents the union, intersection or difference of the input
automata. We derive the following complexity results. For the union the time
complexity of Algorithm 5 is O((ny +n2)+nlog(m)), where n;, ny are the number of
letters of the two input automata languages, n is the number of letters in the union
language and m is the size (number of states) of the resulting minimal automaton.
We obviously have that n;+ns < 2n, hence the time complexity is O(n log(m)). For
the intersection and difference we have that the time complexity is O(n;+n log(m)).
The memory complexity in all cases of Algorithm 5 is O(m). O

5. IMPLEMENTATION RESULTS AND COMPARISONS

We have implemented various tools for constructing, updating and processing
of lexicons présented as minimal automaton. They are programmed in GNU-C and
JAVA. For a more efficient implementation we have used an open hash structure
for the lexicon of automaton states presentation. This provides a nearly linear time
complexity for practical applications.

We have experimented with grammatical lexicons for Bulgarian and Russian’
languages. The middle-sized lexicon for Bulgarian common lexica has about 500000
wordforms and the Russian one — about 1500000 wordforms. They are encoded
according to the DELAF format [5). To provide additional grammatical information
to the words, we have used a FS automaton with labels on the final states. A trivial
change is needed to modify Algorithm 1 to build minimal automata with such labels.
In the INTEX system (5] there is a similar tool for building the same kind of FS

1 The DELAF format of the Russian lexicon is build in cooperation with the Computer

Fond of the Russian Language in Moscow. s
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Table 1. Comparison of our and the INTEX tool for building minimal automata

INTEX tool our tool

Bulgarian Size (Wordforms) 524473
lexicon Memory used 33450 KB 1660 KB
Time needed - 2:07 min | 0:29 min

Russian Size (Wordforms) 1486552
lexicon Memory used 129000 KB 4400 KB
Time needed 17 min 2:04 min

automata. This tool is a highly efficient implementation of the Revuz’ algorithm.
Table 1 shows a comparison between our tool and the corresponding INTEX tool.

All time and memory parameters given in the paper are measured on a 32MB
RAM Pentium 180 machine running under NEXTSTEP. The large time require-
ments of the INTEX tool for the Russian lexicon are explained with the heavy usage
of virtual memory. On a small lexicon (when the trie structure for the INTEX tool
fits into the operating memory) our tool is.only slightly faster than the INTEX
one.

6. CONCLUSION

The presented methods and algorithms are successfully used for construction
and operations on large scale dictionaries. They are distinguished with significantly
better memory efficiency than the others.

An open question is the existence of a method for direct construction of minimal
automaton presenting the concatenation of acyclic automaton languages. There
seems to be a problem producing the concatenation list lexicographically sorted.

Acknowledgements. The author would like to thank Professor Klaus Schulz,
Professor Dimiter Skordev and Anton Zinoviev for the very valuable remarks on
the presentation.
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In this paper an effective iterative method for computing the eigenvalues and eigen-
vectors of a real Hamiltonian matrix is described and its applicability discussed. The
method is an adaptation for Hamiltonian matrices of the methods for computing eigen-
values of real matrices due to Veseli¢ and Voevodin. It uses symplectic similarity trans-
formations and preserves the Hamiltonian structure of the matrix. Our method can be
used for solving algebraic Riccati equation. The method is tested numerically and a
comparison with the performance of other numerical algorithms is presented.
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1. INTRODUCTION

Many applications lead to solving the real spectral problem
Hz = Az,

where A B
H=H(AB,D)= ( D AT ),

AeRnxn’ B = BT ERnxn’ D= DT E]Rnxn_
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Recall that the real matrix H is called Hamiltonian or J-skewsymmetric if

JTHJ = —HT, where J = ( On Lo

"‘In On

is the n x n zero matrix [7, 11, 12]. A matrix U € R"*" is called a symplectic or

J-orthogonal if UTJU = J. It is well-known that if H is a Hamiltonian matrix and
U is a symplectic matrix, then the matrix U ! HU is a Hamiltonian matrix.

Generalizations of the Jacobi process for arbitrary matrices, based on the fact
that there exists a matrix P such that A = P~1AP is arbitrarily close to being
normal, have been proposed (3, 15, 16]. In other words, the absolute value of every
element of AA* — A*A is arbitrarily small. Byers [2] has proposed a symplectic
Jacobi-like algorithm for the computation of the Hamiltonian-Schur decomposition
of Hamiltonian matrices. Byers’ method is an adaptation of the non-symmetric
Jacobi method proposed by Stewart [14].

In this paper an iterative method for solving the spectral problem for a Hamil-
tonian matrix is developed. It 1s a modification for Hamiltonian matrices of Veseli¢’s
and Voevodin’s methods for computing eigenvalues of real matrices [15, 16]. The
method uses similarity transformations with symplectic matrices. These transfor-
mations keep the block structure of a Hamiltonian matrix. This method can be
used for solution of the algebraic Riccati equation.

The algebraic Riccati equation is of great practical importance due to its key
role in control theory. There exist different procedures for solving this equation: a
method solving a suitable matrix equation [6], a method solving a spectral problem
for the Hamiltonian matrix [13]. Other methods are discussed in [8, 10, 17].

), I, is the n x n identity matrix and 0,

2. DESCRIPTION OF THE ALGORITHM

Now we describe the algorithm of our method. In this algorithm we construct
the following sequence of Hamiltonian similar matrices:

HI(A].;BI,DI) = H(A)B'D))
Hiyr = H(Aeg1, Beg1, D) = UZ HyUe = (REFYD), (2.1)
k =1,2,3, where Uy = Up,q, (x) is a suitable symplectic matrix. The matrix Uy

depends on three parameters pi, ¢x and ¢ for each k. At each iteration step the
parameters of U are chosen either to minimize

2
|Ug " HiUsll,  where ||Hk||=2(hg§)) ,

rs

or to annihilate the off-diagonal elements of the symmetric matrix Hy41 + H:{“.
To give an idea for the iterative process (2.1), we shall explain only the k-th
iteration step of the algorithm. We introduce the notation

Hy = H(Ag, Bk, Dk) = (h(¥)),
Ap = (@), B = (%)), Dy = (d)).
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For the matrices Hy + HI and Ci we have

Hy+HT = H(Ax+ AT, By + D, Dy + By),
Cr =C(Hy) = (¥ =H.HT — HT Hy = H(Fy, Ey, Ex),
where
Fr = FT = AAT + BiBy — AT Ay — DDy = (£2),
Ex = ET = AwDy — BeAx — AT By + DiAT = ().

The strategy, determining U from (2.1) and parameters px, gk, @k, is the
foliowing. At the k-th iteration step we find the numbers

¢®) = max |c$’§)|§ and A*) = max [h(%) 4 A(¥))|
r¥£s r#s
for the matrices Cr and Hy.
Then there are six possible cases to be considered successively:

Al | =c®>h®), 1<p=pr<q=aqr <n, o=@
In this case we choose the matrix Up = Upq(p) of the form

Spe(p) O )
U = Upg(yp) = ( P ’ ) 2.2
1’9( ) 0 Squ(‘,O) ( )
where Sy(¢) € R"*" is the matrix

= (8;:) = sqp=<P’
Spe(#) = (si5) {s‘.jzg,.,, (3,4) ¢ {(a,p)}-

Note that S;;' () = Spe(—)-
The parameter ¢ is computed by the formula

~ iy -
= e GO D) (2.3)
where
g = 2 (W) () +22 ()" (49))

i#q
+ 2(afd) - <’;))2 +4 (6,(,';>) +4 (d§,’;>)

b ((69) 4 (6)+ (&) + () +2(a) + (%))
A2 el =M >h®) 1<p=pr<qg=qr<n, Qp = 9.
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Then the matrix U = 'qu(go) is of the form

U .—.( I(;‘ S”;E“’) ) (2.4)

where S,,(p) € R"™" is the matrix

' By =1,
Sle)= () ={ P28
o ’ si; =0, (,7) ¢ {(p.9)}-
In this case the parameter ¢ is computed by the formula
2 ey;)

max (2|epq)| Mg:))

(2.5)

where
mp = o5 ((d9) + () #2350 ()2 (o)
J i#q i#p

+ o2 (off)+al)) 44 (o) +4 (o)’
e 2 ()" ()" ()"0 ()" ()" (')

A3, |22 >h® 1<p=p=g=q<n, pr=gp.
Then the matrix U = Upy(¢p) is of the form

o= (5 ),

where
SP(SO) = dia'g[IP-11 ') In—P]
and ¢ 1s computed by

by
. max (le(k)l M,E:)) et
and
i = o () 2 () e () ()" ()).

J#p

A4 lafy +afP | =h® > 1<p=p<qg=g <n, ¢ =g
In this case we choose the matrix Uy = Upq(yp),

Upq(p) = diag[Toe(), Tpe ()], (2.8)
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where Tp,() € R"*" is a matrix of the form

tm,Az lgqg = cos p,
Toq(p) = (tgy) = { tpg = —lgp = —sin o,
tgy = 8py, (B,7) & {(p,p),(p,9),(q,p),(2,9)}-

The parameter ¢ is computed from the equation

(k) (k)

apg” + agp
tg(2p) = ) (,c)

App” — Qqq

A5, |65+ 05 =B > B 1<p=pr <g=gqi <n, 9= s
We choose the matrix Uy = Upq(¢p),

cC -S
Upe(p) = ( S C )* (2.9)
where C, S € R™*" and
C = diag[l,—1,cosp,I;_p,cosp, Im_g],
Sgq = 8ap = SIN P,
& — (ap)= { Pq gp
(3pv) spy =0, (8,7) ¢ {(r,9),(3,p)}-

In this case the parameter ¢ is computed from the equation

bk 4 (b
- qr

A6 [bYy) + b | = h®) > ) 1<p=pr=g=q <n, o= .
The matrix Ux = Upq(yp) has the form

Upq() = ( g ;S ) y (2.10)

where C, S € R**" and

C — diag[lp-l’cos @, Im—p]’

3 Spp = sin Y,
(spv) = { spy =0, (8,7) € {(p,P)},

with the parameter ¢ computed now from the equation

S

b(k) + d(k)
tg(2¢) = (k) (k)
Qpp App
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We shall prove now the following

Lemma 2.1. Let p,q, 1 < p < ¢ < n, and Hk+'1 = U~1H U, where U =
Upq(s) 1s given by (2.2), (2.4) or (2.6); the parameter ¢ is computed by means of
Egs. (2.3), (2.5) or (2.7), respectively. Then

2 (1P — 1= 1)(c®) > L (cF)yt

™% max(2(c(®))?, M(k)) 2 || Hl|*

IH|? = 1 Heqall® >

where 7 > (1 +V/5)/2.

Proof. Let us choose p,q so that 1 < p < ¢ < n. We shall provide a detailed
proof of the lemma in the case A.1. only, since the reasoning in the rest of the

cases is fully similar.
We compute ¢ from (2.3), choose the matrix U from (2.2) and construct

Hiy1 = U HiU. Then for A(p) we get

Alp) = |[Hell? = [|Hr4al)?
= —Gp* —Qp® ~We? +4f 5o,
where
2 2 2
= 2(af®) + (49) + (a®) ",
- k k k k) (k k k
Q = 4a® (a( ) — af )) 4550(0) 4 4d()d(h),
_ (k) (k) () k)\ 2
W= 22(( D) + (bm-))“Z(( )+ ())
k k k k
+ (af® -_agg) +4(b§,q)) +4(d§,q))
+ 2 + 2D 4l
We find
Wi Wi <1
max (2157, M) ~ Myp "~
Consider the inequality
t4 2 2
Ypy g 2 TY (2.12)

t2

which holds for all real numbers ¢, z, y; setting, in particular, t = \/7, z = /2 la(k)

y= \/_Ia(k) aqq)l, we obtain

FRTRIRETC) IR
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Simtlarly, we get

i < T 08) +4 ()"

PP "P¢ — T

Thus the expression |Q| becomes

729 (a,(,'f,)) ’ +2 (af,k) - ag{;))

Q) < -
(208) +a ()| () ve(4)
Consequently,
1l cdo 1
-

max (21£P], M) T Map
Similarly, we have

oo )Y )
max (2|f£k)| M,,(,}f)) - Mé:) - Mq(,)f) =73

Using the above inequalities, we obtain

Alp) 2 4fBe - Wip? - QI ~ [Gly*
2% max (21 [, M) — Wl* - |QI¢” - |Gl

(k k 2 Wi+ QlI+1G|
e (A7) (% max (2150, MP)

v

v

v

1 1
max (2|80, M) (2& ~{l4=4 ;3)902)

r?—r-1
= max (2] (k)l Mgf) (—-—-—-———-—) ©*

2
Then
21 —=1  4(fp (k)
Ap) 2 -
T max (2|f,gk)| (k))
Since

max (2| (k)l Mg!,f)) <4(rP—r=1)|Hll®, 7>+ v5)/2,

1
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and therefore

Alp) 2 =

This completes the proof of the case A.1. The proofs of cases A.2 and A.3
are fully similar, as already pointed out. [0

Lemma 2.2. Let p,¢ be natural numbers, 1 < p < ¢ < n, and Hy4y =
U-'HU, where Hj is a matrix from the sequence (2.1). Let the matrix U =
Uprgx () be given by (2.2), (2.4) or (2.6), and ¢ be computed by (2.3), (2.5) or
(2.7), respectively. Then

k+1 k k)|2
|h£, ) — h£,)| < 4|c(pq)|
forr a=1,...,2n.

Proof. Let p,q be integers, 1 < p < ¢ < n, and let U be a matrix of the type
(2.2) with ¢ computed by means of (2.3). Then

r ' (k+l) - ars)‘ 1<r,g<n,
k+1 k
R+ _ p(B)| = 4 |b$,+n) bf,) il 1<r<n, n+1<s< 2n,
" ” ) = sl n+1<r<2n, 1<s<n,
\ l _agk—tls),n"' (k)ns nl» n+1 S”,SS%-
For the expression Ia( ) _ g ,)l we obtain in turn
|a(k)+<pa(k) arp)l 4 T
k k
jalk+D) — o{B)] = ¢ s ~ g - i, s=1,...,ns#p,
rs 1™ k k k
la() ‘P(() a( )) Soza;(o) qu)l r=p, s=gq,
[ 0, otherwise.

Hence

k+1 k k
la$p ) - aS‘p)| < I()OaSq)I

2lft(>k)l (k)'
max (2151, M)
< 2fP) = 2B

for r=1,...,nand r £ q.
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In the same manner it can be shown that

|a(k+1)_a(k)| < 2f (k)|._2|c(’=)| Bz 1ioe o, By B Py
a1 —a®)] < fpllal®) — ol + |p]?alt)]
< Il (1a8s) = af®)] + a®))
< 40 =4I
and
AT — bl < alchP,
jdE) - a2, < 4P

This completes the proof of the case A.1. The proofs of cases A.2. and A.3.
are again similar and omitted. [

Theorem 2.3. The iterative method (2.1) has the following properties:
I.C(Hy) — 0, k— oo.
II. The symmetric matrix %—(H ¢ + HT) tends to the diagonal matrix

1(Ho + HT), where Ho = H(Ao, Bo, Do) = (hY), and
1 .
(Ho+ HY) = dinglh, .. K]

where hf? ) are the real parts of the eigenvalues of the matrix H
II. Let p, ¢ be natural numbers, 1 < p # ¢ < 2n, and h ;6 h(o) Then

h(Y) — 0, k — oo,

IV. Let p, ¢ be natural numbers, 1 < p # ¢ < 2n, hg?,) = hgg), and for each t,

1 <t<2n,t#p,q, we have hf?) # h(o). Then

h(k) — A0

g 1 k — oo,

where hgq is the imaginary part of the elgenvalues of H with real part h(o)

Proof. 1. We consider the sequence ||Hk||?, k = 1,2,3,... The similarity trans-
formations with matrices of the form (2.8), (2.9) and (2.10) preserve the Euclidean
norm and the similarity transformations with matrices of the form (2.2), (2.4)
and (2.6) decrease or preserve the Euclidean norm implying that the sequence
I|H1]1%, [|H2|?, . . . is monotonically decreasing. Let for each matrix Hi a number
a be introduced such that

[0, if Ug isof the form (2.8), (2.9), (2.10),
e 1, if Uy is of the form (2.2), (2.4), (2.6).
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The sequence of matrices {H} is bounded. From this sequence we choose a con-
vergent subsequence {H,}, where s € S C N and N is the set of natural numbers.
Suppose that {a,} contains an infinite number of ones and {H,,} is such a sub-
sequence of {H,} that for each m € M C S C N we have a,, = 1. Then from
Lemma 1 it follows
1 (C(m))4
2 [[H|P
Hence ¢™) — 0, m — oco. From the inequality A(™) < ¢(™) it follows that
(M) — 0, m — oo.

Let Hy = H(Ao, Bo,Do) = (hf.‘j)) be a limit of the sequence {H,,}. For
Ho + HY and C(H,) we obtain

Ho+ HI = H(Ao+ AY,Bo+ DT, Do+ BT) = (b + &(?),
C(Ho) = H(Fo,Eo, Eo) = (c{9),

[Hmll* = [ Hmaall* 2

where
Fo = F§ = AoAT + BoBo — A% Ay — DoDo = (f57),
Ey = EJ = AoDo— BoAo— AY By + DoA% = (e5).

Since Hp is a limit, then if r # s, we have h( )+ h(o) = 0 and c,(-,) = 0. From

h(o) hE‘P =0, r # s, it follows that

a)+al9 =0, B#7, (2.13)
bS) ~ dg‘}}_o, By=1,...,n (2.14)

For the elements fég) of C(Hy) we obtain

(0) _ (0) (0) (0),(0) 0) 4(0) _ 4(0);(0)
fov Z( [Pa5y — apas) +d)di) — b bn)

j
From (2.13), (2.14) and 9 = 0 we compute
y |
78 = 2a%) (af) ~ o) = 0. (2.15)

Consequently,
f[(,%)z P ey
Similarly, we find

&) = 260) (e +a®) =0, By=1,...,n. (2.16)

Hence'cf-g) = 0 for each r and s, i.e. Hp is a normal matrix and Hg + H{{ 18
a diagonal matrix. Then the diagonal elements h(l(i), ; ,hg?,)zn are the real parts of

eigenvalues of H.
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For the subsequence {Hp,} we have C(H,,) — 0, m — oo, where ||Hn,||> —
22;.':1 lvjl?, vj = Aj + ip;. Since the whole sequence ||H&|| is non-increasing, it
follows that ||Hk|| — 22;-':1 lvj|?, i.e. C(Hy) — 0, k — oo. Hence the sequence
H; tends to a normal matrix.

Let the sequence {aj} contains only a finite number of ones. Then there is a

natural number so and for each s, so that s > sg, a, = 0, i.e. the matrices U, are
of the form (2.8) or (2.9) or (2.10). Then

h(®) -0, s = 0.

Since ¢(*) < h(*)| then
¢®) 50, s = 0.

Hence the convergent subsequence H has a limit Ho = H(Ao, Bo, Dy) with
the properties (2.13) — (2.16). This proves L.

II. We will prove that A®*) — 0, k = 1,2,..., for the sequence {H;}.
proving I we have found a subsequence {H,} of H;. We consider the case when the
sequence {ay} contains an infinite number of both zeros and ones. Let {a,} be a
subsequence of {ax}. If ap = 1, then A(?P) — 0, p — co. We consider the sequence
of all indices ky,...,ks,..., so that ax, = 0 and a},~; = 1 for s = 1,2,... In the
case m = k;, according to Lemma 2 we obtain

|A™)] < [R(™=1)| 4 |a(m) _ pim-1)|
< Ih(m—1)|+8(c(m—1))4

Since ¢(™= 1D — 0 and A"V S 0form=k;ands=1,2,... (m—1=k,—1), it
follows that A(™) — 0. Let ¢ denote a sum of the squares of off-diagonal elements
in blocks of the symmetric matrix Hx + H{ . Then we have

) < o2 < 2n(2n — 1)A1E),

For the subsequence {H,,} from h(™) — 0 it follows that 2, — 0.

Consider the indices m + 1t of {ex}. For m = k, it is true for op_; =
1, am—14t = 0, for t = 1,2,...,p and amy4p = 1 for s = 1,2,... For these
indices the number sequence o2, .,. is monotonically decreasing, because for the
matrix Hm4¢ + HE ., a step is used from a modification of Jacobi’s method for a
symmetric Hamiltonian matrix [9].

It thus follows that o7 — 0 for & = 1,2,..., and A¥) — 0 for the same k.
Hence from 1 we obtain that each convergent subsequence of Hy has a limit with
the properties (2.13) — (2.16) and its diagonal elements are the real parts of the
eigenvalues of H.

ITII. Now we will prove that if h,(,?,) gg), p # ¢, then h( )50, k— oo
There are three possible cases.

Let p, ¢ be natural numbers 1< p#q<n. Then h(p) = ag,),) and h(q) — ag(;)
Since h( ) ,(,?,), apg) £ aqq , from (2.15) we have af,q) = ;e h( ) = O.
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Let p, ¢ be natural numbers, 1 < p S n, n+1 < g < 2n. Then hfpi’,) s

01(:3;), hg(;) = —ago_)nq_,,, hﬁ,‘?,) = bgc;)_,,. Since hg,';) — hgg), from (2.16) when p # ¢—n
we have

(0)  _ 93(0) 0 )
€pg-n = 2bpg_n (hgp) - hgq)) =4

Hence bg?,)_n = 0. When p = ¢ — n, from (2.16) we obtain

0) _ 4p(0) .(0) _
e;p) = 4b§»p) afm) =0.
If a.g,?,) = 0, it follows that h,(,g) = h‘(,g), because h,(,g) — a,(,(,),) =0, hf,‘;) = —ago_),,q_n —
-—ag;,). Hence bg,(,),) =
In the case n+ 1 < p < 2n, 1 < ¢ < n, the proof is similar to that of the case
1<p<n n+l<g<2n

IV. Let {H,} be a convergent subsequence of {H} with the limit
Ho = H(Ao, Bo, Do) = (hg‘g) .

The limit Hy possesses the properties (2.13) - (2.16). Let h,(,?,) = hgg), p # ¢, and

for each t # p, q, hg?) - hg,(:,). We choose the number ¢ so that 1 <t < 2n, t # p,q.
Then, according to I1I, in the rows and columns of Hg with numbers p, ¢ there will

exist only two nonzero off-diagonal elements hg?,), hgg).
If 1 < p,q < n, then the nonzero off-diagonal elements are ag,?,), ag?,) . Conse-

quently, ag,?,) = ag;) and —agg) +i aﬁ,?,) are eigenvalues of the Hamiltonian matrix

H.
fl1<p<n, n+l <q<2n, p#q—n,then the nonzero off-diagonal elements

are bff?_ ns dgo_)np - —b}(,(;)_ - -This implies that a,(o(,),) £i bf,z)_  are eigenvalues of the
Hamiltonian matrix A. From the type of Hy follows that hg(z_)nq_,, = hg?np T
Hence ago_)nq_n +i bgo_)np are eigenvalues of the Hamiltonian matrix H.
f1<p<n n+1<q<2n p=g-n,from the type Hp it follows that
h},g) = hg?,) = 0. Then the nonzero elements are b,(og), dﬁ,g) = —b},g), and *i bﬁ,?,) are

eigenvalues of the Hamiltonian matrix H.. [

3. APPLICATIONS AND NUMERICAL EXPERIMENTS

Numerical experiments for solving the spectral problem for Hamiltonian ma-
trices and for numerical computing of the solution of the algebraic Riccati equation
are performed and will be reported in this section. All numerical experiments
were made on a PENTIUM computer using the algorithmic language Turbo Pascal
and the real arithmetic having an 11 sedecimal digit mantissa. The code of our
algorithm uses a cyclic choice on the pivot indices (p, q).
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The presented method for computing the spectral problem of a Hamilto-
nian matrix is the Jacobi type method for solving the eigenproblem of real non-
symmetric matrices. The reason is that in the Jacobi method for finding the eigen-
values only two rows and columns are involved in each iteration step of our method.
The paraliel implementation of our algorithm can be followed of those for Jacobi
algorithm for symmetric eigenvalue on the hypercube or a linear array of processors
[4] and on distributed memory multiprocessors [5].

3.1. THE SPECTRAL PROBLEM FOR HAMILTONIAN MATRICES
The code of our algorithm computes the eigenvalues of an (n x n)-Hamiltonian

matrix H = H(/‘{, B, D). Let us denote € = max; |A; — :\;I, where ); are the exact
eigenvalues and ); are the computed eigenvalues obtained by our algorithm.

)

Example 1 [1]. Consider the matrix

A
H:U( 0

o AT (3.1)

where A4 € R"*"

a1 = —10,
a;=n+1-12, 1=2,...,n—2,
A:(aij)=< Gn-1n-1= Qnp = 2,
Gji-1n = —Gpn-1 =1,

a;j = 0, otherwise,

\

and the matrix U is the product of randomly generated symplectic matrices of the
form (2.2), (2.4), (2.8). The following results are obtained in this case:

TABLE 1
5 10 - 15 20 25
1.3245E ~ 7 | 4.2331E -7 | 2.1289FE -7 | 1.5673E~7 | 5.3289FE ~ 6

Example 2. Consider the matrix (3.1), where A is a diagonal matrix with
randomly ‘chosen elements and the matrix U is the product of randomly generated
symplectic matrices of the form (2.2), (2.4), (2.8). The results are shown in the
following table: ' -

TABLE 2
5 10 15 20 25
2.5463E — 10 | 1.3568E — 10 | 6.8452E —8 | 3.4562F — 8 | 1.2344FE - 6
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Example 3. We have executed numerical experiments of random strict diag-
onal dominant Hamiltonian matrices using Byers’ algorithm [2] and the algorithm
proposed here. Table 3 displays the average number of sweeps necessary for con-
vergence. Each trial includes 10 matrices of the different dimensions.

TABLE 3
n | Byers' algorithm | Our algorithm
10 14 12
15 15 15
20 18 16
30 19 16

We compare Byers’ method with our method. Byers’ algorithm computes
2n? similarity transformations per sweep, the method proposed here computes
n(n+ 1)/2 similarity transformations. Byers’ algorithm makes 32n® 4+ O(n?) flops
for computing the 2n? transformations. Qur algorithm makes 20n® + O(n?) flops
for computing the n(n + 1)/2 transformations. Hence we obtain that one sweep
of the Byers’ algorithm is more expensive than a sweep of the algorithm proposed
here. Our algorithm is faster than Byers’ algorithm for the above set of exam-
ples (Example 3). Moreover, Byers’ method uses complex arithmetic, while in our
method real arithmetic is solely utilized.

In the case of a symmetric Hamiltonian matrix our method uses similarity
transformations with orthogonal symplectic matrices of the form (2.2), (2.4), (2.6).
The amount of work for performing the transformations per sweep is 12n® 4+ O(n?)
flops. We have made numerical experiments for randomly generating symmetric
Hamiltonian matrices for the same dimensions as in Example 3. We have obtained
that the average number of sweeps of the method proposed here is equal to the
average number of sweeps of Byers’ method.

-3.2. NUMERICAL SOLUTION OF THE ALGEBRAIC RICCATI EQUATION

The algorithm for computing the eigenvalues and eigenvectors of a real Hamil-
tonian matrix presented here can be successfully used to calculate the solution of
the Riccati equation

L(X)=XBX -XA-ATX -D=0, (3.2)

where A € R™*", B = BT ¢ R"*", D = DT € R"*" and B is a positive definite
matrix, [ i1s a positive semidefinite matrix.

The computation of the solution P of (3.2) leads to the solving of the spectral
problem for the Hamiltonian matrix # = H(A,—B,—D). An algorithm for com-
puting the solution P is described in (8, 10]. The matrix H = H(A,—-B,-D) is
reduced in Schur’s form A with the Q R-algorithm

Unn Ui )

UTHU = H, U:(
U1 Uz
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For the solution P of the equation (3.2) we have P = U, U;;! [8, 10].

We propose the following algorithm for solving the algebraic Riccati equation
(3.2). We compute the eigenvalues and eigenvectors of the Hamiltonian matrix
H = H(A,—-B,—D) with the algorithm described in Section 2. The matrix U of
the eigenvectors of H is partitioned into four (n x n)-blocks

U — ( Un Un2 )
U Uz
and then we compute the solution P = Us; U;' of the matrix equation (3.2).

We have made numerical experimens for computing the solution of the equation
(3.2). For these experiments three algorithms have been used. The first algorithm
W1 uses the QR-method [8, 10]. The second algorithm W2 uses the iterative
method described by Petkov and Ivanov [13]. This method computes the eigenval-
ues and eigenvectors of H = H(A,—B, —D) and then the solution P = U21U1"11 is
found. The third algorithm W3 uses the iterative method wich solves the spectral
problem of a Hamiltonian matrix. In the programs of algorithms W2 and W3 we
use a cyclic choice on the pivot indices (p, g).

The matrices A, B, D, for which the solution of the equation (3.2) is computed,
are the matrices from Example 1 and Example 2 from Section 3.1 and the examples
described below. On each trial we compute the accuracy of the computed solution

— IE(P)lloo-

The results from Example 1 and Example 2 are given in Table 4.

TABLE 4
Example w1 w2 W3
Example 1 n =5 [|L(P)|ls 1.0862E -7 | 1.8703E -7 | 6.2748F — 8
Example 1 n =10 ||L(P)|leo | 3.3222E -7 | 4.1609E -7 | 3.3191E - 7
Example 1 n =20 ||L(P)lloc | 7.9954E — 4 | 3.1569E — 4 | 1.4978E — 4
Example 2 n =5 ||L(P)|lec | 2.8741E —10 | 5.2502E ~9 | 1.2554E - 9
Example 2 n =10 ||[L(P)|leo | 2.3272E -5 | 5.0117E -8 | 2.6402E - 7
Example 2 n =20 ||L(P)|loc | 7.5153E -7 | 1.3549E -7 | 2.0637E - 8

Example 4. The blocks A, B and D in the Riccati equation are of the type

_[4 =i,
4 = (“’J)‘{i+j, if i,
B = diag[1,2%,...,n7,
D = diag[l,2,...,n].

The results from this example are shown in the following table:
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TABLE 5

-

n W1 w2 - W3
5 |IL(P)ljco | 6.7767TE — 5 | 6.9849E — 9 | 6.9028E — 8
10 IL(P)ljoo | 1.3256E — 3 | 1.6763E —8 | 2.5378E — 8
20 ||L(P)lloc | 3.4268E — 3 | 1.6938E — 7 | 1.209%6E — 7

Example 5 (Example 5 in [10]). We compute the solution of the Ric'cati
equation with n = 5, 10,20. The results are shown in the following table:

TABLE 6

n w1 W2 w3
5 ||L(P)|lcc | 2.7048E — 8 | 9.8542F —~ 7 | 9.8556E — 8
10 ||L(P)}joo | 2-1153E -8 | 1.1726E -9 | 1.317T1E -9
20 ||L(P)||lec | 1.2149E — 4 | 5.0361E -9 | 5.1435E — 9

Example 6 (Example 6 in [10]). We compute the solution of the Riccati
equation with »'= 21 and ¢ = r = 1. For the correct results z;, = 1 we receive the
value zy,, = 1.0792769258E -+ 00.

There are examples (Example 4 and Example 5) for which the iterative meth-

ods W2 and W3 for computing the solution of the Riccati equation are more accu-
rate than the QR-method (W1).

4. CONCLUSION

We have: presented and investigated a new method for solving the spectral
problem of Hamiltonian matrices. The method is a generalization of the Jacobi-
like method for arbitrary real matrices, as proposed by Veseli¢ [15]. It allows us to
construct a new algorithm for solving the algebraic Riccati equation. OQur method
preserves the special structure of a Hamiltonian matrix and uses less memory than
the algorithm W1 (Q R-method). The method offers simpler computational schemes
~and gives better options for parallel modifications.

We note finally that the algorithm proposed here can be modified as well for
solving the spectral problem for a symplectic matrix. But we were not able to prove
a convergence theorem in this case.
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The aim of this paper is to present a two-dimensional model of heat-transfer and trans-
port processes in a glass melting furnace and to use this model for investigation of
specifical temperature regimes for different heat flows as well as for the different effec-
tive thermal conductivity functions. The mathematical model is elaborated on the base
of the real flat glass furnace working in Diamond Ltd in Razgrad. The appropriate
numerical methods and their performance are discussed as well. '
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1. INTRODUCTION

Processes taking place in a glass melting furnace producing flat glass are very
complicated. In fact, there are five relatively separated physic-chemical processes —
silication, refining fusion, degassing, homogenization and cooling, which are closely
interconnected at very high temperature and practically occur simultaneously.

The outlet product of the furnace is a glass melt suitable for drawing. Its
basic characteristic is its quality, defined by thermal and chemical homogeneity in
the drawing volume and in time, Therefore it is very important for the quality of
the flat glass that the temperature regime in the furnace be within given limits.
Hence the automatic control of glass’ quality is directly connected with the control
of temperature distribution within the furnace.
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The measurement of the temperature of the glass melt is very difficult however.
The glass surface temperature is measured using pyrometers and the temperature of
melt near the walls and the bottom is usually measured using very expensive special
thermocouples. As a matter of fact, the temperature within the glass melt cannot
be measured properly and it is practically impossible to have reliable information
about it. Information for the temperature distribution in the glass melt can be
obtained by mathematical modeling of heat transfer and transport phenomena
taking place in the furnace. This information can be used for automatic control of
the temperature regime in the furnace and for studying the energeting behaviour
of the furnace.

The aim of this paper is to present a two-dimensional model of heat-transfer
and transport processes in the furnace and to use this model for investigation of the
temperature regime in the furnace for different heat flows as well as for the different
effective thermal conductivity functions. The mathematical model is elaborated on
the base of the real flat glass furnace working in Diamond Ltd in Razgrad. The
appropriate numerical methods and their performance are discussed as well.

2. FORMULATION OF THE MATHEMATICAL PROBLEM

2.1. SCHEME OF THE FURNACE

The glass melting furnace is divided into two parts — a burning chamber and
a tank. In this paper we will examine only the tank and will take into account the
heat flow from the burning chamber to the glass surface as a boundary conditions
on the melt glass surface. _

The scheme of the tank and its geometric parameters and coordinate system
are given in Fig. 1. The tank consists of two parts — a melting zone (I) and a
cooling zone (II). The area HI (Fig. 1) is covered by a batch wedge with a small
opening angle. Its length is also given in Fig. 1. The batch material is feed from
the doghouse into the furnace with a given temperature.

- The side below the batch wedge has a constant temperature which equals the
melting temperature (Table 2). The melt batch enters the tank in this place with
a given constant velocity vg. All the heat flow towards the batch in the zone TH
is spent for its melting. That is why the heat flow to the glass melt in this zone
in fact is equal to zero. In the zone HG the glass melt is heated to the needed
temperature for the chemical processes — silication, refining fusion, degassing and
homogenization temperature. The glass melt is slightly cooled to the drawing
temperature in the cooling zone (II). The homogeneous glass melt is drawn from
four drawing machines. The place of the drawing machines is in the end of the
cooling zone (area CK in Fig. 1).

2.2. BASIC EQUATIONS

On the base of physical properties of the melt we assume that the glass melt is
incompressible Newtonian fluid and the process is steady (1, 2]. The mathematical
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1.2

A 48.6 B r, m
Fig. 1. Scheme of the glass melting furnace and.coordinate system

model of the motion and the thermal behaviour of the glass melt are described by
the mass, momentum and energy conservation equations that can be expressed as

dive =0,

p(v -V)v=-VP -V .1+ pp(T - To)g, (1)

pCov- VT =V - KegVT,
where p is the glass density, »(u,v) — the velocity vector with its rectangular co-
ordinates, P — the pressure, 7 — the viscous stress tensor, § — the volumetric
coefficient of expansion, T" and T are the glass temperature and its reference value,
g is the gravity acceleration, C, — the specific heat, and Keg — the effective

thermal conductivity, which is a temperature function.
This system can be written in a dimensionless form:

dive =0,
1 -
(v-V)v=-Vp+ ﬁgAv+F, (2)
1 1

where 8, p and v are resp. dimensionless temperature, pressure and velocity; Fisa
function of the temperature; Re is the Reynolds number Re = Lyvq/v, L, and vy are
resp. the scales of length and velocity, Pr is the Prandtl number Pr = v/a, v is the
kinematic viscosity, a = Kea/(pCyp) is the coefficient of temperature conductivity.
Therefore the Prandtl number is a function of the temperature.

The Navier-Stokes equations can be written in an equivalent form, without
pressure p, which 1s more suitable for numerical calculations, namely,

Ow Ow 1 [0%w O ~
Gr + vy~ e (ot ) +F ¥
o % _
9z2. Oy “
Here 9 is the stream-function and w is the vorticity:
Ou Ov
W= 5; ~ 3 (4)
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In turn, the components of the velocity vector u and v in a rectangular coor-
dinate system (Fig. 1) can be written as functions of the stream function:

_o %
“‘ay’ U= "oz P)

2.3. BOUNDARY CONDITIONS FOR THE TEMPERATURE
AND THE STREAM-FUNCTION

The boundary conditions for the temperature and stream-function are given
in Table 1. The special feature of Navier-Stokes equations is that the boundary
conditions are given only for the stream-function and for the vorticity they must
be calculated on the base of the values of the stream-function on the boundaries.
The boundary conditions are described in details in {4].

Table 1
Dimensionless Dimensionless
Temperature Stream-function
6 Y
0
Front wall; IA ?-g = 2%1__[{_0'(0_00) Y =0; -—¢ =0
9z Keg oz
e
Back wall; BC _9 o= U"',’LO(B—Ba) Y =0; il =0
oz off ox
Bottom; AB -a—e- = U’bL (6 - 8a) P = 0; Qﬁ =0
dy eff oy
Shield assembly wall; DE e =0 ¥ = C; = const; % =0
oz oz
Shield assembly wall; EF _8_0 =0 1 = C1 = const; _3_11_1_ =0
Ay Ay
Shield assembly wall; FG 6—0 =0 9 = C; = const; 8_1'?. =
oz oz
6 L
Top surface; HI 8__ = Y= f V dz; ilﬁ =0
dy e dy
Top surface; GH 92 =gr Lo ¥ = C} = const; % 20
dy KegTo dy
| 6
Top surface; KD _3__ = q¢ 'Lo Y = C] = const; a—te =0
- 8y Kea To Ay
L
o4 Lo 2 oY
Place of drawing machines; CK — =qc— Yp=~ | Vdz; — =0
¢ 3y~ "“KaTo / 5y
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The following notations are used in Table 1: U; is the heat transfer coefficient
of solid surfaces (the front wall, the back wall and the bottom), whose values are
different for the different surfaces; 6, is the dimensionless ambient temperature; gr,
qc are the heat flows, entering the glass melt surface.

2.4. HEAT FLOW AT THE GLASS SURFACE

For the present purposes, we shall formulate a model for the heat flow, using
experimental data for the distribution of the fuel flux from the burners. The heat
losses due to outlet combustion gasses are taken into account. The distribution of
the heat flow entering the glass melt surface along the z-direction and its approxi-
mation are given in Fig. 2. The distribution is approximated by the function

log ¢ = 1.0489 + 0.0173z — 0.0000770258z2. (6)

In the model 14 different functions are to be chosen. The criterion for the best
choice is a maximal correlation coefficient and a minimal mean square error.

3. NUMERICAL PROCEDURE

A 5-point approximation is used for the solution of the system of partial dif-
ferential equations. The grid is non-uniform and it is concentrated in critical areas
(near the walls, the bottom and the top surface). The number of points used in
the numerical solution is 497 in the z-direction and 23 in the y-direction.

An alternating direction implicit method is used for numerical calculation of
the Navier — Stokes equations written in term of stream-function and vorticity and
of heat transfer equation. This algorithm is described in detail in [3]. This method
is iterative and is based on the solving of the tri-diagonal matrix.

1201
1001
80 1
60-
401

201

Fig. 2. Distribution of the heat flow in the z-direction and its approximation
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4. NUMERICAL RESULTS AND DISCUSSION

We shall use the present mathematical model for an investigation of the heat
regime in the glass melt and the influence of the heat flow upon the temperature
distribution. Usually, the temperature of the glass melt which enters into the
cooling zone is controlled by a change of the fuel flux from the last two couples of
burners. That is why we shall study first of all the influence of the heat flow from
these burners upon the temperature of the glass melt.

4.1. MODEL PARAMETERS

The tank size considered (Fig. 1) has 48.6 m length and 1.2 m depth. The
geometrical dimensions of the melting and cooling zones of the tank are given in
Table 2. The heat transfer coefficients of the bottom and front and back walls are
given in the same table. The thermophisycal properties for the glass melt (density,
specific heat, kinematical viscosity and effective thermal conductivity) for the flat
glass melt are taken from the literature [1, 2] and they are summarized in Table 2.

Table 2
Parameters Value
Density, p 2320 kg/m?
Specific heat, Cp : 1256 J/(kg.K)
Kinematics viscosity, v 0.0101 m?/s

Effective thermal conductivity, K.g 5.386 — 2.168 X 10™2T 4 2.058 x 10~°T?2

Prandtl number, Pr 29430.6 /K g
Reynolds number, Re 0.0222
Melting temperature, T, 1100 K
Ambient temperature, Tq 350 K
Heat transfer coefficient of the
walls and the bottom, Uy 4 W /(m?K)
Melting zone: length, IG ‘ ' .35.4 m
depth, IA - 1.2m
Length of the batch, IH " 03m
Cooling zone: length, CD | 12.2 m
depth, BC 1.2m
Shield assembly: leng,th, EF 1.0m
depth, GF 0.35m
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4.2. RESULTS FOR THE BASIC SIMULATION

The basic simulation is calculated for the parameters given in Table 2 and for
the heat flow approximation, given by the function (6) (see Fig. 2). The tempera-
ture distribution for the basic simulation is plotted in Fig. 3 and the stream-function
field is shown in Fig. 4.

The maximal temperature is calculated at the top surface in the melting zone
for z = 11.1 m and it equals 2020.4 K. The maximal temperature gradient is in the
same area. The minimal temperature in the tank is 1262 K and it is calculated near
the front wall and the bottom. The maximal temperature gradient is in the area
with maximal heat flow (z = 11 m). In this area the difference between temperature
at the top and at the bottom is 600 K. The same difference in the area with minimal
heat flow (¢ = 0 m) is 50 K. The temperature gradient in the cooling zone near the
back wall 1s only 20 K.

Fig. 4. Stream-function field for the basic simulation

4.3. INVESTIGATION OF THE INFLUENCE OF THE HEAT FLOW

We shall investigate the decrease and the increase of the heat flow from the last
two couples of burners by 10 and 20 percent. Different variants for the distribution
of the heat flow and its approximation are given in Table 3.
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Table 3

Heat flow Heat flow
| Variant i:)our;l:/;tfh i?;;l(\:’i-fth Approximation of the heat flow
burners, % burners, %
1 100 100 log g = 1.0489 4- 0.0173z — 0.0000770258z2
2 100 90 log g = 0.9695 + 0.018744x — 0.000082906z2
3 100 80 log ¢ = 0.8806 + 0.020343z — 0.000089479z2
4 90 20 log ¢ = 1.0272 + 0.017879z ~ 0.000080401z2
5 80 90 log g = 1.0918 + 0.016913z — 0.000077602z2
6 90 80 logg = 0'.9384 + 0.019479z — 0.000086975z2
7 80 80 log ¢ = 1.0030 + 0.018513z — 0.000084176z2
8 90 100 log g = 1.1067 + 0.016486x — 0.000074522z2
9 80 100 logq = 1.7113 + 0.015482z — 0.000071723z2

The decreasing of the heat flow from the last couple of burners (VI) by 10
percent leads to decrease of the temperature of the glass melt surface with 12 K.
20 percent decreasing of the heat flow leads to decrease of the temperature with 24
K (see Fig.5). The maximal change of the temperature is near the top surface in
the zone under the VI-th couple of burners (z = 17 to 25m). Little changes of the
fuel flux can lead to a smooth change of the temperature of this zone.

The influence of the heat flow from the V-th couple of burners upon the tem-
perature is given in Fig. 6. This couple of burners dislocates at £ = 17.9 m. That
1s why the maximal differences in the temperatures are observed for z = 15 m and
they are 12.3 K for 10 percent decreasing of the heat flow and 25.7 K for 20 percent
decreasing. .

Maximal temperature differences when the heat flow decreases from V-th and
VI-th couples of burners (variants 1, 4, 5, 6 and 7) are observed for z = 15m to
25 m, too. The decreasing of the heat flow from the V-th and VI-tk couples of
burners leads to decrease of the temperature at the top surface maximum with 36
K and its temperature difference is under the VI-th couple of burners (z = 19 m).
Therefore the change of the heat flow from the V-th and VI-th couples of burners
can be used for the automatic control of the temperature distribution at the end
of the melting zone and in the cooling zone.

4.4. COMPARISON BETWEEN THE COMPUTED RESULTS
AND THE EXPERIMENTAL DATA FOR THE TEMPERATURE:

The results from the mathematical model could be compared with measure-
ments in the working furnace which is described in this study. The measurement of
the temperature of the glass melt is very difficult. The glass surface temperature
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20.02 21.99 23.96
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Fig. 5. Temperature of the glass melt at the top surface for variants 1, 2 and 3
(Table 3)

2050

2000
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1900+ m—
1850- a0
1800- ——90%

1600 4
10.06 12.03 1400 15987 1795 19.92

Fig. 6. Temperature of the glass melt at the top surface for variants 1, 8 and 9
(Table 3)

is measured using pyrometers, which leads to considerable errors. As a matter of
fact, the temperature within the glass melt cannot be measured and it is practically
impossible to have reliable information about it.-

The experimental data and computed results for the basic variant for the sur-
face temperature are shown in Fig. 7. It is well seen that the results for the surface
temperature agree very well with the measured temperature. The comparison of
the simulation results and real data shows that the model gives good results for
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Fig. 7. Computed results and experimental data for the surface temperature

the surface temperature in the melting and cooling zones. The maximal difference
is in the zone of burners.

¢

5. CONCLUDING REMARKS

A simplified, but effective mathematical model of the heat transfer and trans-
port processes in the glass melting furnace is presented. The numerical solution
uses a finite differences method. The influence of the heat flow from the last two
couple of burners is investigated. The comparison of the calculated results and the
real data demonstrates a good agreement. The present model offers as well the
possibility of computing the appropriate spatial distributions of the temperature
and velocity fields. It is possible to study, in particular, the energetical behaviour of
the furnace and the influence of its technological parameters upon the temperature
and velocity distributions. The approach presented here can be also modified in
order to include more specific details of the heat flow and heat transfer in the com-
bustion chamber for calculating more precisely the boundary conditions and the
temperature on the glass melting surface. For example, if the air-bubbles motion
is taken into account, we can obtain more precise results for the temperature and
velocity fields within the furnace.

Acknowledgements. The support of the Bulgarian National Fund of Scien-
tific Research under Grant No MM510/1995 is gratefully acknowledged.
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FIELD FLUCTUATIONS AND THE EFFECTIVE BEHAVIOUR
OF MICRO-INHOMOGENEOUS SOLIDS

K. Z. MARKOYV and K. S. ILIEVA

The problem of predicting the effective mechanical properties and response of micro-
inhomogeneous solids is revisited. The aim is to highlight the influence of field fluctua-
tions which, as a rule, is neglected by the numerous existing theories that interconnect
the micro- and macro-behaviour of such solids. The key observation is that in a hetero-
geneous solid of random constitution when, say, macroscopic quantities like the mean
stress tensor are prescribed, fluctuations always create regions in which considerably
higher stresses appear. In these regions either plastic flow or a certain kind of deteri-
oration takes place, which affects the macroscopic behaviour of the solid. The result
is that the latter should start exhibiting deviations from linear response from the very
beginning of straining, despite the assumed linearity of its constituents. A quantitative
approach that takes into account the field fluctuations is proposed and outlined in the
lecture. For the simplicity sake, the scalar conductivity problem for a dilute dispersion
of spheres, possessing properties different from those of the matrix, is employed in order
to illustrate better the basic ideas. The progressive deviation from linearity, when the
macroscopic “straining” increases, indeed shows up clearly in the performed analysis.

Keywords: random media, effective properties, fluctuations, excursion sets
1991/1995 Math. Subject Classification: 73B35, 73510, 60G60

1. INTRODUCTION

_ The problem of predicting the macroscopic mechanical behaviour of a solid
with a given internal structure is the central problem of micromechanics, see, e.g.
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[1], where the well-known approximate theories, like self-consistent one, differen-
tial scheme, effective fields approach, etc., are considered in detail and compared
to experimental findings. If the microstructure is periodic, there exist rigorous
mathematical theories that yield numerical algorithms for evaluating the macro-
properties [2]. For a random solid, the problem is considerably more complicated.
In the simplest linear scalar case it is posed in the following typical manner [3].

Assume that x(x) is the known random field of conductivity coefficient for
the medium. (For a two-phase one, x(x) takes the values k., or k; depending on
whether x lies in the matrix or'in a particle, respectively.) The temperature field,
f(x), in such a medium is'governed by the equations

V-q(x) =0, q(x)=r(x)V0(x), (VO(x)) =G, (1.1)

where q(x) is the (opposite) heat flux, G denotes the prescribed macroscopic tem-
perature gradient. Hereafter (-) signifies ensemble averaging. The problem (1.1)
should be solved in statistical sense — for a given (infinite) hierarchy of multipoint
moments (k(X1)...&(xq)), ¢ = 1,2,..., one should find the similar hierarchy of ail
multipoint moments of §(x) and the joint moments of #(x) and x(x). In particular
among the latter, one of the simplest is of special interest, namely,

= (k(x)Vl(x)) = k"G, (1.2)

since 1t defines the well-known effective conductivity, &*, of the medium. The defini-
tion (1.2) of k™ reflects the familiar “homogenization” of the problem under study,
in the sense that from a macroscopic point of view, when only the macroscopic
values of the flux Q and of the temperature gradient G are of interest, the medium
behaves as if it were homogeneous with a certain macroscopic conductivity x*. This
interpretation explains why the value #* and its counterparts, say, the effective elas-
tic moduli, have been extensively studied in the literature on micro-inhomogeneous
and composite materials, see [1] and the references therein.

However, k* 1s only a tiny part of the full statistical solution of t,he random
problem (1.1). Moreover, its evaluation cannot be torn away from the full statis-
tical solution of (1.1), i.e., of specifying the whole infinite hierarchy of multipoint
moments, as argued, e.g., in [3 — 5] et al. (The latter fact explains the failure of
all schemes that try to determine solely the effective property x* without trying to
solve the whole stochastic problem (1.1}.) Besides, there are plenty of reasons why
one should pay much more attention to other statistical characteristics of random
fields like #(x) in (1.1), that appear in problems in random heterogeneous media.
For instance, one of the most important quantities is often the variance of local
fields, connected with the square of its fluctuation, see, e.g., [6 — 7] for more details
and references. For transport-like problems of the type of (1.1), the fluctuations
of the local fields are of primary importance when there exists a transition to non-
linearity (or a deterioration starts) after a certain threshold. Their effect will then
consists in a deviation from a linear response, however small is the macroscopic
“loading” G, compared to the respective threshold value.

The aim of the present work is to quantify this statement to a certain extent,
sketching very briefly a theory that describes such an effect in a highly idealized
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situation and thus will stimulate, hopefully, further interest and research. The core
of the approach is a combination between the functional (Volterra-Wiener) series
method, proposed and used in the last years by one of the authors in the study of
micro-inhomogeneous solids {4, 5], and Vanmarcke’s theory (8] of excursion sets for
random fields. :

2. STATISTICAL SOLUTION OF EQ. (1.1) FOR A DILUTE DISPERSION

To illustrate the basic ideas, assume that the -medium is a random dispersion
of spheres — a typical representative of the wide and important class of particulate
micro-inhomogeneous media, extensively studied in the literature.

Let ny = nV,, Va = %was, be the volume fraction of the spheres, n be their
number density, a be the spheres’ radius. In this case the random temperature field,
6(x), that solves the problem (1.1), can be conveniently constructed by means of
the functional series approach, see [5, 6]. In particular, in the dilute limit n; < 1,
6(x) has the form of the truncated functional series

6(x) = G -x + / Ti(x - y) ¥'(y) dy + o(ny), (2.1)

where ¥'(x) = ¥(x) — n is the fluctuating part of Stratonovich’s random density
eld ¥(x) =), 6(x — Xa), see [9]. The integrals hereafter are over the entire space
3 if the integration domain is not explicitly indicated. In Eq. (2.1)

Ty (x) = 3ﬁG . ch(x), g = K_f%;; y (22)

[k] = k4 — £m, 1s the “single-sphere” field, i.e. the disturbance to the temperature

field G - x in the homogeneous matrix of conductivity k,,, introduced by a single
spherical inclusion of conductivity «;; (z) is the Newtonian potential for the latter

inclusion. Recall that
1 { I, if |x| < a,

VVp(x) = - (2.3)

-<¢ 1
3 ) =I-3ere.), if|x|>a,
(1= dere,), iflx

p=r/a, e, =r/r,r=|x| and I is the unit 2nd-rank tensor.

The representation (2.1) allows us to obtain all statistical characteristics of the
field 6(x), asymptotically correctly to the order O(n;). In particular, we shall need
-in what follows the full statistical information about the random variable

7 = 7(0) = |VO(0)/?, (2.4)
i.e. its probability distribution function. Using Eq. (2.1) and the formula
(¥'(y1)¢'(y2)) = nb(y1 - y2) + o(n), (2.5)
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see [9], yields after some algebra:
r=G"+38G [() Gy dy +oln) (26)

G? = G*(1+36%);), T(y)=VVe(y)- (2D+38VVe(y)), (2.7)

having employed some results of [5]. In a similar way, other statistical character-
istics of the field #(x) can be obtained in a closed form. Details can be found,
e.g., in [5] and [10] (in the last paper the effective conductivity k* of the dispersion
is rigorously evaluated to the order O(n}), using the truncated functional series
approach). .

3. THE IDEALIZED-MODEL

Hereafter we shall consider a highly idealized situation in which there exists a
threshold Gy of the temperature gradient with the following properties: if |VO(x)| <
Gy locally (at the point x that is), then both the matrix and the particles behave
linearly, obeying the Fourier law, see Eq. (1.1).

If, however, |V8(x)| > Gy, the constituents become nonconducting, i.e. both
Ky and k., vanish. In other words, the following constitutive equation is adopted:

k(x), if [VO(x)| < Go,

q(x) = K(x)Vo(x), K(x) = {0 if |[Vo(x)| > Go

(3.1)

) Km, If X € matrix,
K(x) = ,
ks, if x € spheres.

The mode] is not claimed to have any specific physical meaning — its sole
role here is to illustrate the basic ideas and techniques as simply as possible. The
- generalizations to more realistic situations when, say, plastic flow and/or damaging
take place, according to certain well-known criteria, can be performed along a
similar line of reasoning (provided the volume fraction 7; of the inhomogeneities is
small enough).

As it follows from Egs. (2.2) and (2.3), the “stress-concentration factor” for the
single-spherical inhomogeneity, in the scalar conductivity context under discussion,
does not exceed 2, whatever the values of k5 and &,,. In other words, if G = |G|
is the magnitude of the temperature gradient at infinity, the magnitude of this
gradient within or around the single inhomogeneity does not exceed 2G. This
means that if G < 2Gy, the linear Fourier law in (1.1) is applicable throughout the
whole infinite space, comprising the matrix with the single spherical inhomogeneity.
In turn, for the considered dilute dispersion the spheres are, as a rule, far one from
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another! and hence each one can be considered as single, immersed into the infinite
matrix constituent. This means that under the condition

G < Go/2, (3.2)

the linear equation (1.1) for the temperature field 6(x) is still applicable, despite
the obvious strong nonlinearity of the model (3.1). The applicability of this linear
equation does not mean, though, that the effective behaviour of the solid will be
linear even in the region (3.2). The reason is that however small is the mean
gradient’s magnitude G, the solution 8(x) of Eq. (1.1), being random, will always
exhibit fluctuations, some of which will be big enough to generate regions in which
the local gradient |V8(x)| > Go. These are just the so-called ezcursion sets to be
discussed in the next section.

4. THE EXCURSION SETS FOR THE RANDOM FIELD |V8(x)|*

Let f(x) be a random field, whose realizations are defined over the region
Q C R% Thesets Q4 = {x € Q | f(x) > A} are called excursion for the field
f(x), [8, 11]. A problem of central importance for many applications concerns a
more detailed description of these sets and, in particular, estimates of their mean
volume Q4 /Q.

In general, such questions are very hard since the answers should involve the
multipoint statistics of f(x). Comparatively simple results are achieved for infinite
regions = R® under the assumption that the field f(x) is Gaussian, see again
(8, 11]. The latter assumption unfortunately is not appropriate for the fields that,
like 8(x), emerge as solution of the random equations of the type of (1.1) in media
of particulate microstructure, see [4] for a more detailed discussion. For arbitrary
(statistically homogeneous) random fields convenient, though approximate, results
are given by Vanmarcke [8, Ch. 4], and they will turn out very useful for our study,
as we shall see in a moment.

Namely, Vanmarcke observed that if the excursion value A is.considerably
higher than the mean value of the field (say, two or three time at least, which as
a matter of fact is just our case, as it follows from Eq. (3.2)), the excursion sets
have a simple structure — they represent well separated areas in R3, whose volume
fraction, 14, is just the complementary cumulative distribution function F ;(A) of
the random variable f = f(0). More precisely,

na = lim Pr{f 2 A} = Fj(4) = 1- Fy(A). @)

The result (4.1), though not mentioned explicitly in [8], immediately follows from
the formulae (4.6.4) of the same book.

———

' More precisely, this is true if the inclusions are “well-separated”; however, there can exist re-
alizations of the arrays of spheres when they form clusters. The latter may result in a considerable
increase of the local temperature gradient, as pointed out in the final section.
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Note that due to the assumed statistical homogeneity, all random variables
f(x), x € R?, possess one and the same probability distribution function F;(4A)
and hence it suffices to take x = 0, 1.e. to consider the random variable f = f(0)
only.

[t is to be also noted that the formula (4.1) has a simple and clear interpre-
tation: it states that for high enough excursion levels the multipoint statistics of
the random field f(x) does not influence the volume fraction n4 of the respective
excursion sets. This volume fraction is thus specified by the “one-point” statistics
only, i.e. by the cumulative distribution function (c.d.f.) Fy(A) = Pr{f < A} of
the random field f(x) in a fixed point x (which can always be chosen at the origin
due to the assumed statistical homogeneity). With this interpretation, the formula
(3.2) becomes natural enough.

For the dispersion under study which obeys the constitutive law (3.1), the
quantity of central interest is just the field |V8(x)|? since its excursion sets above
the level G2 will represent, so to say, the “plastified” region of the volume fraction
nG, of the composite. According to (4.1),

na = Ff(Go) =1 - F.(Go), (4.2)

where 7 is the random variable, introduced in Eq. (2.4), and F,(A) isits cumulative
_distribution function. These regions will cover both matrix and inhomogeneities
with probabilities 7, and 7y, respectively. Hence the dispersion under study will
become a three-phase material, comprising:

e phase ‘1’ — matrix of conductivity k,, and volume fraction 5, (1 — 5g,);

e phase ‘2’ — inhomogeneities of conductivity x; and volume fraction
(1= 16,);

e phase ‘3’ — nonconducting excursion sets (“plastified” regions) of volume

fraction 7g,.

Since the dispersion is dilute, 7y < 1, we can imagine that the foregoing three-
phase material can be adequately homogenized in the following simple and obvious
way. First, the matrix with the inhomogeneities is replaced by a hcmogeneous
medium of effective conductivity

K" = km(1 4 38n;) + o(ny), (4.3)

- without paying attention to the excursion regions. In the next step we introduce
the latter (whose conductivity is zero) into the already homogenized medium of
conductivity «* and get a material of conductivity

~% * ] = NGo

: ,
R ey Km (14 380 )(1 — 57760), (49

so that, eventually,

ik

3
=1+3fns = 516, + o(ny). (4.5)

m
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In the last formulae (4.3) to (4.5) we have applied the well-known Maxwell (or
Clausius-Mossotti) result for predicting the effective conductivity of a dispersion,
which is exact in the dilute limit. Also, we have tacitly assumed that the applied
gradient G is considerably smaller than the limit one Gy, so that the volume fraction
NG, of the “plastified” regions is small as well; the parameter 8 in the foregoing
relations is defined in Eq. (2.2). The latter assumption is in full agreement with
the one that assures the applicability of Vanmarcke’s formula (4.1), so that

NGe = FT(GO). (46)

Hence, as it follows from Eqgs. (4.5) and (4.6), to predict the effective behaviour
of the dispersion under study, with fluctuations of the appropriate random fields
taken into account, it is necessary that the c.d.f. F(A) of the random variable 7,
defined by Eq. (2.4), be evaluated.

5. EVALUATION OF THE DISTRIBUTION FUNCTION F,(A)

Let

o) = (5.1)

be the probability density function (p.d.f.) of the.random variable = = |V8(0)|%.
Then the moments of 7 read

ty = (1P) ZAwupr(u) du. (5.2)

The integration is over (0, 00) since, obviously, the random variable 7 is nonnegative
and hence both f;(u) and F,(u) vanish if u < 0.

To find the moments t,, the representation (2.6) of 7 is to be used together
with the formulae

(W' (y1)-.. ¥ (yx)) =nb(y1 — y2) .. .8(y1 — y2) + o(n), (5.3)

k = 2,3,..., which generalize Eq. (2.5) in an obvious manner, see [9]. The final
result reads

tgl) — tgl) =0, t = G + nftg,l)Gzp,

G% = G*(1 + 6pf°ny),

")-§3kCP[(ﬂ 2)"+31k] P22 -

.
- C,/(l+322)'° '"(1-B2%) dz.
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Knowledge of the moments ¢, allows us to evaluate the Laplace transform of

fr(u):
o) = £116) = [ 4w =T76) 40,7000

—(0)( ) = Z (-pl.’)p (6'25)’1 = 3_52” (5.5)

p=0
—<1)( 4 = E( ') (G2t

Hence _
fr(u) = 8(u— G?) + ny fN (u), (5.6)

where

D) = £ F ) (w) (5.7)

is the inverse Laplace transform of the function 7(:)(3), defined in the last line of
Eq. (5.5). Let us recall that all the foregoing formulae hold in the dilute limit, i.e.
they are correct to the order O(ny) only.

. Note that the formula (5.6) is fully natural — if 5; = 0, then G = G, see Eq.
(2.7), the medium is homogeneous so that V0(x) = G and thus 7 = |V8(x)|? = G2

6. DISCUSSION

The formulae (5.4) — (5.7) specify, at least in principle, the function f,(u)
and hence its primitive F;(u), see Eq. (5.1), i.e. the needed cumulative distribution
function of the random variable 7, defined in Eq. (2.4). It is easily seen that the
function Fr(u) depends on the nondimensional ratio u/G?, i.e. F, = F,(u/G?),
and as a c.d.f. it monotonically increases, tending to 1 when u/G? — co. The
formulae (4.5) and (4.6) now give

s

= 14380y — 3 (1= F+(GE/GY) +olny) (6.1)

m

and the underlined term is just the result of fluctuations of the temperature gra-
dient. When G — 0, 1.e. at G < Go, k" tends to its classical value k,(1 + 387y),
predicted by the Maxwell formula in the dilute limit. Therefore, the values of the
effective conductivity and, more general, of the effective properties for a compos-
ite, represent but tangents to the appropriate “stress-strain” curves at the onset of
loading. When G increases, the underlined term in Eq. (6.1) increases as well thus
leading to progressively bigger deviation from the classical linear behaviour.

The aforesaid means that no matter how small is the macrostrain “loading” (G
in our simplified context), imposed upon a micro-inhomogeneous medium, there will
always appear zones of “plastic” yielding or deteriorated ones, due to fluctuations of
the appropriate random fields. Hence such a random medium should show deviation
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from linear behaviour from the very onset of loading. This represents the central
conclusion of our study, which we have tried to quantify in the proposed scheme.

It is curious to point out immediately that the nonlinearity of stress-strain
curves, even for very small strain, is an experimentally observed feature of all
solids, as specially emphasized by Bell {12] as a result of his extensive and detailed
review of experimental data in the last 300 years. (See, e.g., his words at the end of
Ch. 2.6, p. 30: “One might dismiss nonlinearity of the response functions observed
in the experiments of Hodgkinson and Dupin as merely an interesting historical
development in the fields of solid mechanics, were it not for the fact that by the
end of the 19th century the increasing accuracy of measurements and improved
experiments demonstrated that that was indeed the precise manner in which such
solids deformed.”)

The proposed scheme possesses, however, certain drawbacks which should be
explicitly pointed out and which make it only approximate, even in the simplest
dilute case under study. The point is the following: When using ensemble averaging,
one should consider a multitude of spatial realizations of the array of spheres in the
dispersion. When the spheres in a given realization are “well-separated,” then each
one can be indeed treated as single, immersed into unbounded matrix material.
The behaviour of both spheres and matrix is then linear under the condition (3.2).
There will be however specific realizations of a “clustering” type, so to say, when
some of the spheres are close one to another; in this case the “stress-concentration”
factor may become much higher than 2. For these realizations the “plastic” or
deteriorated zones will be considerable and the behaviour will not be linear already.
Moreover, the number of such “clustering” realizations is not negligible, even at
small G/G), since they influence the overall response when averaging over the set
of all realizations. This means that the basic equation (1.1) should be considered
as a nonlinear and random one, with k(x) replaced by %(x), see Eq. (3.1), whatever
the value of G. The representation (2.1), which has served as a basis of our analysis,
can be viewed then as a certain approximation which allows solely to highlight the
role of the fluctuations on the overall behaviour of the composite. Despite this, its
adoption seems unavoidable in the proposed scheme, because it is not clear; at least
to the authors, how a problem of the type (1.1) with a discontinuous coefficient &(x)
can be efficiently treated in the random case.
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The Hashin-Shtrikman and Walpole bounds on the effective bulk modulus of a binary
elastic mixture are revisited. A simple method of derivation is given as a generalization
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The aim of this note is to present and discuss a simple derivation of the well-
known two-point estimates on the effective bulk modulus of a binary elastic mixture,
due to Hashin and Shtrikman [1] and Walpole [2]. The basic idea is a straightfor-
ward generalization of the approach, used by one of the authors in the absorptlon
and scalar conductivity cases (3]. -

Assume that the mixture is statistically homogeneous and isotropic. Let

Xi(z):{l’ ifzef?i, (1)

0, otherwise,

be the characteristic function of the region {2;, occupied by one of the constituents,
labelled i’, 7 = 1,2, so that x;(z) + x2(z) = 1. Hereafter, all quantities, pertaining
to the region Q2 or {23, are supplied with the subscript ‘1’ or ‘2’, respectively.
The statistical properties of the medium follow from the set of multipoint
moments of one of the functions x;(z), say x2(z), for definiteness, or, which is the
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same, by the volume fraction n; = (x2(z)) of the phase ‘2’, and the multipoint
moments

My(z) = (x2(0)x2(2)) , Ms(z,y) = (x2(0)x2(z1)x2(¥)) - -- , (2)

with x5(z) = x2(z) — 72 being the fluctuating part of the field x»(z), see, e.g. [4].
The angled brackets (-) hereafter denote ensemble averaging. One point could be
taken at the origin, because of the assumed statistical homogeneity, as already done
in (2).

Assuming also the constituents isotropic, the fourth-rank tensor of elastic mod-
uli of the medium, L(z), is a random field of the familiar form

L(z) = 3k(z)J’ + 2u(2)J",
k(z) = kixa(e) + kaxa(z) = (k) + [k]x5(z), (3)
p(z) = pixa(e) + paxa(z) = (1) + [Bxa(x),

where k and p stand, as usual, for the bulk and shear modulus, respectively. The
square brackets denote the jumps of the appropriate quantities, say, [k] = k2 — ki,
(1] = p2 — p1, ete. In Eq. (3), J' and J” are the basic isotropic fourth-rank tensors

with the Cartesian components

|
ikl = 3

1 2
8ij6k1,  Jij = ) (5ik5jl + 0i1bjk — 56.-,-6“). (4)

The displacement field u(z) in the medium, at the absence of body forces, is
governed by the well-known equations

V.o(z) =0,
o(z) = L(z) : e(z) = k(2)0(z)I + 2u(z)d(z), (5)
e %(Vu +uV), d(z)=¢€(z)-— %H(z)l,

where o denotes the stress tensor, € is the small strain tensor, generated by the
displacement field u(z), d is the strain deviator, and & = tre is the volumetric
strain. The colon designates contraction with respect to two pairs of indices and I
is the unit second-rank tensor.

The system (5) is supplied with the condition

(e(z)) = E, (6)

prescribing the macroscopic strain tensor E, imposed upon the medium.
Recall [4] that the random problem (5), (6) is equivalent to the variational
principle of classical type: .

"W[e(:c)] = (e(z) : L(z) : ¢(x)) — min,

. . (7)
mnW=E:L":E.
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The energy functional W is considered over the class of random fields u(z) that .
generate strain fields £(z), complying with the condition (6). In Eq. (7), L* is the
tensor of effective elastic moduli for the medium which, in the isotropic case under
study, has the form d
L* =3k"Y +2u"J", (8)
where k* and p* are the effective bulk and shear modulus of the mixture, respec-
tively.

Consider, guided by [3], the class of trial fields for the variational prin-
ciple (7): ‘

KW = {ﬁ(r) |u(z)=E -z - a/‘VG(r — ¥)x5(y) dsy} , 9)
having assumed that E is spherical
E = -l-I G(z) = L 10)
—30 YT ) (

and a is an adjustable scalar parameter. Hereafter the integrals are over the whole
R? if the integration domain is not explicitly indicated.
The energy functional W, when restricted over K(!), becomes a quadratic func-

tion of a:
| Wlu(z)] = A - 2Ba + Ca?, A=(k), B= (k] M(0), 1)
C = (A) M3(0) + [A]M3(0,0) + 2 (p) P2 + 2[u] Ps,

with the dimensionless statistical parameters for the medium, defined as follows:

P, :/ VVG(y1) : VVG(y2) Ma(y1 — y2) y1d>ys,
(12)

Py = / VVG(y1) : VVG(y2)Ms(y1, v2) 31 d°vs;

A = k — 2p is the familiar Lamé constant.
Note that for the isotropic binary medium under study

M2(0) = (x5(0)) = mnz, Ms(0) = (x5 (0)) = mna(m — m). (13)

Moreover, the parameter P, can be easily evaluated, having integrated by parts
and noting that G(z) is the well-known Green function for the Laplacian:

P2 o MQ(O) — 1711)2. (14)
The variational principle (7), together with (11), implies
k* < Wli(z)] = A - 2Ba + Co?, Va. (15)
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In particular, at & = 0 one has

k* < (k) | (16)

which, obviously, is the elementary (Voigt) bound on k*.
Next, optimizing (15) with respect to «, one gets another estimate on k*:

. B? :
k* < A~ < (17a)
ie. . i mmalk]?
S R T (O 2B =) (170)
where
I3 ! Ps (18)

mnz2(m — 12)
is the statistical parameter that appears in the perturbation expansion of «* for
a weakly inhomogeneous medium, see [5], and also in the Beran’s bound on the
effective conductivity constant [6]. A simple check shows that (18) coincides with
the upper bound on k*, due to Beran and Molyneux (BM) [7].

The main problem in specifying the bound (17b) is just the three-point pa-
rameter /3 whose evaluation for special and realistic random constitution is non-
trivial. Recall that in many cases it is more convenient to employ, instead of I3,
the Torquato-Milton parameter (;, see [8, 9], defined as a certain integral, similar
to Pj (see, e.g. the Torquato review [10]). Without going into detail, we shall only
point out the formula

3(m2 — m)Iz = 2¢1 + 3m — na. (19)

The bound (18) should be at least as good as the elementary bound (16) (since
the energy functional is minimized over a broader class of trial fields). This implies

that
C>0, AC-B%>0, (20)
because k* > 0. Since A = (k) > 0, C > B?/A > 0, which means that the second

inequality in (20) is the stronger one. Using the expressions for A, B and C from
(11), we can write the latter in the form

k 2

(-4 22 + (01 + 2ul1s) o = 72) = b 0. (21)

The inequality (21) should hold for every “realistic” choice of the elastic moduli of

the constituents (i.e. for which the appropriate elastic energy is positive-definite).

This implies ;
1

gM— M= (m—m)lz<m- 3" (22)

Note that (22) drastically simplifies when the parameter (; is used instead

of I3, see (19). Namely, it states then that 0 < ¢{; < 1, which is a well-known fact

8, 9]. |
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However, keeping I3 in the BM-bound (17b) has its advantages. Namely, by
means of (22) we can exclude the product (7; — 53)J3 from this bound. Depending
on the sign of [u] = uy — py, we should use to this end the upper or lower bound
(22). The final result reads |

771772[’“}2 .
k* < (k) — . < pi,
< (&) A1+ 2p1 + k] SRS (23)
2
k* < (k) - ma(] if pa > py.

A2+ 2ug — nolk]’

In the so-called “well-ordered” case, when (ka—k)(u2—p1) > 0, the first of the
estimates (23) coincides with the Hashin-Shtrikman (HS) bound on k*, provided
that not only p2 < u;, but also ky < ky, see [1]. This unnecessary restriction was
removed by Walpole [2]. It is easily seen that our bounds (23) are just the Walpole
bounds in which no requirements are put on the sign of ks — k.

The derivation of the lower bound, corresponding to (23), is fully similar. In
this case we write the elastic energy (7) by means of the stress tensor:

Wio(z)] = (o(z) : L™!(z) : o(z)) — min,
mnW=%:L"1: %
The functional W is considered now over the class of trial fields such that
V.o(z)=0, (o(z))=2%, . (25)

with a prescribed macrostress tensor ¥ imposed upon the medium.
The functional W in (24) is minimized now over the class of trial fields

| NO = {ﬁ(x) |5(z) =T +a [/VVG(z - y)xa(y) Py +Ix'z(y)] } (26)

(24)

with the spherical ¥ = %I and an adjustable scalar parameter «, G(z) being the
function defined in (10). The straightforward manipulations are omitted and the
final result reads

_ mmlk)?
= Ay + 2p — ma[k]”’

'71772['“]2
(k) - A+ 2p1 +mlk]’

The inequalities (27), combined with (23), are just the Walpole bounds on the
effective bulk modulus of a binary mixture, see [2] and also [11], which are a direct
generalization of the Hashin-Shtrikman result with the condition of “well-orderness”
removed. Here we have demonstrated how this classical estimate shows up simply
and naturally within the frame of the general method recently developed by one of
the authors [3] in the absorption and scalar conductivity contexts.
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if po < pi,
(27)

if po > py.
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ERRATA

In the article “A POLYNOMIAL PROBLEM?” by Pavel G. Todorov, vol. 91,
1, 1999, 21-32, on the right-hand side of equation (6) on page 22 to the determinant
1t has to be added “ = 0".
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