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In Memoriam

Rumen Maleev (1943-2019)

Professor Rumen Maleev passed away on December 16, 2019. With more than
forty years service in Sofia University, he will be remembered by his colleagues,
friends and students as one of the most distinguished Professors in the Faculty
of Mathematics and Informatics. We present here a short CV of Rumen Maleev,
followed by a paper (in Bulgarian) of Academician Stanimir Troyanski, who shares
some memories about his long-term friendship and collaboration with Rumen Maleev.
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CURRICULUM VITAE
of
Roumen Maleev

Date and place of birth:
August 17, 1943, Samokov, Bulgaria

Spoken foreign languages:
English, Russian, Romanian, German, French

Education, Degrees:

e Ms.C., University of Bucharest, Bucharest, Romania, 1967
e Ph.D., Sofia University, Sofia, Bulgaria, 1975
e D.Sc., Sofia University, Sofia, Bulgaria, 1996
Specialzations:
e Moscow State University, Moscow, Russia, Academic year 1971/72
e Warsaw University, Warsaw, Poland, February — April, 1982
Professional experience:

e Researcher, Institute of Mathematics and Informatics, Bulgarian Academy of
Sciences, Sofia, Bulgaria, 1967 - 1969

e Assistant Professor, Faculty of Mathematics and Informatics, Sofia University,
Sofia, Bulgaria, 1970 - 1983

e Associate Professor, Faculty of Mathematics and Informatics, Sofia University,
Sofia, Bulgaria, 1983 - 2006

e Full Professor, Faculty of Mathematics and Informatics, Sofia University,
Sofia, Bulgaria, 2006 — 2011

Visiting positions:
e South Florida University, Tampa, Florida, USA, Spring semester 1991
e Athens University, Athens, Greece May —June, 1997
Administrative positions:
e Deputy Dean of the Faculty of Mathematics and Informatics, Sofia University,

Sofia, Bulgaria, 1989 — 1995
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Head of the Department of Mathematical Analysis of the Faculty of Mathematics
and Informatics, Sofia University, Sofia, Bulgaria, 1998 — 2000

Member of the Specialized Scientific Council on Mathematics and Mechanics,
1995 — 2004

Vice President of the Specialized Scientific Council on Mathematics and
Mechanics, 1998 — 2004

Secretary of the Scientific Commission for degrees and positions in Mathematics
and Mechanics, 2003 — 2006

Vice President of the Scientific Commission for degrees and positions in
Mathematics and Mechanics, 2006 — 2009

Member of the Scientific Commission on Mathematics and Mechanics of the
National Scientific Fund, 2010 —2012

Elections expert in missions of Organization for Security and Cooperation in
Europe(OSCE), 1997 — 2012

Research interests:
Geometry of Banach spaces, Approximation theory, Numerical analysis

List of selected publications

1.

Ann.

R. Maleev, An iterative method for equations with monotonic operators,
USSR Comput. Math. Math. Phys., 13 (1973), 280—286.

. R. Maleev, S. Troyanski, The moduli of convexity and smoothness of the

spaces Ly, ,, Annuare Univ. Sofia Math., 66 (1974), 331-339, (Russian).

R. Maleev, S. Troyanski, Unconditionally convergent and absolutely divergent
series in Orlicz spaces, C. R. Acad. Bulg. Sci., 27 (1974), 1029-1032, (Russian).

. R. Maleev, S. Troyanski, On the moduli of convexity and smoothness in Orlicz

spaces, Studia Math., 54 (1975), 131-141.

R. Maleev, On conditionally convergent series in Orlicz spaces L,;, Serdica,
1 (1975), 178—182, (Russian).

R. Maleev, S. Markov, D. Vandev, Least square approximations using Hausdorff
metric, in: Mathematics and Education in Mathematics, 5-th Spring Conf.
Bulg. Math. Union, Gabrovo, April 1975, Publ. House of BAS, Sofia, 1990.

R. Maleev, On conditionally convergent series in Banach lattice, C. R. Acad.
Bulg. Sci., 32 (1979), 1015-1018.

A. Andreev, R. Maleev, Error estimation of the finite element method for one
dimentional finite problems, Serdica, 6 (1980), 278-283.
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10.

R. Maleev, S. Troyanski, Order moduli of convexity and smoothness, Funct.
Anal. Appl., 17 (1983), 231-233.

R. Maleev, S. Troyanski, On cotypes of Banach lattices, in: Constructive
Function Theory’81, BAS, Sofia 1983, 429-441.

11. R. Maleev, S. Troyanski, Smooth functions in Orlicz spaces, Contemporary
Math., 85 (1989), 355-370.

12. R. Maleev, Korovkin Theorem in rearrangement invariant function spaces, in:
Constructive Function Theory’84, BAS, Sofia 1984, 578-582.

13. R. Maleev, S. Troyanski, Smooth norms in Orlicz spaces, Canad. Math. Bull.,
34 (1991), 74-82.

14. R. Maleev, Norms of best smoothness in Orlicz spaces, Zeitschrift Anal.
Anwendungen, 12 (1993), 123-135.

15. R. Maleev, Higher order uniformly Gateaux differentiable norms in Orlicz
spaces, Rocky Mount. Math. J., 25 (1995), 1117-1136.

16. R. Gonzalo, R. Maleev, Smooth functions in Orlicz function spaces, Arch.
Math., 69 (1997), 136—145.

17. R. Maleev, G. Nedev, B. Zlatanov, Gateaux differentiability of bump functions
in Banach spaces, J. Math. Anal. Appl., 240 (1999), 311-323.

18. R. Maleev, B. Zlatanov, Cotype of weighted Orlicz sequence spaces, C. R.
Bulg. Acad. Sci., 53, no. 3 (2000), 9-12.

19. R. Maleev, B. Zlatanov, Smoothness in Musielak—Orlicz sequence spaces, C.
R. Bulg. Acad. Sci., 55, no. 6 (2002), 11-16.

20. R. Maleev, B. Zlatanov, Gateaux differentiable norms in Musielak-Orlicz
spaces, Math. Balk., 20 (2006), 299-313.

Textbooks:

1. Bl. Sendov, R. Maleev, S. Markov, Mathematics for Biologists, Sofia, 1981,
Nauka i Izkustvo, (Bulgarian).

2. BlL. Sendov, R. Maleev, S. Markov, S. Tashev, Mathematics for Biologists,
Sofia, 1991, Publ. House of Sofia University, (Bulgarian).

3. P. Djakov, R. Levy, R. Maleev, S. Troyanski, Differential and Integral Calculus.
Functions of One Variable, Demetra, Sofia, 2004, (Bulgarian).
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PASHOIIOCOYHU CIIOMEHU 3A PYMEH MAJIEEB — ITPUATEJIS
N KOJIET'ATA

CTAHUMUIP TPOAHCKU

Pywmen e pomen ma 17 asrycr 1943 1. B rp. CaMOKOB B CeMeiCTBOTO Ha OKO-
nwiickust nmykernep Xanc-Ilerbp Maseer. Bama my e or cmecen 6pak. Heromara
maiika (6abara na Pymen) e nemkuns, jybuieps Ha upodecop or Bepuun. Tan010
na Pywmen, Ban Masees, 3apbpiinBa Mequiinaa BbB OpaHIius U CIIeNuaTn3upa, Ie-
nuarpus B Bepaun. 3ananen Typuct, Toii e mbpBudT Objraput, Koitrro npe3 1903 1.
u3kausa Monbian.

Canen 3aBpbmianero cu B Boarapust ocaoBaBa My3ukaaunoro apyxectso B Co-
dbus, koero e mpemmecTBeHNK HA Bbiarapckoro Mysukanno apyzkectso. llesmoro-
auImHO nMa, 3amnasena joxka B Codwiickara Onepa.

Ilonara rosieMu ycuiins 3a pa3npocTpaHsBaHe Ha 3JpaBHa KyJrypa. 3masa
ubpBus “Homammen snekap” npe3 1927 r. m gbiaru roguHu ce 6OpU 33 OTKPUBAHE
Ha JieKapcku kabuneru B yuyuwiuniara. san Manees u Anna (6abara HeMKuHs )
uasar B Bbiarapus, paxkiaaTr uM ce Tpu MOMYera, KOATO II0Jy4aBaT HEMCKO Bb3IIU-
tarue. Haii-romemusT cun e 6bamara Ha Pymen, 3abpmuin Technische Hochschule
B BepauH, cemuassHocT CTpOUTEIHO HHKEHEPCTBO.

Ycernx HEMCKOTO BH3IMUTAHKE OIIIE ChC 3aI03HaBaHETO MU ¢ Dammara va Pywmen.
Toit ce ycmuxna, nogaae mu pbka u nouura “Ille nuem jin 6upa” Hewo usmpbHKax.
Toit mu kaza: ma asa orrosopa: “a, moss!” u “He, 6irarogaps!”.

Maxkap u “me ope” Oamara Ha Pymen ma He e 3acerHar OT Taka HAapEYEHU-
Te “MepOIpHusITHs Ha HApPOIHATA BJIACT’, TO Ha MPAKTHKA ChOMTHATA ciem 1944 1.
MPOMEHSAT YKUBOTA Ha cemeiicTBoTo. bamara va Pymen cbhkpamasa mMmeTo cu OT
Xamnc-Ilersp na Ilernp, 3arybBa mpaBoTo Ja pabOTH KATO WHIKEHED U € TPATEH
Oopuragup B crposiimust ce Jumurposrpan. Caen spbimanero cu B Codust cBupn
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B opkecTbpa Ha Mysukanuug Tearsbp. Ciel] Bb3CTAHOBABAHETO HA WHIYKEHEDHUTE
IpaBa, pabOTU U Ce IMEHCHOHHPA KATO OOUKHOBEH HHIKEHED, BBLIPEKH Y€ € OT BO-
JIeMATe CIennaancTu. I1 BCHIko ToBa, 3aII0TO TPOM3X0XK1a OT HEMCKO CeMeiCTBO.
Bce mak peawia HecTaHIAPTHW CTPOUTETHN OOEKTN ca MWHAJN Mpe3 pblieTe Ha Ha-
mara Ha Pymen. CriomusiM cn Kak uHK. Masees obcbikaame ¢ Hac (Pymen n men)
TTOCTPOABAHETO Ha II'bpBaTa CKU-TTNUCTA 3a CKOKOBE B ]3']).]'[I‘E%I)I/IFI7 KakK Jla OIITUMU3nupa
JbJDKUHATA U ¢ KaKBU KPUBH J@ HallpaBU CKU LIAHIIATA, TaKa de /1a Ce yBeJudH
CKOPOCTTA, a OT TaM JIbJIZKUHATA HA CKOKa.

C Pywmen ce 3amo3nax mpe3 ecenra Ha ganednara 1967 roguna. I npamara TOKy-
mo OsixMe moCTbIuIN Ha pabora B Maremarndeckus Uucturyr na BAH. Hacr or
MNucturyra ce Hammpaire B eIHa AByeTaykHa crpasa B Bopucosara rpajauHa B Ha-
4JaJj10To Ha yi. Jlaruaka, kB. VI3TOK, cpemty 0/I0Ka, B KONTO YKUBEEITIE TOTABAITHUSIT
Hupekrop wa Wucturyra npod. JI. Nnues. Ha mbpBusaT erax 0sxa KabuHeTwTe
Ha no-crapure chrpyauuiy, A. Obperenos, A. Anues, I1. Pyces, B. Yakanos, E.
Humurpos, B. Cnupugonos u npyru. Ha Bropus etak 0sixa KaOMHETHTE HA MJIAIU-
te. B eana ronsma cras umarre 6-7 6iopa. Tam paborexa M. Y3ynos, 1. Urunaros,
. Jumurpos, wue ¢ Pymen u apyru, Ha KouTo Bede He nomus umenara. QCHOB-
HaTa rpyla, W3BECTHHU JHEC ObJITapCcKu MaTeMaTHI|, Osxa acrmupanTtu B MocCkBa,
Cankr IlerepOypr u ap. Hue ¢ Pymen xozexme wa pabora cienoden. Cbe cepuos-
Ha MaTEeMaTHKAa HE Ce 3aHMMAaBaxMe, OIMO3HABAaXMe Ce, Pa3Ka3BaxXMe CH KOU KbJe
€ 3aBbPIIIJ, KAKBO € crenuaan3upai. Pymen Oermre 3apbpiiuia Bykypemkns Y Hu-
BEPCHUTET, CIIEIUATHOCT — MexaHuKa. A3 — XapKOBCKUS YHUBEPCUTET, CIEIUATHOCT
— Maremaruka. Eaua ciaemnoben, kato orugox vHa Jlarwaka, Bumsax Pymen smocan.
Haxkoit Gerre “uzrpasupair’ or3az ua crojia my: MAJIEEBA- JKUBKOBA c riaBau
Oykeu. ChIrfarata BeUep Ha 9allla BUHO TON MU Pa3Ka3a MO-TOAPOOHO 3a ceMeicT-
BOTO CH.

IIpes nekemBpu 1967 r. BAsg30xMe B KazapMara. 3a HAII KbCMET Ce OKa3axMe B
e1IHO oTesierne, B pora lHkeHepHu BOICKY, IIO-TOYHO CTPOUTEJICTBO HA IIHTUIIA U
MocroBe. KakTo craBa B apMusiTa, BCUYKO € ObPKOTHs, HO TOBA HE HU IIpedere. 3a-
mo3Haxme ce ¢ uarepecuu guunocru. C Hac ciyxkexa: Jlrobomup @uiunos, Oberr
VYupasuren Ha Bwarapcka Hapoauna Bamka, Jlondo Konak4ames, Ob e Bumenpe-
muep B mpasurescTBoro Ha 2Kam Bumernos, Tomop I'mues, mo-kbcHO mpodecop B
Vuusepcurera 1o Apxurerrypa, Crpourencrso u leonesus, . ... Kakro moxere 1a
CHU TPEJCTABUTE, HUE MATEMATHUIINTE HUIINO HE pa3dupaxMe OT CTPOUTEJICTBO, HO W
JBaMaTa HUTO BHUMABAXMe Ha “JIEKIUUTE’, HUTO 9eTsaxXMe yIeOHUIIUTE 110 BpEME Ha,
CaMOTIOArOTOBKA. 300110 6sixMe eTasnon 3a Hecpernuim. Begabyx Tomop ['mues ce
OTLJIaKa OT HAC O Bpeme Ha jeknun: “/Ipyrapro [lemumeescku, Majees u TpostHcKH
HEILPEeK'bCHATO CU IIPpUKa3BaT W Mu npedar ja sanucsam!”. Bece nak Pymen, koii-
TO Oere moJydusi CEPUO3HO 0OPA30BaHUE 10 MEXAHUKA, U MMAIIe JOIbJIHATETHA
mo3HaHus OT OaIrna cu U Opar CH, ChIIO CTPOUTEJIEH MHXKEHED, HEeIO Ha3HalBaIle
¥ C HEroBa IOMOII ¥ JBAMATa B3eXMe M3MUTHUTE 0e3 ma cayiaMe ‘JTeKnuuTe” U HU
npoussBefoxa Maamm Jeirenantu. Ciaydaiino Pymen npodere XxapakTepucTUKaTa,
KOATO My OsXa Jaiau B KazapMmara: ¥ MeH, 00pa30BaH, HO CKJIOHEH na ymysal
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B kazapmara cranaxme mpusgTesu, Ha 00e] ce YBUBaXMe 3a€JHO TLIHTHO C O/1€e-
siTa, 3a 714 ce CTOmIuM. B OrpOMHOTO CHATHO TOMeIneHne Oerre MHOTO CTYIEHO.

Cutes; KazapMaTa HAIIETO MPUSTEICTBO IPOIbJKM, HAKAK CH CTAHAXME MO-
OIM3KY, BbIPEKN Y€ HAyIHUTE HU HHTepecu Ogxa TBbpAe pasnuaau. Pymen OGerre
3a/1049eH acnupaHT 1o Mexanuka B Bykypemr. Ilo onoBa Bpeme crenumanucrure mo
MexaHuka Osgxa TBbpPIEe MHOrO, O/IaroJapeHve Ha HEM3YePIaeMus €HTYCHa3bM Ha
npod. b. Jlonamanes. Hakon or MiaanTe MEXaHHUIN Ce TIPEOPEHTHPAXA K'bM APYTH
obsactu Ha Maremarukara (manp. E. Xpucros, K. Kupues, H. Hukudopos u ap.).
Pywmen crama acucrent B kKareapara no Maremarnaecko Momeaupane u 3amovHa 1a
ce uaTepecyBa or Yuciaenu Meronn u Teopus na anpokcumarmure. Croermuann3upa
Yucnenn meroau emHa roanHa B MOCKOBCKHUsT YHUBEPCUTET, MOJ PbKOBOICTBOTO
na npod. A. I JIsakoHoB, myOimkyBa crarus B 2KypHaJ BBIYUCIUTENHHON Ma-
TemMaTuku U Maremarundeckoit dpusuku. [locrenenno, Teopus wHa dyHKIIMUTE CTaHA
MPECeYHaTa TOYKA HA HAINWTE HAYYHN WHTEepecu. VIHTeH3UBHO 3amoaHaxMe 1a pabo-
THM 3a€/HO 110 33/1a4u oT ['eomerpus na Banaxosure npocrpancrsa, B KOUTO BayKeH
anapar e Koncrpykrusnara teopusa Ha @yukmuure. Hamepuxme acuMnroruieckn
OIIEHKHM 33 PA3JIMYHU XaPAKTEPUCTHUKH 33 [VIAJIKOCT U U3II'bKHAJIOCT HA €UHUIHOTO
Kb100 Ha BamaxoBm mpoctpamcrsa. Ille mmocTpupaM Ka3aHOTO € €IUH MPHMEP.
Tlomyynxme acMMOTOTHYECKH OIEHKH 3a MO/IYJIa HA U3IMIBKHAJIOCT BbBB (DYHKITHO-
HasHuTe npocrpancrsara Ha Opauy L]0, 1]. ITo Touno nokazaxme, ye ChilecTBYBa
dbyuknusa va Opana N, ekBuBaneHTHA B 6e3kpaitnocTTa Ha M, TakaBa de

dx(e) ZCMszinf{]\f(wj) ce<u<l gu} ,
u?M(v)
KbaeTo X e npocrpanctsoro Lys[0, 1], chabueno ¢ Hopma || - || n, moponena ot byH-
kmusara N, a xoucranrara Cpy, 3aBucenta camo oT M, e TOJIOKUTEIHA TOraBa U

CaMO TOraBa, KOraro
(M)

Buocieacrsue ce okaza, ue ot paborure Ha T. Figiel u G. Pisier cieasa, ge moury-
YeHaTa OIEHKa € TOYHA MO MOPSIbK B KJiaca OT eKBUBaJeHTHH HOpMHU B L /[0, 1].
Pywmen mpoabmku nzcnenpanusta 3a audepenmupyemoct mo @perre u ['aro ot mo-
BHCOK peJ Ha HOPMHUTE B mpocTpancTBara Ha Opand n Texuaure 00ooImerns. Makap
" He MHOTOOpoiiHN, paborure HAa Pymen ca mybankyBaHU B M3BECTHUTE CIIEIHAJIU-
3upanu crucanusa mo Amamus m mo-crnenuaiano no Pykmmonasen Amamus: Studia
Math., Functional Analysis and Appl., J. Math. Analysis and Appl., Arch. Math.,
Zeitschrift Anal. Anwend., kakTo u B u3zaHus Ha AMepukanckoro u KaHajckoro
Maremarudecku obmiecrBa. Herosure pesynrarm He ocTraBaTr He3abenrs3aHU, CIIO-
MEHAaTH ca B moBedeTo MoHorpaduu mo I'eomerpus Ha BamaxoBuTe mpocTpaHcTBa:
“Classical Banach spaces” na J. Lindenstrass, L.Tzafriri, “Series and sequences in
Banach spaces” ma J.Diestel, “Smoothnes and renormings in Banach spaces” ua
R.Deville, G.Godefroy, V. Zizler u muoro apyru. OueHkuTe 3a OCTATHIYHUS UJIE€H
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BbB dopMysara 3a passurre 10 Teitsop Ha HOpMmata B Ljs[0, 1] ca nsnoxenn mosu-
pobHO, ¢ mokasarescTBa B Monorpadusara ua P.Hajek, M.Johanis “Smooth Analysis
in Banach spaces”.

Pywmen Geltie BHUMATEI€H, TOTOB JIa U3CILYIIA BCEKH, /1a BHUKHE B TOBA, OT KOETO
ce HHTEepecyBallle IPYTHUAT, U 1a pabOTH Mo mocrasenus mpodeM. Herosu cbaBTopu
ca: A. Aunpees, /1. Bouues, P. Touzano (R.Gonzalo), II. Txxakos, B. 3uaranos,
P. Jlesu, C. Mapxkos, I'. Henes, Ba. Cenmos, C. Tames u mosi muimoct. Pymen
€ CbaBTOp HA M'bPBUS YIEOHUK IO MATEMATHKA, OPUEHTHPAH K'bM CTYJIEHTUTE MO
OWMOJIOr U, TPETHPIISI IBE U3JIAHKSA, ChbaBTOP € U Ha yueOHuka mo JludepeHuaano
u Nurerpanno CMsitane, Mo KOWTO ce crapaexme ja derem Jjekiuu. QOsicHsaBaIe
TOYHO U SICHO HA CTYIEHTHUTE.

Hayunara my kapuepa HanpezBaiie TPAJUIMOHHO 33 YU€H: KAHIUJAT, [TOKTOD
Ha MaTeMaTHYeCcKUTe HAYKH, JAO0UeHT, npodecop, 3amecTHuK jgekan Ha Paxkysiarera
o Maremaruka u Mudopmaruka, pynkinonanes gekan B Pekropara na Coduiic-
Kusl YHHUBEPCUTET, pPbKoBoauTes Ha Kareapa Maremarndyecku Amnanus, Unen Ha
Komucusira o maremaruka mpu BAK. Crnen gemMokpaTuaauTe ITpOMEHN HAYIHUTE
HU I'bTHINA MAJIKO Ce pa3jaiednxa. A3 3aM09Hax Ja ce 3aHUMAaBAM C MPUJTOKEHUsI-
Ta Ha Tomosorusara u /leckpuniTuBHATa TeOpusd Ha MHOXKeCTBaTa B ['eomerpusaTa Ha
Banmaxosute nmpocrpancTsa. Ha Pymen Te3n nampaBienus He My ce MOHpaBUXa, BCE
mak TOi Oerre MexaHUK 1O oOpasoBanue. Hue mpomxbikuxme na JUCKyTHPAMe Pas-
Juaan Bbipocu or Teopusita Ha ®yHKIMOHAIHUTE MPOCTPAHCTBA, MO CIEITHATHO
audeperpyeMoctT B mpoctpancTBara uHa Opiwnd, JIopeHIr u TexHuTe 0000IIEHNS.
3aeqHO MMaxMe IUIJIOMAHTH, PbhKOBOAexMe mpoekTu 1o mporpamara TEMITYC.
IlocemaBaxme mexKIyHAPOAHH PAOOTHH CEMHHAPH IO BaHaxoBu mpocTpaHCTBa B
IMacexkn (Yexus), Cuenoc (I'vpuus), Monc (Benrust) u ap. 3aenHo pbKoBogexme
nokropanra B. 3maranos, cera npodecop B IlnoBauBckus YHuUBEpCUTET.

ITapajenno cbc 3aHUMAHUATA IO MaTeMaTKa, PyMeH 3amo4yHa Ja ce 3aHNMaBa
C OTYHMTAHETO Ha Pe3yJITaTHTe CJie] IPOBeXK/1aHe Ha N300pu B HamraTa crpana. Toi
OBP30 HaBJIE3e B Ta3W ODJIACT, HAIIBJIHO HEMO3HATa 33 ObJArapCKOTO OOIIECTBO, IO
nouaTHU npuunar. Herosure cnocobHOCTH Osxa 3a0e/1s13aH OT PhKOBOICTBOTO HA
Opranusanusara 3a Curypuocr u Corrpyaaudectso 8 Espona (OSCE) u Toii Gere
mokanen 3a ekcrepT. OCBeH ve nuMaire Oprann3aTopPCKN CIOCOOHOCTH W aHATUTHIEH
Ha4uuH Ha MucjaeHe, Pymen Gele AumioMar 1m0 POXKIEHUE W BJIAJEEIIe MeT 1yK/I1
e3uKa. PyMeH Karo eKcrepT OIeHsiBalle KaK Ce IPUIara 3aKOHbT, JTOKOJIKO u300-
puTe B IajieHa JbpKaBa KATO IS0 Ca JeMOKPATUYHU. B ToBa cu KadecTBO TOMH
moceru Ykpaitna, Taxukucran, Typkmenucran, Kanana, Nranus, Yepua ropa,
CrnoBakus u Jp.

Pywmen Gonenysa mecer romunau. Bopu ce croudecku! CraHIapTHUST OTTOBOP
Ha BBIIPOCA MU Kak ce uyBcTBa Oerre: “Bupal”. Hukora He roBopere HAIIO 3a KO-
BapHuTe Gosiectu, YuiiTo m3xon Oe mpeasapuTenno u3sected. [llom ce Hammpax B
Codusi, ornBaxMe Ha PECTOPAHT, MOHSKOra HE3aBUCHMO Y€ TOKY-II0 € M3JIsi3aJ1 OT
6osnunara. llerysarie ce, nuaTepecyBaiie ce OT IOCAEJHUTE HOBUHHU OT MaTeMaTu-
geckara kosierus. 1Ipe3 cenremspu 2019 Mu cbobim, Y€ moBede HAMA HYK/IA 1A
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XOI¥ Ha Tponeaypu B Oosuuiara. Ha Bbrnpoca mu, Kora € ygo0HO J1a T'O ITOCETs,
TOi Mu orroBopu: “A3 ¢bM BKbIIM, KOraTo uckail, eja.” Ilocemasax ro, roBOpuxmMe
abaro no resedona. Iocaenno mu kaza: “Ilactius 65X, ye UMax Takbe npusares!”
Bewbmpocer, kbemernuara 6gx a3. OburyBamnero Mu ¢ Pymen e yepBeHara JIuHus B
Most KUBOT. U1 mocera chHyBam, ge roBopum mno tenedona. Haii-chbkpoBennre My
MHUCJIM OT TE3U MOCJAeIHN JHU BEPOATHO 3HAC €AMHCTBEHHO ChIIpyraTa My, KOATO Ce
rpuzKeliie 3a Hero J10 KOH4YnHaTa My Ha 16 nexkemspu 2019.

Mup Ha npaxa my !

Summary. This is Stanimir Troyanski’s personal account of the late Professor
Rumen Maleev. The author shares his reminescences about his dear friend and
colleague.
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REPRESENTATION OF NATURAL NUMBERS BY
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HAVING A SPECIAL FORM

ZHIVKO H. PETROV AND TATYANA. L. TODOROVA

In this paper we consider the equation x% +x§ +m§ —l—ar:?1 = N, where N is a sufficiently
large integer and prove that if 7 is quadratic irrational number and 0 < A < %,

then it has a solution in almost-prime numbers z1, ..., x4, such that {nz;} < N—* for
i=1,...,4.

Keywords: Lagrange’s equation, almost-primes, quadratic irrational numbers.
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1. INTRODUCTION AND STATEMENT OF THE RESULT

In 1770 Lagrange proved that for any positive integer N the equation
st astr;=N (1.1)

has a solution in integer numbers z1,...,x4. Later Jacobi found an exact formula
for the number of the solutions (see [8, Ch. 20]). A lot of researchers studied the
equation (1.1) for solvability in integers satisfying additional conditions. There is
a hypothesis stating that if N is sufficiently large and N =4 (mod 24) then (1.1)
has a solution in primes. This hypothesis has not been proved so far, but several
approximations to it have been established.
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In 1994 J. Briiddern and E. Fouvry [1] proved that for any large N = 4 (mod 24),
the equation (1.1) has a solution in x1,...,z4 € P34. (We say that integer n is
an almost-prime of order r if n has at most r prime factors, counted with their
multiplicities. We denote by P, the set of all almost-primes of order r.) This
result was improved by D. R. Heath-Brown and D. I. Tolev [9]. They showed that,
under the same restrictions for N, the equation (1.1) has a solution in prime z; and
almost-prime x5, x3, x4 € P1o1- In their paper they also proved that the equation
has a solution in x1, ..., 24 € Pa25. In 2020 Tak Wing Ching [2] improved this result
with three of them being in P3 and the other in Py.

On the other hand, let us consider a subset of the set of integers having the
form

A={n]a< {nn} < b},
where 7 is a fixed quadratic irrational number, and a,b € [0, 1].
Denote by I(N) the number of solutions of (1.1) in arbitrary integers and by
J(N) the number of solutions of (1.1) in integers from the set A.

In 2011 S. A. Gritsenko and N. N. Motkina [6] proved that for any positive
small €, the following formula holds

J(N) = (b—a)*I(N) + O (N%*3¢) .

S. A. Gritsenko and N. N. Motkina consider many others additive problem in
witch variables are in special set of numbers similar to A. (See [4] — [5] and [7].)
In 2013 A. V. Shutov [12] considered solvability of diophantine equation in integer
numbers from A. Further research in this area was made by A. V. Shutov and A.
A. Zhukova [13].

We consider the equation (1.1), where x; are almost-prime numbers and belong
to a set similar to A. Our result is

Theorem 1.1. Let n be a quadratic irrational number, 0 < A < % and

k= [%} Then for every sufficiently large integer N, the equation (1.1) has

a solution in almost-prime numbers 1, ..., x4 € Py, such that {nz;} < N~ i =
1,2,3,4.

In the present paper we use the following notations.

We denote by N a sufficiently large odd integer and P = N 3. Letters a, b,
k, 1, m, n, q, p always stand for integers. By (n1,...,n;) we denote the greatest
common divisor of ny,...,n. Let ||t|| denote the distance from ¢ to the nearest
integer. We denote by 7 four dimensional vectors and let

|| = max(|nq], ..., |n4])- (1.2)

As usual, p(q) is the Mdbius function and 7(g) is the number of positive divisors
of q. Sometimes we write a = b (¢) as an abbreviation of a = b (mod g).

14 Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 13-27.



We write . for a sum over a complete system of residues modulo ¢ and
z (q)
respectively > " is a sum over a reduced system of residues modulo q. We also
z (q)
denote e(t) = €27,

We use Vinogradov’s notation A < B, which is equivalent to A = O(B). By ¢
we denote an arbitrarily small positive number, which is not the same in different
occurrences. The constants in the O-terms and <-symbols are absolute or depend
on €.

2. AUXILIARY RESULTS

Now we introduce some lemmas, which shall be used later.

Lemma 2.1. Suppose that D € R, D > 4. There exist arithmetical functions
AE(d) (called Rosser’s functions of level D) with the following properties:

1. For any positive integer d we have
IAE(d)| <1, ME(d)=0 if d>D or p(d) =0.

2. If n € N then

SA (@) < 3 u) < 3 At(@).

d|n d|n d|n

3. If € R is such that z*> < D and if

1 AE(d log D
Pi)= [[ » B= 1] <1p_1>, NE= D (p(il)), Sozloggz’ (2.1)

2<p<z 2<p<z d|P(z)

then we have
B<N*t<B (F(so) +0 ((1og D)—%)
, (2.3)

) : (2.2)
B =N~ 2B(f(s0)+0 ((logD)7¢))
where F(s) and f(s) satisfy

F(s)=2e"s7!,  if 2<s<3,

f(s) =2e"s"tlog(s — 1), if 2<s<3,
(F() = fls—1), ifs>3,

(sf(s)) =F(s—1), ifs>2.

Here ~ is Fuler’s constant.
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Proof. See Greaves [3, Chapter 4]. O

Lemma 2.2. Suppose that AZ»,AZ-i are real numbers satisfying A; = 0 or 1,
A7 <A <A, i=1,2,3,4. Then

AiAsAsAy >ATATATAT + ATASATAST + ATATA; AL+

+ ATATATAL — 3ATASATAS. (2.4)
Proof. The proof is similar to the proof of [1, Lemma 13]. O
Let
wolt) = { e (-44).
and .
x
= ——=. 2.
wle) =un (5~ 3) (25
Lemma 2.3. Let u, 5 € R and
+oo 1
J(B,u) = / wo (:c - 2) e(Bx? + ux)dw. (2.6)
Then:

1. For every k € N and u # 0 we have

1+ |8
|ulk

J(ﬁ7 U) <k
2. The following inequality hold
J(B,u) < min (1,15)7).

Proof. See [9, Lemma 9. O

Lemma 2.4. Suppose that @ € Z* and

J(8.@) =[] (8, wa).

Then we have oo
[ sl <.

— 00
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Proof. Proof can be find in [9, Lemma 10].

Lemma 2.5. There exists a function o(v,q,7) defined for —4 < v <
vl < %, integrable with respect to vy, satisfying

o(v,q, <
70,0, <

and also for every a € Z, (a,q) = 1 we have

> 6(?)0@gn0{é if v € Na,q),

oo otherwise,
where ) )
P P
N(a7Q) = <_ ) :|
q(¢+4q) alg+4q")
and

P<q+d,q+q¢"<P+q,  ad =1(modg),  aq’=—1(modgq).

Proof. See [15, Lemma 45].

For g € N and m,n € Z, the Gauss sum is defined by

G<q’m,n>:ze<mx?+m)

z(q) q

For d = (dy,...,ds) € Z* and 7 = (ny,...,n4) € Z* we denote

4

G(q, ad?, ) = H G(q,ad?, n;).

i=1
We need to estimate an exponential sum of the form

Vo= ‘/Z;(wa,v,ﬁ) = Z*e (Ml) G(q,ad_é,ﬁ).

a(q)

(2.8)

(2.9)

To estimate V, we use the properties of the Gauss sum and the Kloosterman sum.

Lemma 2.6. Suppose that N,q € Nv € Z and d_:fi € Z*. Then we have

Vo(N, dv,7) < q37(q)(q. N) % (g, d1)(q. da)(q, d5) (g, ds).

Moreover, if some of the conditions
(q,d1)|n1, Z:1,74
do not hold, then Vq(N,ch,fi) =0.

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 13-27.
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Proof. This result is analogous to this one in [1, Lemma 1]. O

Lemma 2.7. (Liouville) If n is an irrational number which is the root of a
polynomial f of degree 2 with integer coefficients, then there exists a real number
A > 0 such that, for all integers p,q, with ¢ > 0,

A

-
q2

e
q

Proof. See [11, Theorem 1A]. O

3. PROOF OF THE THEOREM

3.1. BEGINNING OF THE PROOF

Let N be a sufficiently large integer. We denote

z=N¢, P(z):l_[p7 §=N"N
p<z
We apply the well-known Vinogradov’s “little cups” lemma (see [10, Chapter 1,
Lemma A]) with parameters

041:1, B = A=— r = [log N]

and construct a function (¢) which is periodic with period 1 and has the following
properties:

9(;):1; 0<0(t)<1 for O<t<g or g<t<6;

0t)=0 for d<t<1.

Furthermore, from the Fourier series of 6(¢) we find

o(t) = g + > e(m)e(mt) + 0P, (3.1)
0<|m|<H
m#0

(6 1 [[log N]\ e
< R
le(m)| < min (2’ |m] <57rm ) ’

18 Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 13-27.
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where A is arbitrary large constant and

H= M. (3.2)

Let us denote
0(nZ) = 0(nx1)6(nz2)0(n23)6(nzs)
and
w(Z) = w(zr)w(ze)w(xs)w(xy).
We consider the sum
I = > 0(n@)w(T).

xf+z§+x§+zZ:N
(zi,P(2))=1,i=1,2,3,4

From the condition (z;, P(z)) = 1 it follows that any prime factor of z; is
greater than or equal to z. Suppose that x; has [ prime factors, counted with their
multiplicities. Then we have

(NI

N Zl‘izzl:Nal

and hence | < 5. This implies that if I' > 0 then equation (1.1) has a solution
in almost-prime numbers 1, ..., 24 with at most [5=] prime factors, such that
{nz;y < N7 i=1,...,4.

For i =1,2,3,4 we define

e Y M(d):{1 if (z:, P(2)) = 1, 33)

0 otherwise.

Then we find that

I = > A1 Ao As A4 (nZ)w ().
a:f-i—w%-&-x%-i—wi:N
We can write I' as

1
r= Z A1A2A3A49(nf)w(f)/ e(a(z? + 235 + 23 + 22 — N)) da.
T, EL 0

Suppose that A*(d) are the Rosser functions of level D (see Lemma 2.1). Let
also denote
A= > M), i=1,2,3,4. (3.4)
d|(zs,P(2))
Then from Lemma 2.1, (3.3) and (3.4) we find that

A <A <AS
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We use Lemma 2.2 and find that
>Iy+Te+Is+Ty — 30,

where I'y,...,I'5 are the contributions coming from the consecutive terms of the
right side of (2.4). We have I'y =T’y =T'3 = T'y and

1
= 3 AT AFASAT 0P (@) / e(a(a? + 22 + 22 + 2% — N))da,
x,EL 0

1
Is=)_ AfA;A;:AZ@(nf)w(f)/o e(a(z? 4 23 + 22 + 22 — N))da.
T, EL

Hence, we get
I >4 — 3T5. (3.5)

3.2. ASYMPTOTIC FORMULA FOR I';

We shall find an asymptotic formula for the integral I';. We have

Ty= Y A (d)AT(d2)AT(dz)AT(ds) Y O(nd)w
di|P(2) 2i=0(d;)

1
></ e(a(zd + -+ 23 — N))da
0

D AT (d)AT(d) AT (ds) AT (da) x

d;|P(z)
1
X O(nz)w(z)e(az?) )e(—Na)do.
‘/O 1£[K4 <3: zO(:d?) ! >
Let
S(a,d,m) = Z w(z)e(ax? + mnz) . (3.6)

Then using the Fourier series of 6(t) (see (3.1)), we find

Z O(nz)w(x)e(a(z?) = Z c(m) Z w(x)e(ax? + mnz) + O(P*A) .
z=0(d) Im|<H z=0(d)
Denoting
S(a,d,m) = S(a, dy, m1)S(a, dg, m2)S(ev, ds, m3)S(a, dy, mys) (3.7)

and

—=

A(d) = A7 (di)AF (do) A (dg) A (dy), (3.8)
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we find that

We divide I'; into two parts:
[ =T9+T5+0(1),

where ~
0 =c*0) Y Ad) > w(7Z)
ri4+ai+ritai=N
and
— 1 —
;= Z A(d) ce(m;) [ S(a,d,m)e(—Na) da. (3.9)
alPG)  ozimien 0
Hence
[ >4T9 - 302 + O(If) + O(I%) + O(1). (3.10)
log D
According to [1] and [9], for D < P'/8=¢ 5 = E)ggz = 3.13 the estimate
CON
AT =319 > ———— + O(6P3/*+<p? 3.11
1 5 > (log N)* +0( ) (3.11)

with some constant C' is obtained. Thus it suffices to evaluate I'f and I'.

3.3. ESTIMATION OF I'}

In this subsection we find the upper bound for I'; defined in (3.9). The function
in the integral in I'] is periodic with period 1, so we can integrate over the interval

7 defined as ) )
7= 1 .
<1+[P1 +1+[P1>

We apply the Kloosterman form of the Hardy-Littlewood circle method. We divide
the interval only into large arcs. Using the properties of the Farey fractions, we
represent Z as an union of disjoint intervals in the following way:

= U £z,

q<P a=1
(a,q)=1

where ) .
a
£(CL, Q) = ( -

a
=+
q qlg+d) q qlg+4q")
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and where the integers ¢’, ¢’ are specified in (2.7). Then

Z A(d) Z c(m;) Z Z / > (a, d, m)e(—Na) dov.

di| P(2) 0<imgl<H a<P o=l

We change variable of integration a = 4 + [ to get
q

Sod Y )Y >

di|P(2) 0<imsi<H q<P (aaq)l )
x/ S<a+ﬁ,£m)e<—N(a+5>>d5,
M(a,q) q q
where ) )
M(a,q) = (— ] .
(@) (¢+4¢) qla+4q")

From (2.7) we find that

1 1 1 1
hqp’ qu} < Misg)c {_qP’qP]
and hence

wsqip for e Ma,q). (3.12)

Now we consider the sum S(«, d;, m;) defined in (3.6). As n is irrational
number, ||sn|| # 0 for all s € Z. Using that fact and working as in the proof of [9,
Lemma 12], we find that for § € M(a,q) we have

a P n
S|-+ ,di,mi>= J( P, (m; —P)G , ad}, n)+
(q ﬁ diq Z B ( n diq) (q )

\n—midquKMz
+O(P75), (3.13)

where G(g, m,n) and J(vy,u) are defined respectively by (2.8) and (2.6), B is an
arbitrarily large constant, M; = d; P¢, € > 0 is arbitrarily small and the constant in
the O-term depends only on B and . We leave the verification of the last formula
to the reader.

Let
7 * alN a o
rea = Z e(mi) Z Z N S{—+p8,d,m|e(=BN)dB.
plie o 4<Pa(q) 4/ Imaa \4
It is obvious that )
Ti= ) MdF(P,d) (3.14)
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Using (3.13) and Lemma 2.3 we get

- -

F(P,d)=F*(P,d)+0(1), (3.15)
where
- Pt 1 * alN
F*(P,d)= ———F— c(my) — e(—)x
dydadsdy 0<\§SH IISZP q4(;q) q
1,2,3,4

—

J(,BPQ, (7 — ?)P>e(—7)d7.
(a,9) dg

X > Gl(q, ad?, ) /

[ni—midiqn|<M; N
Using Lemma 2.5 and working as in the proof of [14, Lemma 2] we find that

F*(P, d) = F (P, d) + O(P*%%%), (3.16)

- p? 1 L
F (P, d):m Z C(mi)ij Z Vo(N, d, 0, 1) x
q<P

0<|m;|<H [ng—m;diqn| <M;
i=1,2,3,4 (a,d;)|ng, i=1,...,4

—

x /M< . J(% (17 — %)P)e(—v)d%

=2q

and Vg (N, d,0, 1) is defined by (2.9). We represent the sum F (P, d) as

/ —

F (P, d)=F +F,, (3.17)

where F} is the contribution of these addends with ¢ < @ and F5 for addends with
Q < q < P. Here Q) is parameter, which we choose later. Using Lemma 2.3 (2),
Lemma 2.6 and (3.1), we get

X

Pt DS ¢**7(q)(q, N)'/*(q, dv)...(q, da)

¢t
0<ImiI<H Q<q<P ( )
<l 3.18

X Z 1.

In;—mgdian|<M;
(q,d;)|n;,i=1,....4

It is clear that the sum over 7 in the expression above is

My Mo M3 M,
< H Z 1< 142 4VE3 1vlg
1<i<4 —M;+md;an M +m;d;an (Q7d1)(Q7d2)(Q7d3)(Q7d4)

(a,d;) (a,d;)
Pedqd
< 1d2d3dy ’
(Qa dl)(Qa d2)(Qa d3)(qa d4)

<t; <
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which, together with (3.18) and (3.2), gives
7(q)(g, N)'/?

Fp < P*** Z 3/2
Q<q<P 4

Now we apply Cauchy’s inequality to get
9 1 1
Z (q) \? Z (¢, N)\?
q 7
Q<qg<P Q<q<P (3 19)
1 \? _ pre '
prte t —_— —_—
<P (T ¥ ) <o

t|N Q P
‘ T<an<%

t<P 't

F2 < P2+E(

To evaluate F; we firstly apply Lemma 2.4 to get

ii ii ot
Jv, (mi——=)P||dy < 7— —=)P .
/|7<§q <7 (mn dq) )‘ ! (|(mn dq) |>

Then using Lemma 2.6 and (3.2) we obtain
5/2T(q)(q7 N)1/2(q7 dl)(q7 d4) %

p? q
< E y
dydadsdy <0 q

<D

|n;—m;d;qn|<M;
(q,d3)|n;,i=1,...,

1 T (3.20)

En

(mn —

It is clear that if n; = (g, d;)t;, d; = (¢, d;)d} and

1 P(q, d;
)P| gﬁi — midingl

mn — =
[m: diq qd;
then the sum over (mn — d%)P in the expression above is
<1 > ! (3.21)
P v max (g, di)|t; —mding|/d; .
[ti—midjqn| <y 1S4
Let t9 is such that
|7 = mading| = || = madyng|| = [[madyngll

As 7 is quadratic irrational number, then ||miding|| # 0 and for ¢; # ¢ we have

|t1 — m1ding| > 1/2. Hence
(q7 dl)

dl‘ ti — id/v
(g, di)| m;ding| >
d1

max
1<i<4 dy

)
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which, together with (3.21), gives

q 1
P 2 a,  ax (g, di)[ti —midingl/d;
[t:—midjqn|< gy 114
< q< dy My Mo M My n di My M3 M,y )
P (qa dl)z(q7 d2)(q7 d3)(q7 d4) (q, dl)(q, dg)(q, ds)(q7 d4)||m1d/1nq‘|
P Ddydsdsd Pe=1d. dodad
< q 1020304 4 q 1020304 (3'22)

(Q7 dl)z(qa d2)(Q7 dd)(q7 d4) (qa dl)(Q’ d2)(Q7 dS)(q7 d4)||m1d/177Q|| .

As 7 is quadratic irrationality, it has periodic continued fraction and if b—n, neN

n
is the n-th convergent, then b, < (™ for some constant ¢ > 0. Using that

HD
lmidigll < ——

(d1, q)

a
we can find convergent 3 to 1 with denominator such that

and Liouville’s inequality for quadratic numbers (see Lemma 2.7),

3HDQ HDQ

Since (a, b) = 1 we have that mld’lq% ¢ 7. As

1
n— Z‘ < 0 and (3.23) we get

a a my|diq
(=) | = ]| - 5

b2

a
s ||| |

S 1 maldigldy, g) 1 maldig
b 3bHDQ ~— b 3bHDQ
1 Jm 1 1 _2
b 3bH ~b 3b  3b
(dla Q)

> HDQ .

From (3.21) and (3.22) it follows that
Z 1 < qPE_1d1d2d3d4HDQ
(77'”7 - %)P’ (q’ d1)2(qa dZ)(qa d3)(Q7 d4) .

|n;—m;d;qn|<M;
(g, d;)|ng,i=1,...,4

Then for Fy (see (3.20)) we obtain

<

P'*<DQ yo T N2

v (3.24)

q<Q
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Applying Cauchy’s inequality we get

[N
[N

F < P*eDQ Z T2(q) Z (g, N)

0 q<Q 7<Q q
1
2
p'teD . 1
« T2 Qe | Y
;’g\é th% «
Plt+epD 3/2
< PDQ 32

We choose Q = §'/2PY/2D=1/2_ Then
}jv17 F2 < P7/4+a§—1/4D1/4 )
From (3.14), (3.15), (3.16), (3.17) it follows that
F"lﬁ < D17/4P7/4+€5_1/4 )

The estimate of I'; goes along the same lines.

3.4. END OF THE PROOF OF THEOREM 1.1

From (3.10) and (3.11) we get

ON
T D17/4P7/4+56—1/4 )
> Goa V)i

Then for a fixed small ¢ > 0, A < 1;56, D < N7 and z = DV/313 we
IN

get I' > oo nys So the equation (1.1) have solutions in almost-prime numbers

T1,...,04 € Pp, k= [%} such that {nz;} < N7, i=1,2,3,4.
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This is a review of continuum mechanics and its history, citing its original sources.
It “bridges” the contributions of Bernoulli, Euler, Lagrange, Cauchy, Helmholtz, St
Venant, Stokes, Fresnel, Cesaro, and others, written in a period of two centuries in
5 languages, in a coherent and historically accurate presentation in the contemporary
notation. The only prerequisite knowledge to understand the paper is advanced calculus
and elementary differential equations. Some valuable, but little known, results are
reviewed in detail, like the exact solution of Cesaro to the system of differential equations
which every continuous medium obeys, as well as his derivation of the conditions
of St Venant for compatability of the deformations. The last section presents the
contemporary applications of continuum mechanics. The review continues with Part II.
The Mechanics of Thermoelastic Media. Perfect Fluids, reference [45]. It discusses the
consequences of Navier’s system of linear elasticity and approaches for its solution. It
also gives a perspective of how waves propagate in continuous media. Reviewed are
perfect fluids and linearly viscous fluids. At the end, Part II discusses the conditions
for compatibility of the stresses.

Keywords: Mechanics of continuous media, continuum mechanics, history of continuum

mechanics, elasticity, theory of elasticity.

2020 Math. Subject Classification: 74-02, 74B-05.

1. INTRODUCTION

Mechanics of continuous media is one of the classical branches of applied
mathematics, which was built by several of the most prominent mathematicians
of the 18th, 19th and the early 20th centuries. In addition to being a discipline
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of its own, it is the heart of several modern branches of applied mathematics:
fluid mechanics, gas dynamics, theory of elasticity, theory of deformable solids and
others. It’s applications penetrate almost every aspect of contemporary applied
mathematics and mathematical physics. Over the centuries so much material
accumulated in this subject, that at present only a few mathematicians know what
is a fundamental notion in it and what is an application or a consequence of its
core results. It is important that the mathematicians of today do know continuum
mechanics not only for this knowledge itself, but also for the correct vision and
proper sight of Mathematics and Science that it gives. It will help them size their
own gauge to the contemporary needs of their profession. In addition to its powerful
applications, continuum mechanics is precious for its esthetics - it is a part of the
most elegant and sophisticated classical mathematics and reading it gives a pleasure
and a professional growth.

The first attempt to discuss local features of the motion of a continuous
medium in more than one dimension occurs in an isolated passage by D. Bernoulli
from 1738 ([1], §11, paragraph 4). We are surrounded by matter in the form of
continuous media — deformable solids, liquids and gasses. Let us begin at the
moment of time ¢ = 0 with a continuous medium, like a gallon of water, which we
can easily imagine fills the volume V', with a shape specified by our imagination.
Atomic structure is not considered. If the water is not held in a vessel, when we
“unfreeze"time, it will move under the law of gravity and the laws of conservation
of mass, momentum and energy, in a perfectly deterministic manner, continuously
changing its shape, and eventually splash on the floor. This is a simple example
of a motion of a continuous medium and is suitable to demonstrate what is meant
by “material coordinates"and by “spatial coordinates". Material coordinates,
also called Lagrangian coordinates, are denoted by (X7, X2, X3) and are the
coordinates of the material points of the continuous medium at time ¢ = 0. Lagrange
introduced them in 1788 in [54], part II, section II. Spatial coordinates, also
known as Eulerian coordinates, are denoted by (z1,z2,23) and are the
coordinates of the points of 3-dimensional space (in which we observe the medium)
occupied by the medium at time ¢ > 0. Since the material coordinates are the
coordinates of the material points at an arbitrary initial time ¢ = 0, they can serve
for all time as names for the particles of the material. The spatial coordinates, on
the other hand, we think of as assigned once and for all to a point in the Euclidean
space. They are the names of places. The motion x = x(X, t) chronicles the places x
occupied by the particle X in the course of time. Under external influences - forces
and heating - the continuous body deforms. The goal of Mechanics of Continua is
to find the family of transformations

xi:xi(XlaX27X37t) ) i:17273a (1)

giving the Eulerian coordinates as functions of the Lagrangian coordinates fort > 0.

This motion is perfectly deterministic, obeying only the natural laws, that we
will present. We will arrive at a system of 20 partial differential equations for 20
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unknown functions. This system is one of the finest triumphs of the symbiosis
between mathematics and physics. We sketch the solution to this system and
present the conditions for its existence and uniqueness. We give credit to the
mathematicians and physicists who built this discipline by citing the date, name
and the historical reference where the result was published for the first time.

The general theory of the motion of a continuous medium, which is understood
of as a family of deformations continuously varying in time, is almost exclusively due
to Euler, published in the period 1745 — 1766 in [25] — [41], and Cauchy, published
in the period 1815 — 1841 in [3] — [18]. Important special results were added by
D’Alembert in 1749 in [22], Green in 1839 in [46], Stokes in 1845 in [61], Helmholtz
in 1858 in [48] and Cesaro in 1906 in [19].

2. STRAIN

The change in length and relative direction occasioned by the transformation
is called strain. The term is due to Rankine [56] in 1851. Let us begin its study
by defining the displacement vector u, with components wu; = z; — X;, where
x; = x;(X1, X9, X3,t) ¢ = 1,2, 3. The components u; can be expressed in Lagrangian
or in Eulerian coordinates, depending on need. Let Py be an arbitrary point of the
continuous medium at time ¢ = 0 and let Q)¢ be a neighboring point, such that in
a fixed Cartesian coordinate system Og,e,e, Po has coordinates (X, Xa, X3), i.e.
the radius vectors to Py is X and to the point Qg is X 4+ dX. At time ¢ > 0 the
material point Py occupies new geometric point P with coordinates (z1, z2, x3), i.e.
P has radius vector x and hence the new geometric location of the material point
Qo is Q with a radius vector x + dx. To study the deformation that has occurred,
we need to see how much has the distance between the two neighboring points Py
and Qo changed. For that we calculate

0X; 0X;

(dX)2 — (dX)2 = ( — 5”') dXi de = (5” — 7 d.ﬁEi dZEj . (2)
Here and throughout the paper each index takes the values 1, 2 and 3 and the
summation convention on repeated indexes is assumed. We see that all the
information about the deformation is contained in the coefficients of dX; dX; and

respectively of dx; dx; in (2). These sets of coefficients

E--=1<aﬂ%—§zj> and e =

7= 2\8X,; 0X, 1<5 o 8Xk>

5 A (9331 8$j

satisfy the transformation laws for tensors of rang 2 and are called the Lagrangian
and the Eulerian tensors of finite deformations or finite strain tensors. The
difference (dx)? — (dX)? is a measure for the size of the deformation in the vicinity
of Py. Because dX; and dz; are arbitrary, the necessary and sufficient condition this
difference to be 0 is E;; = 0 or equivalently e;; = 0. In that case the deformation
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near that point is 0 and the motion is that of a rigid body. Written in terms of the
gradients Ou;/0X; or Ou,;/0x; of the displacement vector u, E;; and e;; are

170w | Ouj | Oug 3uk) d o 1<8ui Ouj  Oug Ouy,
N 2 (aX] 6XZ 8X1 an an “ii = 2 8a:j 8:01 81‘1 813]> '
We will now make a crucial assumption - that the deformations which we will study
are small. This means that the gradients du;/0X; and Ou;/0x; of the displacement
u are small in comparison to 1, and hence the products of these gradients may
be ignored in the presence of the gradients themselves. In this manner we obtain
the tensors Eij and €;;. A calculation based on the same assumption shows that
they are equal and we give them the common name ¢;;. This is the tensor of
(infinitesimal) deformations or the (infinitesimal) strain tensor
o 1 8ul an

€ij = 2<axj M axi)'
The strain tensor ¢;; was introduced by Green in 1841 in [47] and by St Venant
in 1844 in [59]. It is the most popular strain measure even today. The vanishing
of €;; is necessary and sufficient for a rigid displacement. The general deformation
dX — dz as well as the displacement gradients du,;/0X; and Ou;/0x; as measures
of local changes of length and angle are due to Lagrange 1762, [53] §XLIV and 1788
[54] Part II, Sect.11. The fully general spatial description is due to Euler, dates
1752, and was first published in 1757 in [31] and then in 1761 in [33]. The theory of
finite strain is the creation of Cauchy published in 1823 [4], in 1827 [7] and in 1841
[18]. The theory of infinitesimal strain was first developed by Euler. It was fully
elaborated by Cauchy, who obtained it by specialization from his general theory of
finite strain.

We will now explain the geometry of the process of deformation. The component
€11 of the strain tensor is the relative elongation of a linear element in the direction
of the unit coordinate vector ey, and similarly for €95 and €33. The component o3
is half of the change (as a result of the deformation) of the angle between two lines,
that initially had the directions of the unit coordinate vectors ez and esz. Even
more surprising is the fact that, at each point inside the deforming medium, the
deformations can not take an arbitrary shape. Instead, they form quadratic surfaces
only, called surfaces of Cauchy. This is not hard to see and is worth the effort.
Let us denote by ¢ the relative elongation in direction of the vector dX, with length
dX

_ dr —dX
= —ax
Consider the difference
(dz)? — (dX)? = (dv — dX)(dz + dX) = 2¢;; dX; dX;, (3)

and observe the smallness of the deformations, i.e. that dx ~ dX. Then by dividing
both sides of (3) by dX dX we see that
dX; dX;

FTEUX ax )
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Hence for any vector with components (£1, &2, £3) and magnitude &, the last formula
(4) gives &% = ¢;;&&;. For each direction we can select ¢ in such a way that
£2e = +k?, where k is a positive constant and the sign is chosen so that the square
of the length of vector £ to be positive. It follows that at any point of the deforming
medium the strain takes the shape of the quadratic surface

£ij & €5 = £k

called surface of deformations of Cauchy at the point Py. From this geometric
picture it is clear that the elongation ¢ in the direction of the vector ¢ is inversely
proportional to the square of the distance from the center of the surface (the point
Py) to the intersection of the vector £ with that surface.

Because the vector (e1;&;,¢€2;&;,€3;&;) is normal to the quadratic surface of
Cauchy, we see that the relative displacement at Py due to the pure deformation
is in the direction of the normal to that surface at the point of intersection of the
surface with this vector.

After these observations, it is plausible to seek lines through Py with directions
that do not change under pure deformation. Of course, these are the lines along the
eigenvectors of the strain tensor €;;. It is symmetric and hence has 3 real eigenvalues,
called main deformations or Cauchy principal stretches, ¢, ¢57, and e7y5.
To each of them corresponds an eigenvector, called main direction or main axis
of the strain tensor. Cauchy published these results first in 1823 [4] and again
in 1827 [7]. To different main deformations correspond main directions that are
orthogonal. We can select the axes of the coordinate system to coincide with the
main axes of the tensor of deformations and, as a result, obtain the simplest form
of the quadratic surface of Cauchy

er& terrés +errés = +k%

The invariants of the tensors E and e were first published by Cauchy in 1827 in [7].

3. CONDITIONS FOR COMPATABILITY OF THE DEFORMATIONS

Common sense tells us that the deformations that take place in a medium are
not independent of each other. If we stretch an elastic membrane with a rectangular
shape along one of its diagonals, the other diagonal will shrink. St.Venant proved
in 1860 that in order for the six functions e;;(z1,x2,x3) to adequately define the
components of the tensor of deformations €;;, so that the 6 partial differential
equations

Ui j g = 28 ()

have a unique solution u(x1,z2, x3), they must satisfy the system of 6 PDEs

€ij.kl + Eklij — Eik,jl — Ejl,ik = 0. (6)
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The notation , j denotes partial differentiation with respect to x;. The 6 restrictions
(6) on the components ¢;; of the tensor of deformations are called conditions for
compatability of the deformations and their fulfillment is a necessary and
sufficient condition for the existence of the solution vector u to the system (5),
which of course, has the physical meaning of the displacement vector u = x — X
in the process (1) of the deformation of the continuous medium. The derivation
of the compatability conditions is exceptionally original. On the way of deriving
the compatability conditions, an analytic formula for the displacement u itself is
derived, thus obtaining a result of even greater significance. Due to lack of space,
this derivation is not presented here, but it is sketched. This method of obtaining
the displacement u is due to E. Cesaro [19], who published it in 1906. Volterra
presents it in [62], citing Cesaro. Contemporary references on it are Ivanov [49] and
Sokolnikoff [58]. The solution to (5) has components

P

uj = uj +wi(zk — ap) +/ (eji+ (x — y)(Ejik —eng)) dye s 7 =1,2,3. (7)
Py
Here
1 8ui 8uj
= 3352
2 3mj 81}1
is the tensor of small rotations, introduced by Euler in 1761, §§46-47. In the

components of the exact solution (7) of Cesaro ug are the components of the
translation and w?k are those of the tensor of rotation in an arbitrary point Fp
of the deforming body, and are assumed known. The first term in the solution (7)
for u; represents the translation and the second term represents the rotation of the
continuous medium as a rigid body. The third term in u; represents its deformation.
Because the displacement u is unique, its components u; must not depend on the
path of integration, so the integrands of the 3 integrals must be total differentials.
Demanding this, yields the 6 equations (6) of St Venant for compatability of the

deformations.

The compatability conditions were first published by Kirchhoft in 1859 in [52],
but without a statement of their meaning, which was first explained by St Venant
in his memoir [60]. St Venant obtained these conditions in a different way, than the
one presented in this section. Submitted them to Scociete Philomathique in 1860,
who published them in 1864.

4. STRESS

The notion of stress arose in special case studies of theories of flexible, elastic
and fluid bodies. Galileo (1638), Pardies (1673), James Bernoulli (1691-1704),
Hermann (1716), Coulomb (1776), John Bernoulli (1743), and Euler (1749-1752)
published studies on this notion. The general concept and mathematical theory are
due to Cauchy, published in 1823 [4] and in 1827 [7]. Cauchy achieved the general
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theory of stress by adopting the common features and discarding the special aspects
of the foregoing theories. The term stress was introduced by Rankine in 1856 in
[57]-

The field of stress vectors is not an ordinary vector field. Rather, since the stress
vectors across two different surfaces through the same point are generally different,
at any given time, the stress vectors o(x,t,n) depend both on the position vector
x and on the direction n of the normal to the surface. We wish to extract all the
information about the stress at a point of the body into a single mathematical
object, and separate it from the information about the direction. This is accompli-
shed by the stress tensor o;;.

To derive the components of that tensor we take a tetrahedron having 3 edges
coming out of an arbitrarily fixed point P, parallel to the coordinate axes. The force
acting on the medium occupying the volume V of the tetrahedron is fv ptdV,
where p(x,t) is the mass density and f(x,t) is the mass force acting on pdV.
Examples of mass forces are gravity and the centrifugal force in a rotating body.
Surface forces act on every surface inside the medium or on its surface. Those forces
are modeled with the stress vector o(x,¢,n). The force acting on a portion S of
a surface is [y 0dS. The orientation of S is given by the outward unit normal
n(x,t) = n;(x,t)e; to the surface at that point. (The dimension of the vector o is
pressure.)

We assume that all forces acting on the tetrahedron ballance out

3
Z/ o(x,t, —ej)dS+/
o/ ns;

a(x,t,n)ds+/ pEdV =0, (8)

AS AV

where AS; is the face perpendicular to e;, AS is the forth face and AV is the part
of 3-space occupied by the tetrahedron. We make use of the mean-value theorem
in equation (8). Denote the radius-vector to the point P by x, make use of AS; =
AScos(n,ej) = ASn;, AV = hAS/3, and let the altitude h from P approach 0.
We get

o(x,t,—e;)n; +o(x,t,n) =0. (9)

If we now denote by o;;(x,t) the components of the stress vector with a normal e;,
0ij(x,t) = 0;(x,t,€;), from the last vector equation (9) we get

oi(x,t,n) = 0;;(x,t) n;.

This important result is Cauchy’s fundamental theorem and expresses the
relationship between the components of the stress vector and the components of
the stress tensor. All the information about the stress at a point is “extracted” in
the stress tensor itself, and is “separated” from the orientation n of the surface.
Cauchy published this formula in 1823 [4] and in 1827 [6].

The geometry of the stress at a point of a deforming medium is also that of
quadratic surfaces. Consider the stress vector o, acting on a surface element with a
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unit normal n at a fixed point P of the body. Its components are o; = 0;;n; . Let
us denote by o the magnitude of its projection on n. oy is called normal stress
and can be expressed as

ON = 0N = 045Ny Ny .

If € is a vector having the direction of the unit normal n and size £, then from the
last equation follows that £2on = 05 &; €, where &; are the components of £. Select
the size ¢ of the vector £ in such a way that £20 = 4 k2, where k is a fixed positive
constant and the sign is chosen so that the length of £ defined with this equation
be positive. Then the “tip” of an arbitrary vector £ with base at P, and magnitude
¢ satisfying €20y = £ k2, lies on the surface

0i; & & =Lk

called quadratic surface of the stress tensor or surface of Cauchy of the
stress at the point P. The stress tensor is symmetric and hence has 3 real eigen-
values, called main stresses. The corresponding eigenvectors are called main
directions or main axes. If we choose a coordinate system with coordinate axes
along the main axes of the stress tensor, the quadratic surface of the stress at the
point acquires the form

o1&l + o &S +onrés =Lk,

where 0,077 ,0771 are the main stresses of o;; at that point. At a surface element
with a normal n along a main axes of the stress tensor, the stress vector ¢ has the
direction of the normal.

5. CONSERVATION OF MASS, MOMENTUM AND MOMENT OF
MOMENTUM

In contemporary mathematics and mathematical physics conservation laws
are a main goal of study. Researchers obtain them from variational principles via
the famous first theorem of Emmy Noether. In Mechanics of Continua, however,
history went differently. All the laws of conservation, namely the conservation of
mass, energy, momentum, and moment of momentum, were discovered by judicious
guessing and verification with the physical experiment. They are all empirical
laws. Much later they were derived from deliberately calculated for this purpose
Lagrangians.

The law of conservation of mass is the statement that the mass, contained in
any portion of the body with volume V', does not change during the deformation

d
— dVv = 0.
dt/vp

This can be rewritten as [{, dp/0tdV + [4 v, pdS = 0, where v, = v -n is the
component of the velocity of the points on the surface S of V' along the outward unit
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normal n to S. Thus, fv(% + (pv;),i) dV = 0 where v;(x,t) are the components of
the velocity. If the integrand is continuous, we obtain the differential form of the
law of conservation of mass

dp B
E + (pvl)’z = 0. (10)

The law of conservation of mass was first discovered by Euler in 1757, reference
[31], §§16-17.

In mechanics of continua the so-called equations of motion play the same
role as do the equations of Newton in mechanics of rigid bodies. These equations of
motion of a continuous medium follow from the law of conservation of
momentum, which states that “The total time derivative of the momentum of
an arbitrarily fixed portion of the deforming body is equal to the sum of all forces
(mass forces f(x,t) and surface forces o(x,t)) that act on it”

d
— p’UidV:/ pfldV—i—/ 0;dS, 1 =1,2,3. (11)
dt Jyv v s

A simple calculation shows that, if mass is conserved, for any continuously
differentiable function g(x,t) it is true that

d dg
e av = [ pav.
dt/vpg(% ) /Vpdt

With g = v; this formula simplifies the law of conservation of momentum (11) to

dv,
/p - dv:/ pfidv+/am-njd5~ (12)
1% Vv S

Applying Gauss’ theorem to the surface integral in (11), combining the resulting
2 integrals, and assuming continuity, we obtain the equations of motion of a
continuous medium

dvi

= p—t i =1,2,3. 13
Pat The (13)

oiji +pli

These equations were first published by Cauchy in 1827 in [9], and also in 1827 in
[11].

The law of conservation of moment of momentum asserts that “the time
rate of change of the moment of momentum is equal to the sum of the moments of
the mass forces and the surface forces that act on the body”, i.e.,

d
7/ peijkmjvde:/ peijkmjfde—k/ eijkxjade’,
dt Jy v s

where the moments are written with respect to the origin of the coordinate system.

The laws of conservation of momentum and of moment of momentum are both
due to Euler and were introduced by him in 1775, [43], §§26—28. While the memoire
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is about rigid bodies, these two laws are expressly stated to hold for any continuous
medium.

The law of conservation of moment of momentum is fully equivalent to the
symmetry of the stress tensor

Oij = 044 -

This important result is known as Cauchy’s fundamental theorem, and was
published by him in 1827, [6]. It was discovered (but not published) by Fresnel in
1822, who published it in 1868, [44].

6. CONSERVATION OF ENERGY

In mechanics of rigid bodies thermal effects and thermal consequences of the
motion are either considered separately from the equations of motion or completely
ignored, if they do not affect the motion in consideration. For example, we ignore
the heat generated during the friction between the surface of a cube sliding on
a plane and that plane. In Mechanics of Continua heat generation and thermal
effects can not be ignored or even considered separately from the equations of
motion. The reason is that when a deformation takes place, heat is generated/lost
throughout the entire volume where the deformation occurs. This thermal energy
affects significantly the motion and the deformation. It becomes a cycle: the
deformation generates heat and that heat in turn affects the distance between
the particles of the continuous medium, thus causing deformation. The dynamics
of a continuous medium and the thermal laws are intertwined and must be studies
simultaneously.

That heat is a mode of motion was widely believed in the 18th century. Both
Daniel Bernoulli [1] in 1738 and Euler [35] in 1765 constructed kinetic molecular
models in which temperature may be identified with the kinetic energy of the
molecules. The general and phenomenological principle, independent of molecular
interpretation, was known to Carnot by 1824, as proved by his memoir [2]. The
first clear statement of the interconvertibility of heat and mechanical work, that
any equation of energy ballance should contain terms that represent non-mechanical
transfer of energy, are those of Joule [50], [51] from 1843 and 1845 and of Waterston
[64] from 1843.

Let us now consider the law of conservation of energy. It states that “The
total time derivative of the sum of the kinetic energy and the internal energy is
equal to the sum of the power of the external forces and the in-flow of all other
kinds of energies per unit of time”

L £ ) (14)

where K = [, pv;v;/2dV is the kinetic energy, W = [|, p fividV + [4 05 v;dS
is the power of the external forces, Q = — [4 ¢in;dS + [, prdV is the in-flow
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of heat per unit of time. Here q = ¢;(x,t) ¢; is the vector of heat flow and r(x,t)
is the specific heat source. For simplicity, we assume that there is only in-flow of
thermal energy. We also assume the existence of a function e(x,t) called specific

internal energy such that
/ pedV =E,
V(t)

where F is the total internal energy of the part of the body with volume V' at time
t. The general law of conservation of energy (when heat effects are included), i.e.
equation (14), is called “the first law of thermodynamics". The first one to
formulate this important law was Duchem [24], Chapter III, §3, in 1892 .

In the special case @ = 0 the first law of thermodynamics reduces to the law
of conservation of mechanical energy

dK

E+ v O'ijdl'jdV:VV,
where )

dij = 5 (vig +vj3) = di

is the tensor of rate of deformations, introduced by Euler [41], §§ 9-12, in 1769.
By a simple, but tedious calculation, substituting dK/dt, E and @ into the general
law of conservation of energy (14), transforming the surface integral into a volume
integral, and assuming continuity, we obtain the differential form of the general
law of conservation of energy

de

Pt

That use of a differential equation expressing balance of energy is necessary, except
in specially simple circumstance, was first emphasized by Duhem [23], Vol. I, Livre

II, Chapter III, in 1891. In 1769 Euler [41], §13, showed that the vanishing of all
components of the tensor of rate of deformations is the criterion for a rigid motion.

= 045 dij — i, +p7’ (15)

7. ENTROPY

In the present section we define and explain the concept of entropy and the
second law of thermodynamics.

Let us begin with some history. During the Industrial Revolution in Western
Europe, it was observed that the steam engines of locomotives and other engines
that transform thermal energy into mechanical energy can not achieve efficiency of
100%. In 1865 Rudolf Clausius [21], §14, introduced the concept of entropy for the
lost thermal energy in steam engines, i.e., the heat which remained unconverted
into mechanical energy. Entropy is defined by

dé

dn=c —
7700
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where n(x,t) is the entropy for unit mass, ¢ is the specific heat and 6(x,t) is the
absolute temperature of the body.

The inequality of Clausius - Duhem is

r

4 pndV > — %nids—i—/pfdv,
v 0

dt Jy g 0
where r(x,t) is the specific heat source, and q = g¢; e; is the vector of heat flow.
It has the direction of motion of heat. The normal n is outward to the surface S.
The first integral in the right hand side is the flow of entropy per unit time through
the surface S of the volume V and the second integral is the creation of entropy
inside V' by outside sources per unit time. This inequality is one of the fundamental
empirical laws of thermodynamics — the second law of thermodynamics. It is due
to Clausius [20] (1854). The meaning of the second law of thermodynamics is can
be explained as follows. It is known from experience that a substance at uniform
temperature and free fro sources of heat may consume mechanical work, but can
not give it out. That is, whatever work is not recoverable is lost, not created. Also,
in a body at rest and subject to no sources of heat, the flow of heat is from the
hotter to the colder parts, not vice versa.

Using the well known formula

d df
e av=1[,p%q
dt/vpr /Vpdt‘é

where p is the mass density, which holds for any continuously differentiable function
f(x,t), we obtain the differential form of the inequality of Clausius - Duhem:

A (3), =0 w

)

8. CONSTITUTIVE EQUATIONS

We consider the differential forms of: the law of conservation of mass (10),
the law of conservation of energy (15), the equations of motion of a continuous
medium (13), and the inequality of Clausius-Duhem (16) as a system. These are
5 scalar differential equations and 1 inequality for the 16 unknown functions wu;,
p, 0ij, €, n and 6. We take in consideration the symmetry of the stress tensor
0ij = 0ji, the definition of d;; = (v; ; + v;,)/2, and assume that f and r are given.
It is remarkable, but not surprising, that physics provides the additional equations
necessary to solve this system. These are the so called constitutive equations and
contain information about the specific material of the medium. An elastic is very
different from water, which is very different from an oil or a gas. The constitutive
equations characterize the mechanical and thermal properties of the medium.
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In experiments and observations, the motion of the material particles of the
continuous medium and its temperature can be observed and measured, so from
mathematical stand point the components wu; of the displacement vector, the
temperature 0, as well as their derivatives, will be the independent variables in
the constitutive equations, which we are trying to build. All of the rest of the
variables will dependent on these ones and will be dependent variables. These are:
0ij, € q; and 7, a total of 11 such variables. The mass density p is also a dependent
variable. For it we already have a differential equation, relating it to the rest of the
variables, namely the law of conservation of mass.

Because the constitutive equations characterize the properties of the materials,
they must remain invariant under a rotation or a translation. This requirement
is met if the variables (both independent and dependent), which those equations
relate, are themselves independent of such transformations. It is easy to show that
such variables are:

:””aixkaixl’ Qi =4 5+

by
Kl X,

as well as the scalar functions € and 7. Thus, in the constitutive equations which
we are trying to construct, it will be reasonable to regard as independent variables
the temperature 6, the coordinates X;, the gradient §6/§X; of the temperature and
the tensor of deformations E;;. Hence for a thermoelastic medium the constitutive
equations are :

Eij - Eij(E>97G7X)a Qi = Qi(E307G7X)3 €= E(E,O,G,X), n= U(E,e,G,X),

where G denotes the gradient of the temperature with respect to the Lagrangian
coordinates X;, ¢ = 1,2, 3. Using

(8xz/8Xk)(8Xk/8x]) = 5@' s (5‘Xl/8xk)(8mk/8XJ) = 61-]-,
we invert the equations for 3j; and @); to obtain

0ij = X(E,0,G,X) X3 X1, ¢=Q;(E0,G,X)X,,;,
e=¢(E,0,G,X), n=nE0G,X).

Using the inequality of Clausius-Duhem we will be able to see the form of the
constitutive equations in more detail. For this, a new function, free energy, is
introduced:

v=e—nb.

Obviously ¢ = ¥(E, 0, G,X) and we assume that it is symmetric with respect to
E,; and Ej;. (This is possible, because E;; = E;; and so we can replace E;; and Ej;
in ¢ with (E;; + E;;)/2.) By elementary mathematical manipulations we eliminate
r from the inequality of Clausius-Duhem (16) to obtain

dyp

q: 0;
P at

do
—pn g +oidij — == 2 0. (17)
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Substituting + in inequality (17), we get

Por; ot o0 at oG, at

Let us now do the calculation

3Ew_lé(3wk%_,,)_1(3vz% fm%)
ot 20t \oX, 0x; 7) 2\0X, 0X; ' 0X, 0X;

1 81}1 8xk (956[ 8:Ek (%k 8xl (9I]€ 812[ dé‘kl 6$k 8xl
-1 ) = a O 0ot

"2\ 9z, 9X; 0X; | 90X, dx; 90X, aX; 0X;  dt 9X; 0X;’

We substitute this result in the last inequality (18) to obtain

(Ukl oY Oxyp Oxy ) deg ( aﬂ) dg oY dG; G 0,

P\ 5

— > (.
a "o a6 =" (19)

~ P 9E, 0X, 0X,

The inequality (19) is linear with respect to the three variables dey;/dt, df/dt and
dG;/dt with coefficients which do not depend on them. Because dey;/dt, df/dt and
dG;/dt are independent of each other (since u, 6 and their gradients at an arbitrary
point are independent variables), it follows that a necessary and sufficient condition
for inequality (19) to hold is that the coefficients of these three variables are zeros.
Thus,

81& 8x;€ (9.’)31 - 82/1 81/}

M=l oE, 0x, 0x; 0 T @90 9G;

0, g 6; <0.

Hence v does not depend on G;, i.e. ¢ = ¢(E,0,X). Traditionally, the left hand
side of the inequality ¢; 6; < 0 is written as

00

g0, =Q; X;,; X, Xii =Q;(E,0,G,X) G Xj; X5

k

Let us summarize what we have accomplished in this section. To the original
system of 5 differential equations for the 16 unknown functions, stated in the
beginning of the section, we added 7 new unknowns (F;; and ) and their defining

equations

L R

0X, " 9X; | X, 0xX,
and also added 7 equations — for o;; and 7. So we have a total of 19 equations for
23 unknowns and the inequality ¢; 0; < 0. Thus, we need 4 more equations. These
are the equations that specify the nature of the free energy v = ¥(E,0,X) and
that of the heat flow q = q(E, 0, G, X).

For historical references on the constitutive equations of continuous media we
refer the reader to Truesdell and Toupin [63].
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9. VISCOELASTIC MEDIUM

We are interested in deriving the equations of motion of a viscoelastic medium.
We use a “dot” above a letter to denote the time derivative of the variable.

Let us assume that the continuous medium we consider has a constant density
p, constant temperature # and constant entropy 7. Let us also assume that the
stresses depend not only on the deformations, but also on the time derivatives of
the deformations, namely that

Y = 2y (E,E,X).

The specific internal energy ¢ depends on the same variables.
Assuming that the deformations are small, the formula

_O0Y Ox; Oy

= 0By 0X; 0X,

Uij

derived above, which is valid for any continuous medium even in the case of large
deformations and with no restrictions on the form that the free energy 1, acquires
the form

i = .
* P 8Eij
Let us assume that the free energy % is a quadratic function of the deformations

and their time derivatives, namely,

1 . 1 . 1 .
P = a+aijeij + Seiuiien + Biciy + 5 Bimeir + 5VigmeiEnt-

Thus we arrive at the system of equations which an elastic medium with viscosity,
a constant density p, constant temperature 6 and constant entropy n obeys:

2eij = Wi j + Uji

oijg +pfi = pl i=1,2,3
o
O'Z'j = pagu.
ij

Let us now calculate o;; by differentiating 1 with respect to the deformations. We
obtain

0ij = ij + Cijri€ri + Bijki€ri-
If there are no stresses in a nondeformed state, o;; = 0, so
0ij = Cijki€ki + BijkiCrl-
Then,
Oery + 5 O
Oij.j = Cijkl 35— ikl o
I O 5

J
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1

1
= Cijhig 5 — oz, (g, +uk) + Bzgklz oz, (U1 + U,k
1 1 . .
= Cijklg(uk,lj +up k) + 5ijkl§(uk,lj + U kj)-

Thus, the equations of motion of a viscoelastic medium with a constant density,
constant temperature and constant entropy are:

1 " . .. .
5 (Uk,tj + teg) + pfi = pil; i=1,2,3.

1
Cijkli(uk,lj + U ki) + Bijrl 5

In the one-dimensional case these equations become the single equations for the
displacement u = u(z,t)

This equation can also be written as
c
Ut — — Uggpt — — Uz _f:07
P P

where f = f(x,t) is given and p, 8 and ¢ are known constants.

10. LINEAR THERMOELASTIC MEDIUM

In this section we will reach our ultimate goal — to derive the system of 20
PDEs, for 20 unknown functions, that governs the motion of a continuous medium.

Let us get started by rewriting the general law of conservation of energy (15)
in a simpler form. For this, substitute in it e = ¢ + 76 and use ¢ = ¥(E, 6, X).
Then the law acquires the form

((w OBy 0w do  dy,  df

— | =0ijdij — G
9By ot o0 dat +ndt> 7ij Gij — Gii T PT

and with the help of
8Eij -4 6.%‘k 8:cl

ot~ M ox,0x;

it becomes
oY Oz; Ox; 0y db n df
. =1 ZY = giidii — as s . 2
(8Ekl ax,, 0x, " 5p dt+dt9+ndt) oij dig = dii+pr (20)
Now substitute o;; and 1 with
oY Ox; 31”3 oY

“ POk, 0x,0x, 0 T T o8
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and 4 terms in the above law (20) cancel out. The law of conservation of energy

becomes

dn

dt
A linear thermoelastic homogeneous medium is one for which the following

assumptions hold:

pbo + G =prT. (21)

1. The deformations are small, so the product of the gradients of the displace-
ment are ignored. Also we substitute E;; with €;;;

2. The mass density p does not change during the deformation process;

3. The free energy ¢ is a quadratic function of the components ¢;; and of the
temperature change T' = 0 — Tp. Also |T'| /Ty is small with respect to 1, thus 6 ~ T.

4. The components of the heat flow q are linear functions of ¢;;, T and T';.
With these assumptions the gradient of the temperature becomes
00 or  oT axj_al( auj)_(?T oT Ou,

Gi:&XiiaXiigjaXiiﬁxj ij+8XZ- 78$1+87%6X1,

where u; = z;—X ;. We ignore the product of the gradients, and obtain G; =9T'/0x; .
In the calculations that follow we will substitute @; with g;, because ¢; = Q; X;; =
(0ij — uj,i) Q; = Qi — Qj u;,; and we ignore @Q); u;; in the presence of Q;.

To find the form of the functions ¢ and ¢; we develop them in Taylor series
around their undeformed values, which are 0’s. In the series for ¢ we will keep
terms up to and including second order, and in the series for ¢; we will keep only
the linear terms:

CE
2To

1
pY=a—pnT — T2 + cuijeij — Xij €ijT+§Cijkz €ij €kl »

q; zai—|—biT—kijT,j +dijk Ejk -
In these Taylor expansions the constants will be determined by the calculations
that follow. Because of the requirement that 1 is symmetric with respect to the

components €;; and €;; of the strain tensor, we have the following relations among
the constants in its Taylor polynomial: o;; = s, Xij = Xjis Cijkl = Cjiki = Cijik =

Cklij-
" A short calculation shows that in the theory of small deformations
oij = pOY/0e;; . (22)
We also remember from the previous section that n = —9/06. So
n=—0y/00 = —(0y/0T)(0T/00) = —0¢/IT. (23)

Substitute the Taylor expansion for % in the last formulae for o;; and 7 to get

o
0ij = P 5~ = Yj = Xij T + cijri €kt s
ij
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Apy ¢
oy =2 ):pno+fT+xij€ij-

S aT T
We assume that when there is no deformation, i.e. ¢;5 = 0, T" = 0 , there are
no stresses, so 0;; = a;; = 0. Also, Q;(E,0,0,X) = 0. Substituting 0 for Q; in
g = Qi — Qj ujq, we get qi(Ekl’T’Tvk)‘leTQ:T;,:o =0 . Thus, when there are no
deformations, T = 0 and ¢; = 0, and we obtain the following equation which relates
the constants in the Taylor expansion for g;, namely 0 = a; 4 b; T' + d;;; €51 - But
1, T and ¢, are linearly independent functions, so from this equation we conclude
that the coefficients of these three linearly independent functions are zeros, i.e.
a; = b; = dijr = 0. Substituting these constants in the Taylor expansion for g;,
we get ¢; = —k;; T; . With this expression for ¢; the inequality g; 6 ; < 0 becomes
ki;T;T; =20

Thus, we arrive at the system of partial differential equations that every (linear)
continuous medium obeys:

o+ pfi=pi equations of motion
on )
pTo En +Gii =pr law of conservation of energy
Oij = Cijkl €kl — Xij T constitutive equations for the stress tensor

Ce s .
pn=pno + T T + Xij €ij constitutive equation for the entropy
0

g = —ki; T constitutive equation for the heat flow
1
€ij = 5 (u” + uﬂ> equations of strain.

These are 20 equations for the 20 unknown functions o;; ,u;, qi, €i5 ,7, 1. The
mass density p does not change during the deformation process, so p coincides with
the initial mass density which we consider known. If we substitute the expressions
for oy ,qi, €i5,n from the last 4 lines of this system in the first two lines - the
equations of motion and the law of conservation of energy, we obtain the equations

Cijkl Uk jl—Xij L j+pfi=pi;, 1=1,2,3 equations of motion
oT ou;
kij T ij —ce o Xij To a;’j +pr=20 equation of thermocondactivity

for the unknown functions u;, T . These 4 equations are valid for any thermoelastic
anisotropic medium, that is a medium with different mechanical and thermal
properties in different directions. Some crystals are examples of such media. For
isotropic media the constants in the constitutive equations remain unchanged under
rotation of the body. Hence for such a medium x;; = X6, ki = kdij,
Cijkl = A(Sij(Skl—i—u 5ik6jl+1/ 6i15jk. From the symmetries Cijkl = Cjikl = Cijlk = Cklij
it is clear that ;¢ = v, and consequently c¢;jr = Adi; O + p(ir 050 + i 0jic) -
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The constants A and p are called constants of Lame. Thus, the equations of a
thermoelastic isotropic medium are

A+ p) ujji + puig; —xTi+pfi=pii,
oT 8ul i
kT i — e — — x Ty —2t =0.
it T Ce X o Ty tpor
The system of the general equations of linear elasticity in the case of absence
of thermal effects was first derived by Navier [55] in 1821.

The system of 20 differential equations above or equivalently the system of
4 equations for thermoelastic anisotropic medium can be solved with suitable
initial and boundary conditions. If the system of PDEs in question has a solution
(u1,ug,us), it is given by the formula (7) of Cesaro. This solution is unique, provided
that ¢ > 0 and the quadratic form c;;i; €5 €51 is positive definite. The fact that
the solution (7) of Cesaro satisfies the whole system is demonstrated by a direct
substitution in the equations. The proof of uniqueness uses an identity, relating the
variables involved in the system of PDEs. It is delightfully elegant and surprisingly
short, see Ivanov [49] or Sokolnikoff [58].

11. TWO PROBLEMS

In this section we consider a couple of concrete problems.

Problem 1. Let us first consider an elastic body undergoing spherically
symmetric deformation. Then the displacement vector is of the form

u=u(r)e,, r#0

where e, is the unit vector along the radial direction. For such a displacement,
compute (i) the corresponding stress components, (ii) the normal stress on a
spherical surface r = constant and (iii) the normal stress on a radial plane. Then
determine u(r) so that Navier’s equation of equilibrium with zero body force is
satisfied.

Solution. (i) The given form of the displacement vector can be rewritten as

w=ulr) 1x = (),
where )
H(r) = ~u(r).

From this we find that w; = ¢(r)z;, so that

ui ;= ¢(r)di; + ¢/(7")<%$j)33i = Uji-
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Hence
ug = 3¢(r) +1¢'(r).

Let us now substitute these last two results in the stress—displacement relation
o = Adiva)I + p(Vu + vu?)

and make use of the fact that ¢(r) = (1/r)u(r). We obtain the following expression
for the stresses associated with the given displacement field:

1 1 1
oij = 2(()\ + p)di; — 2/1;951-:1@) ;u(r) + (Aéij + QMﬁxixj)u'(r).
(ii) For a spherical surface r = constant, we have n = e, so that n; = z;/r.

Hence, by the formula
ON = OikTyiNE ,

enabling us to determine the normal stress o directly from the stress components
oik, the normal stress o, on this surface is given by o, = o;;n;n; = (crijxixj)/rz.
Using the expression for o;; obtained in part (i) of this problem, we get

or = 2)\%u(r) + (A + 2u)u/(r).

This normal stress is the radial stress.

(iii) If n is the unit normal to a radial plane, we have n-e, = 0, and the normal
stress on on the plane is given by on = o3;n;n;. Another use of the expression for
o;; obtained in part (i), we arrive at the following expression for the normal stress:

o, =2(A+ p)%u(r) + M (r).

This normal stress is the peripheral stress.

(iv) Finally, to determine u(r), we return to the expressions for u; ; and wuy
obtained in part (i) of the problem and calculate that

4
Wiij = Uk ki = (Qb”(?“) + ;¢/(7‘))9€¢~
Substituting these into Navier’s equation of equilibrium
1NV 2u; + (A + pug g + fi = 0,
with f; = 0, we see that it is satisfied if ¢(r) obeys the following differential equation:
d? 4d
o 4do

drz " rdr
The general solution of this equation is

A
¢(T‘):T73+B7

48 Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 29-54.



where A and B are arbitrary constants. Thus,
A
u(r) = 2 + Br,

which is the sought solution of Navier’s equation of equilibrium with zero body
force.

The interested reader is invited to apply the ideas demonstrated in the above
problem to solve the following

Problem 2. An elastic body undergoes a deformation, which is symmetric
about the x3 axes. Then the displacement vector is of the form

u=u(Rer, R#0,

where R? = 2?2 + 2% and eg is the unit vector along the radial direction in the
cylindrical polar coordinate system with x3 axis as axis. For this displacement
compute (i) the corresponding stress components; (ii) the normal stress on a cylind-
rical surface R = constant; and (iii) the normal stress on a plane containing the
x3 axis. Also, determine u(R) such that the Navier’s equation of equilibrium with
zero body force is satisfied.

12. THE CONTEMPORARY APPLICATIONS

In many applications the analytic solution (7) of Cesaro, to the system which a
continuous medium obeys, can be obtained. Examples of such applications are the
elongation, the twisting and the bending of cylindrical elastic beams; the stretching
of a beam by its own weight; the twisting of a rectangular beam by two pairs
of forces applied at each end of the beam; the twisting of circular cylinder with
one base fixed and the other subjected to a pair of forces creating a torque; the
displacement of a bended beam; and many others. Some 2-dimensional problems,
like the displacement of an elastic membrane, subjected to uniform pressure from
one side, have analytic solutions that use harmonic functions. The solution for the
twisting of hollow, tube-like, beams also uses harmonic functions. The solution for
the twisting of a cylinder by forces applied to its surface, and that for the bending
of a tube with a circular or an elliptical cross-section, uses conformal maps. Most
of these problems, solved in all detail, can be found in Sokolnikoff [58].

During the mid-1950s and 1960s the computer started to become a major
tool for solving problems in continuum mechanics. At first the finite difference
methods and the Rayleigh-Ritz method (using the theorem of minimal potential
theory), were employed. Both of these methods required the solution of large
numbers of simultaneous equations and faced the danger of the system becoming ill-
conditioned as the number of equations increased. Finite difference methods have a
long history, including contributions by Newton, Laplace, Gauss, Bessel and others.
The method of finite differences replaces the defining differential equation with
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equivalent difference equations. The boundary conditions are satisfied at discrete
points by specifying either the function or its derivatives. The result of this analysis
are numerical values of the function at discrete points throughout the body.

Computer simulations of exploding stars, the expansion of the early Universe,
and the evolution of nebulae are so unbelievably realistic, only because they obey
the equations of continuum mechanics. May be less dramatic, but significant from
an applied point of view, is the fact that the flow of water or the spilling of oil
can be modeled with the system for the motion of that continuous medium, and be
presented visually in real time.

Modern cosmological simulations following the evolution of large portions of
the Universe use numerical methods from hydrodynamics, more specifically the
numerical solutions of the equations of compressible fluids. Simulations of merging
clusters of gallaxes are made this way. More specifically, the equations of motion
for a compressible fluid are solved using a Lagrangian formulation in which the
fluid is partitioned into elements, a subset of which is represented by particles of
known mass and specific energy. Continuous fields are represented by interpolating
between particles using a smoothing kernel, which is normally defined in terms of a
sphere containing a fixed number of neighbors, centered on the particle in question.
This method uses an artificial viscosity.

Continuum mechanics has become a fundamental science in investigations in
tissue biomechanics. Soft tissue constitutive equations have been developed and
the stresses and strains are being calculated for skin, tendon, ligament and bone.
As new materials are being developed, they are being modeled as a continuum.
Continuum mechanics is also being used in nanotechnology even on that small of
a scale.

The most prominent relevant texts in Russian are listed as references [65] —
[68].

Making an exhaustive list of the contemporary applications of Continuum
Mechanics is impossible, as the subject is vast, vibrant, and multidisciplinary and
develops literary every day. New branches of the subject are the nonlinear theory
of elasticity, relativistic continuum mechanics and computational fluid dynamics.
In recent years it has found connections with biomechanics and nanomechanics. A
few of the most recent applications of continuum mechanics are: memory effects,
the qualitative studies of the equations of Navier-Stokes, cross-diffusion systems
from biology and physics, the decay of acceleration waves, and the fluid animation
implementing numerical solutions to the 3D Navier-Stokes equations.
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This paper is the second of a series of two articles reviewing the contributions of
continuum mechanics and its history. The review is written for the mathematician who
is not a specialist in this field, and aims to give an in-depth overview of the mathematics
as well as a historical perspective of this field. The first of the two papers [10], Part
I. “Deformation and Stress. Conservation Laws. Constitutive Equations”, starts at the
very origins of continuum mechanics and brings the reader up to the 1820’s when Navier
publishes the system of the general equations of linear elasticity in 1821. The present
paper continues, discussing the consequences of this system, some of its simplifications
and approaches for solution. It also gives a perspective of how waves propagate in
continuous media. Reviewed are also perfect fluids and linearly viscous fluids. At the
end, the paper discusses the conditions for compatibility of the stresses.

Keywords: Mechanics of continuous media, continuum mechanics, hydrodynamics, history of
continuum mechanics, elasticity, theory of elasticity.

2020 Math. Subject Classification: XX76-02.

1. INTRODUCTION

The first attempt to discuss the motion of a continuous medium in more than
one dimension occurs in an isolated passage by D. Bernoulli from 1738 [2], §11,
paragraph 4.

We are surrounded by matter in the form of continuous media — deformable
solids, liquids and gasses. To study how they move in response to forces, while
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obeying the natural laws, we need two sets of coordinates. Material coordinates,
also called Lagrangian coordinates, are denoted by (X, X2, X3) and are the
coordinates of the material points of the continuous medium at time ¢ = 0. Lagrange
introduced them in 1788 in [22], part II, section II. Spatial coordinates, also
known as Eulerian coordinates, are denoted by (z1, z2, 23) and are the coordinates
of the points of 3-dimensional space (in which we observe the medium) occupied
by the medium at time ¢ > 0. Since the material coordinates are the coordinates of
the material points at an arbitrary initial time ¢t = 0, they can serve for all time as
names for the particles of the material. The spatial coordinates, on the other hand,
we think of as assigned once and for all to a point in the Euclidean space. They are
the names of places. The motion x = x(X,t) chronicles the places x occupied by
the particle X in the course of time. Under external influences - forces and heating
- the continuous body deforms. The goal of Continuum Mechanics is to find the
family of transformations

$7;:£L'7;(X1,X2,X3,t) ) i:17273a (1)

giving the Eulerian coordinates as functions of the Lagrangian coordinates fort > 0.
This motion is deterministic, obeying only the natural laws.

The general theory of the motion of a continuous medium, understood as a
family of deformations continuously varying in time, is almost exclusively due to
Euler, published in the period 1745 — 1766, references [25] — [40] in the first paper of
this review, and Cauchy, published in the period 1815 — 1841, references [3] — [18] in
the first paper of this review. Important special results were added by D’Alembert
in 1749, Green in 1839, Stokes in 1845, Helmholtz in 1858 and Cesaro in 1906, also
cited in the first part of this review.

2. LINEAR THERMOELASTIC CONTINUOUS MEDIA

The systems of equations
Cijkl Ukl — Xij T j+pfi=pt;, 1=1,2,3 equations of motion (2)

kij Tij — c- % — Xij To 8;2’]
for the unknown functions w;, 7T, which are valid for any linear thermoelastic
anisotropic medium, were first published in 1821 by Navier [30]. Here and in the
rest of the paper a dot above a variable denotes a differentiation with respect to time
and two dots denote a double differentiation with respect to time. Here u; are the
three components of the vector of displacement u, T is the temperature difference,
and are functions of the space coordinates (1,22, x3) and the time ¢. As usually in
the literature, a first partial derivative with respect to a space coordinate is denoted
by one lower index after a comma, a second partial derivative with respect to space

+pr =0 equation of thermal condactivity (3)
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coordinates is denoted by two lower indexes after a comma; p is the mass density,
fi are the components of the assigned (mass) force, r is the heat source, and ¢;;,
Xij» kij, ce, Ty are constants.

The system (2), (3) in the case of an isotropic body acquires the form:

A+ w) ujji + pui gy —xTi+p fi = pi (4)
k‘TZ'i— — —x 71 : = U
i — e gy —xTo == +pr=0 (5)

Both these systems simplify significantly if the process is isothermal or adiabatic.
A process is called isothermal if the changes that are taking place are “slow”; so
that the change in temperature is small and can be ignored. In the notation we use,
T = 0. In that case we do not consider at all the equation of thermal conductivity.
So the remaining equations are

Cijki Uk gl +pfi =pi;, 1=1,2,3 (6)
for an anisotropic body and
A+ p) ujji + puig; +p fi = pii (7)

for an isotropic medium. The equations (6) and (7) are known as the isothermal
equations of elasticity for an anisotropic and isotropic medium, respectively. The
constants c;jx;, A, pt are called isothermal constants.

The process is called adiabatic if the changes that take place in the medium
are “fast”, so that the heat exchange that takes place between different parts of the
body, being a “slower” process, can be ignored, that is, ¢; = 0. Of course, in this
case there are no sources of heat.

It is interesting that an adiabatic process is also isoentropic, that is, has a
constant entropy n = 1y = constant. This can be seen from the equations

0
pTo a—? +qi;=pr law of conservation of energy
Ce . . .
pn=pno+ T T+ Xij €ij constitutive equation for the entropy
0

which were derived in Part I of this review, as a part of the system of 20 equations
which any linear thermoelastic continuous medium obeys. From the constitutive
equation for the entropy, for an anisotropic body, we get
T = 77X” 0 gij'
Ce
For an isotropic body the relationship between the entropy and the deformations
is

T
T = —HE“‘.

Ce
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After substituting these last two equations for T in the equations of motion (2)
for an elastic anisotropic medium and in equations (4) for a thermoelastic isotropic
medium, these equations aquire the form:

Cip kg pfi=pti, i=1,2,3 ®)

and respectively

(A" + ) uj g0 + p wigj + p fi = pis, 9)
where the adiabatic constants cf;;;, A* and p* are related to their corresponding
isothermal constants via the equations

Xij Xkt 1o
g = Cijr + FHo—
(4
2T
A=A X0 e
Ce

In the remaining of the paper we will drop the upper index of the constants in the
adiabatic equations of elasticity, namely in equations (8) and equations (9), so they
will not differ in form from their corresponding isothermal equations (6) and (7).
We will call these equations the equations of elasticity.

For an isothermal process, the constitutive equations
0ij = Cijkl €l — Xij T (10)

for the components of the stress tensor, acquire the form
Tij = Cijkl €kl- (11)

In the case of adiabatic process the relationship among stresses and deformations
is analogous, if the constants c;;i; are the adiabatic constants.

For isotropic bodies from
Cijkt = A 0ij Ot + (S 051 + 631 Oj)

follows that
05 = /\5kk5ij +2u €ij- (12)

The equations (11) or respectively (12), giving the relationship between the stresses
and the deformations, are known as the generalized law of Hooke. Equations
(12) with A = u were derived from a molecular model by Navier published in 1821
[28], [29]; more generally by Poisson [32] in 1829 .

The elasticities A, ;1 and ¢;j;; in equations (11) and (12) are material constants
or functions of the temperature or entropy. Their physical dimensions are those of
stress, and they bear no physical connection with the mathematically analogous
viscosities appearing in the Navier-Poisson law, discussed in section 8 “Linearly
Viscous Fluids” of this paper.
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The equations (11) or respectively (12) together with the equations of motion
oiji+pfi=pis

of a linear continuous medium and the equations of strain

1
€ij = 5 (Uu + Uj,i)

form the system of equations of elasticity for an anisotropic and isotropic body
respectively. This system consists of 15 equations for the 15 unknown functions w;,
€;j and o0;5, where €;; are the components of the strain tensor and o;; are the
components of the stress tensor. Unlike that, the systems (6) and (7) are systems
with 3 equations each for the three unknown displacements u;. These equations are
typically called the equations of elasticity in displacements or equations of
Lame, and can be solved with appropriate initial and boundary conditions.

Because of the symmetries cjjii = Cjiki = Cijik = Ciriij, the number of the
independent components of the tensor c;ji; is significantly smaller than that of a
general tensor of rank 4. Thus, it is appropriate to replace couples of indexes with a
single index via the following scheme: 11 — 1, 22 — 2, 33 — 3, 23 and 32 — 4, 31
and 13 — 5, 12 and 21 — 6. The following notation is also used to denote the
components of the stress tensor and those of the tensor of deformations:

01 =011, 02 = 022, 03 = 033, 04 — 023, 05 = 031, 06 = 012

€1 = €11, €2 = €22, €3 = €33, €4 = 2€23, €5 = 2€31, €6 = 2€12.

Then the generalized law of Hooke (11) acquires the form
Oaq = CaB ER, (13)

where the Greek indices run from 1 to 6, and repeated indices denote summation
from 1 to 6. Because cog = cgo, the number of independent constants in the
generalized law of Hooke (13) for an arbitrary anisotropic body is 21.

The function
1 1

1 1
U= 501‘]‘ €ij = 500‘ Eq = §cij;€l €ij Epl = §ca5 €a €8 (14)

is called the density of the potential energy of the deformation, or the elastic
potential. So the potential energy of the deformation is

1
U:*Cijkl/ Eij&?kldV:/ vdV
2 1% |4

o
I

and

Oa
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There is a physical reason to require that the elastic potential be a positive
definite form, because then, in any given small strain from an unstressed state, the
stress must do positive work. Assuming that the elastic potential is positive definite,
it follows that the constants c,g satisfy the following restrictions:
c11 > 0,...,det|cap| > 0. In the case of isotropic body these inequalities acquire
the form A + 2u > 0, 4u(\ +p) > 0,...,4u5%(3X + 2u) > 0. Hence the necessary
and sufficient condition for these inequalities to be satisfied is:

3A+2u>0, pu>0. (15)

The elastic potential and its resulting potential energy of the deformation are
due to Green, who published them in 1839 [11], and in 1841 [12]. He proposed
that the work done by stress in a deformation depends only upon the strain and is
recoverable work. In his original papers, Green defines the stored energy ¥ by

1

2(5) = iokmgkmv

(later renamed the elastic potential v, which we defined with (14)). Thus, in Green’s
theory the number of independent elasticities is 21. He derives that

oy
o 88km '

Okm (16)
By the representation theorem for isotropic scalar functions, it follows that the
stored energy can be expressed in terms of the first and second invariants of the
tensor € as

1
= 5(A+2M)I§ —2ull..

A body is called hyperelastic if it obeys Green’s theory, based upon the use of
¥ as a stress potential according to (16). This theory has some remarkable results,
which we review next.

The fact that det|cqop| > 0 guarantees that the equations of the generalized law
of Hooke (13) can be solved for the deformations, obtaining

Ea = Sap 08,

where the matrix |s,g| is the inverse of the matrix of elastic constants |cag|, and
is called the matrix of stiffnesses. In the isotropic case the deformations €;; can
be expressed with the stresses, if we take in consideration that for ¢ = j from the
generalized Hooke’s law (12), namely, 0;; = Aegrdij + 21 €;5, we obtain

oii = (BN + 2p)ei.

Then
1
Eii = E(Uij — Aekkdis)
1 A 14+v v
= =0ij — 5y o OkkOij = —5—0ij — 50kk0ij, 17
2017 T 2u(BA+ 2p) THEOU T T T T kKO (17)
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where the constant
_ BA+2p)

e
is always positive and is called the module of Jung. For metals the module of Jung
is of the order of 101 N/m?2. The constant v is called the coefficient of Poisson and
isv = A/(2X + 2u). It is clear that —1 < v < 1/2. For all known materials Poisson’s
coefficient is positive. For metals it varies usually in the interval [1/4, 1/3].

Let us now consider a couple of special cases. Let us assume that f; = 0
and that the problem is static, i.e., the components u; of the displacement do not
depend on the time ¢. In this case the initial conditions of the system of differential
equations are no longer present and only the boundary conditions w;(x,t) = g;(x,t)
for x € Sy and oy;(x,t)n;(x,t) = h;i(x,t) for © € S, remain, because the medium
is elastic and not thermoelastic.

1. Simple Shear
Simple shear is characterized by the following stresses:

093 = constant # 0, the rest of o;; = 0. (18)

These stresses satisfy the equations of equilibrium o;; = 0. The deformations
that correspond to them are:

1
€93 = ——093, therest of &;; =0.
2u

The geometric interpretation of the tensor of deformations, which was explained in
the first part of this review, follows that a cube with sides parallel to the coordinate
planes, will deform under a simple shear in such a way that the right angle between
the edges of the cube, that are parallel to the axes 25 and 3 decreases (if go3 > 0)
or increases (if 093 < 0) with the angle y23 = 2e93. From equations (10) follows

that
023

723
Thus, p has the meaning of the ratio between the so called shearing stress oa3 to
the resulting from it change ~yo30f the right angle. The constant p is called module
of shearing, it is often denoted in the technical literature by G.

2. Hydrostatic Pressure

We consider an elastic body with an arbitrary shape. Its boundary is subjected
to stresses, that are applied perpendicularly to the surface, toward the body, and
have a constant intensity p > 0. Then

op = —pni, (19)

where n; are the components of the outward unit normal to the surface of the body.
The stresses
011 = 022 = 033 = —p, and oy; = 01if 7 # j
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satisfy the equations of equilibrium with f; = 0 and boundary conditions given by
(19). From equations (17) it follows that

€11 — €22 = €33 = and Eij = 0 ife 75 j (20)

__r
3N+ 2u°
Both in this and in the previously considered example, the deformations are constant,
and thus satisfy the conditions for compatibility of St. Venant, discussed in detail
in the first paper of this review. Hence from them the displacements u; can be
calculated, that correspond to the stresses in consideration. From equations (12) one
calculates the relative change in the volume (expansion if p < 0) and (contraction
if p > 0). Let € = ¢;;. Then
) (21)

where

kE=X+2u/3=FE/(3—6v) (22)
is called the module of contraction. It is the ratio of the hydrostatic pressure to
the relative change of volume. From the inequalities (21) it follows that & > 0.

The elastic material is called noncompressible if under pressure the relative
change ¢ of the volume remains zero. In that case from (21) and (22) we calculate
that v = 1/2.

3. THE LAW OF CONSERVATION OF MECHANICAL ENERGY

We considered the law of conservation of mechanical energy in part I of this
review and showed that it has the form
dK

E+ VgijdijdV:VV,

where K = fv pv; v;/2dV is the kinetic energy,

14 S

is the power of the external forces and d;; = (v; j +v;,;)/2 = d;; is the tensor of the
rate of deformations, introduced by Euler in 1769 [9], §§ 9-12. In the case of small
deformations d;; = Je;;/0t. The total time-derivative of the potential energy U of
the deformations is

au 1 0 0
o §C¢jkl/v &(&‘jskl)dv = Cijkl/vgijagkldv
Then it follows that in the linear theory of elasticity the law of conservation of
mechanical energy acquires the form
d

(K +U) =W. (24)
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If we denote by
A(r) = / Wt (25)
0

the work done by the external forces during the interval of time [0, 7] and assume
that at ¢ = 0 the body was in an undeformed state and at rest, i.e. K(0) = U(0) = 0,
then from equation (24) it follows that

K(r)4+U(r) = A(1), (26)

where the argument of the functions K, U and A determines the moment at
which they are evaluated. Equation (26) shows that the sum of the kinetic and
the potential energies at a given moment equals the work done by the mass forces
and the surface forces upto that moment.

4. THE STATIC PROBLEM

In a static problem we are not interested in the process of deformation, but
only in the final state, which we regard as an equilibrium. The static theory is a
linear one: uniformly doubled displacements always result from uniformly doubled

loads, and, more generally, from displacements u', u? corresponding to stresses

ol, 02, assigned forces f', 2, and assigned surface loads o}, 0% we construct a

displacement u = u' — u? answering to the stress ¢ = o! — o2, force f = f! — £2,

— 4l 2
and surface load oy = o — 0%

Let us assume that such an equilibrium state is reached in the moment ¢ = 7.
Then K(7) = 0 and hence U(7) = A(r). Since the potential energy U(7) does
not depend on the “path” of the deformation, but only on the final deformation,
we may choose an arbitrary “path” of deformation. Let us choose the mass force
components f;, the stress components o; and the components u; of the displacement
in the following way:

In the time interval 0 <t <e: fi(x,t) =0, 0;(x,t) =0 and u;(x,t) =0,
in the interval ¢ <t <71 —e¢:
t—e t—e¢ t—e¢

filx,t) = f; oi(x,t) = Gim—r and u;(x,t) = u;

T—2’ T —2¢’

in the interval 7 —e <t <7: fi(x,t) = fi, 0i(x,t) = 0; and w;(x,t) = uy,
where by f;, o; and u; we denote the values of these functions at the moment ¢t = 7
and depend only on the position x. They satisfy the equations of equilibrium and

so the functions f;(x,t), 0;(x,t) and u;(x,t), defined above satisfy the equations of
motion. Then from equations (25) and (23) we obtain

U(T):/Wdt+/Wdt+/Wdt:/Wdt:%/pfiuid‘/—k%/aiuid&
0 € T—€ € 14 S
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because the velocity du;/0t = 0 outside the interval [e,7 — €], as a consequence
of the choice we made on ¢ in the definitions of the functions f;(x,t), o;(x,t) and
u;(x,t) above. In this way we arrive at the formula of Clapeyron [4] from 1834,
asserting that the potential energy of the deformation equals half of the work which
the external forces (mass forces and surface forces) would have done, if they had
from the beginning the values which they acquire at the deformed equilibrium stage.

Solving even equilibrium problems of the linear theory of elasticity often brings
significant difficulties. This is due primarily to the form of the boundary conditions.
The principle of St Venant is helpful in many such situations. This principle
applies to the difference in the stresses and the difference in the deformations inside
the body, which result from two different, but statically equivalent systems of surface
forces, applied at some portion of the boundary. According to this principle, in
domains sufficiently far from this part of the boundary, the difference in the stresses
and that in the deformations is ignorably small.

In 1859 Kirchhoff [19] establishes the uniqueness of the solution to boundary
value problems of equilibrium where the stress vector and the displacement are
prescribed upon disjoint surfaces S; and S;, respectively, such that the closure
of S1 4+ S is the complete boundary of a finite body V. The displacement u is
determined uniquely to within an infinitesimal rigid displacement. He published
these results also in 1876 in [20].

There is a remarkable variational principle enabling us, in the case of equilibrium
subject to given surface displacements and vanishing assigned force in the interior,
to select among all kinematically possible deformations that one which satisfies the
equations of the theory of elasticity, when a positive definite elastic potential is
given. The first to recognize its significance was Kelvin, who in 1863 expressed
it as “the elementary condition of stable equilibrium”. As a proved theorem of
linear three-dimensional elasticity, it was first given by Love [26] in 1906 : “The
displacement that satisfies the equations of equilibrium as well as the conditions at
the boundary surface yields a smaller value for the total stored energy that does any
other displacement satisfying the same conditions at the bounding surface.”

For a review of the two-dimensional linear elastic problem and that for cylindric
bodies the reader is referred to Ivanov [18].

5. THE PROPAGATION OF WAVES

Having given consideration to static problems, let us now consider the propagat-
ion of waves.

In Continuum Mechanics waves are described as “singularities"across the two
sides of a geometric two-dimensional surface that propagates in space. Such surfaces
are called singular. To make things specific, consider a family of surfaces given by

X = X(p17p27t)a (27)
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where p1, p2 are a pair of surface parameters, identifying what we shall call a surface
point. The velocity of the surface point, identified in this way, is

ox

— . 28
8t p1,p2=const. ( )

By eliminating the parameters, we may write (27) in the form
a(x,t) =0 (29)

for some function «. Define the normal component v,, of the velocity of a moving
surface by the scalar product

ox Ja
= — n=-—9% _ (30)
ot p1,p2=const. VOO

where n is the unit normal to the surface. v, is called the speed of displacement
of the surface. The velocity v,n is the normal velocity of the surface.

Un

Let ¥ be a function defined on the surface, we may for our purposes consider
it scalar, vector or tensor-valued. If ¥ undergoes an abrupt change in its value from
one side of the surface to the other, the surface is called a singular surface with
respect to the tensor U. The jump in value of ¥ is denoted by [¥]. Hugoniot-
Duhem theorem states that: The speed of displacement of a singular surface across
which U and its derivatives of orders 1,...,p — 1 are continuous, but at least one
p-th derivative of V is discontinuous is determined up to sign by the ratio of the
Jump of OPW /OtP to that of the normal p-th derivative, OP¥ /OnP.

Let us now recall the material representation of a moving surface. If we express
the Eulerian coordinates x via the Lagrangian coordinates X and substitute them
in the definition (29) of the surface, we obtain S(X,t) = a(x(X,t)). In the latter
representation, which we denote by S(t), we may consider the medium particles as
stationary and the surface S(t) moving amongst them, being occupied by a different
set of particles at each time ¢. The speed of propagation of the wave is

a8
Vy=-——2t

NETETE

This speed is a measure of the rate at which the moving surface S(t) traverses the
material.

A surface that is singular with respect to some quantity and that has a nonzero
speed of propagation is called a propagating singular surface or a wave.

Above we defined a singular surface with respect to an arbitrary quantity W.
Duhem proposed to regard all quantities associated with a motion as functions of
the material variables X and ¢ and to define the order of a singular surface with
respect to W as the order of the derivative of ¥ of the lowest order suffering a
non-zero jump upon the surface.
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Some of the most interesting singularities are included in the case when
U =x(X, 1),

i.e., are surfaces across which the motion itself, or one of its derivatives, is discontin-
uous. Surfaces across which at least one of the functional relations x = x(X,t) or
X = X(x,t) defining the motion itself is discontinuous are singularities of order
zero; those across which some of the first derivatives of x are discontinuous are of
first order, etc.

For a singular surface of order 1, we put ¥ = z; and obtain
[zi,k] = si Ny 8i = [Nm Tim), [£5] = =V 5.

Here N are the components of the unit normal N to the surface x = S(X,t)
defining the motion and equal

Sk
/S Sm

The vector N is the normal velocity of the material. The vector s, with components
s;, is the singularity vector. It is parallel to the jump of velocity, its magnitude
varies with the choice of the initial state and thus does not furnish a measure of
the strength of the singularity. The jump in the speed of propagation of a singular
surface is the negative of the jump in the normal velocity of the material.

Ny =

For a singular surface of order 2:

Also
[#i k] = —VN si Ni, (] = Vi i (32)

The formulae (31) and (32) show that a singular surface of order 2 is completely
determined by a vector s and the speed of propagation V. They show that every
wave of second order carries jumps in the velocity gradient and the acceleration.
Waves of second order are therefore called acceleration waves.

For a body of continuous constant elasticity C, putting omr = Crmpg Epg int0
the equations of motion pX* = opp,.m + pf* yields

[P’“{k] = Clmpq [Up,gm], (33)

where we have supposed that pf is continuous. In linear elasticity
[Up,gm] = daqdpm[Tp.as]. By applying the general identities (31) and (32) for an
acceleration wave, when the present configuration is taken as the initial one, from
(33) we obtain

p V2% = Crmpg Mg e 5p,s (34)

or
(Ck:mpq NgMm — P V26pk) Sp = 0.
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From this it follows that in order for an acceleration wave with normal n to exist
and propagate, the jump s which it carries must be an eigenvector of Cppq g om
corresponding to the eigenvalue p V2. For a body such that the work of the stress
in any deformation is positive, as in the case for a hyperelastic body with positive
definite stored energy, the tensor Cppq g m is positive definite, therefore all
eigenvalues pV? are positive, and therefore all possible speeds are real. In the
general case, in any linearly elastic body such that the work of the stress is positive
for arbitrary deformations, a wave with given normal n may carry a discontinuity of
the acceleration parallel to any one of three uniquely determined, mutually
orthogonal directions, and corresponding to each of these directions there is a speed
of propagation determined uniquely by the elasticities of the material and by n.

When the eigenvalues pV? are not distinct, the above conclusion must be
modified, as is seen most easily by considering the isotropic case, for then (33)
assumes the more special form

(%] = (A + 1) [Wp i) + 2 [ ),
so that for an acceleration wave we have
p V351 = (A + ) spnpny + 11 Sk,
specializing (34). Taking the scalar and vector products of this equation by n yields
(pV? —(A+2u))s-n=0, (pV? —p)s xn=0.

If s-n # 0, the first of these equations yields p V2 = X + 2, and the second, if we
exclude the case when A4y = 0, yields sxn = 0. If s-n = 0, but sxn # 0, the second
equation yields pV? = p. Summarizing these results, we see that in an isotropic
linearly elastic body for which A\ + p # 0, a necessary and sufficient condition
that the acceleration waves be propagated at positive speeds is A+ 2 > 0, u > 0.
This condition is satisfied when the stored energy is positive definite. Two kinds of
acceleration waves are possible: longitudinal waves, whose speed of propagation is
given by
V2= (A+2u)/p,

and transverse waves, for which

VZ=pu/p.

The foregoing results were first obtained by Christoffel [5] in 1877 and independently
by Hugoniot [16] in 1886. These results demonstrate the far-reaching effect of
isotropy: instead of three speeds of propagation, for an isotropic body there are only
two, but instead of there being only three possible directions for the discontinuity,
there are infinitely many, though the possible directions are still far from arbitrary.
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6. PERFECT FLUIDS

A continuous medium is a perfect fluid if it can support no shearing stress
and no couple stress. As a consequence of these restrictions, the stress tensor o
is hydrostatic, o = —p1, and from Cauchy’s first law of motion the dynamical
equation of Euler is obtained

px = —gradp + pf. (35)

Euler published this equation in 1757, see [8]. Cauchy’s second law is satisfied
automatically, in other words, ballance of linear momentum in a perfect fluid implies
balance of moment of momentum, as long as there are no extrinsic couples, while
if there are such present, the perfect fluid is incompatible with the principles of
mechanics. Hugoniot in 1887 [17] Part I, Hadamard in 1903 [13] and Duhem in
1901 [7] Part II, Chap. IV, proved that a perfect fluid admits only longitudinal
waves. Hadamard [13] and Duhem [7] Part II, Chap. I, proved that in an isochoric
motion of a perfect fluid wave propagation of any kind is impossible.

In 1869 Kelvin proved that: “A flow of a perfect fluid subject to lamellar
assigned force is circulation preserving if and only if there exists a functional
relation

f(p,p;t) = 0; (36)

alternatively, if and only if, for each fized time, the pressure is constant, or the
density is constant, or the surfaces p = const. coincide with the surfaces p =
const.” Kelvin’s theorem is regarded as the fundamental theorem of classical hydro-
dynamics. Flows satisfying (36) are called barotropic.

A perfect fluid may be such that all its flows are barotropic; this is the case
for homogeneous incompressible fluids, for which p = const. in space and time,
and for piezotropic fluids, for which there is an equation of state of the form
p = f(p). But these conditions are merely sufficient, not necessary for barotropic
flow. For example, in a fluid having equations of state p = F(p,0) = G(p,n), special
conditions may lead to a flow for which # = const. or for which = const. Any such
flow is barotropic, but the functional form of f in (36) depends upon the particular
conditions giving rise to the flow.

When (36) holds, all the numerous theorems appropriate to circulation
preserving motion may be applied: the Helmholtz vorticity theorems, the Bernoullian
theorems and the Helmholtz theorem of conservation of energy. Indeed, all general
theorems of classical hydrodynamics follow from the circulation preserving property.

It should be noted also that In the case of a barotropic flow, the speed of
propagation of acceleration waves

- 250
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is ¢, where

=3
This is Hugoniot’s theorem, published in 1885, see [15] and [17], Part I.

For barotropic flows in which neither the pressure nor the density is uniform,
a necessary and sufficient condition for wave propagation to be possible is that the
pressure be an increasing function of the density; this being so, waves of all orders
greater than 1 propagate with the unique speed c. Since c¢ is the common speed of
propagation of so many kinds of waves, it is called the speed of sound.

0
2=22

7. PROBLEMS

In this section we would like to apply the ideas presented so far in order to
solve some concrete problems.

Problem 1. A rectangular tank containing a nonviscous liquid of constant
density moves horizontally to the right with a constant acceleration. Gravitational
force is the only external force. Find the pressure distribution in the liquid and the
geometrical shape of the upper surface of the liquid.

Solution. Choose the positive z-direction of the coordinate system to be the
direction in which the tank moves, and the positive z-direction to be the vertical
direction upward. Then, dv/dt = ae; and b = —ges, where a = |dv/dt| is a
constant and g is the (constant) acceleration due to gravity. Euler’s equation

dv 1
— =——Vp+b,
dt P Pt
where b is the body force, yields the following three equations for the three Cartesian
components (z,y, z) of the Vp:
Ip
X _ .
Ox P
dp
oy
op
F L

0

The second of these tree equations shows that p is independent of y, and thus has
the form

p=—paz + f(2)

where f(z) is an arbitrary function of z. From this form of p and the third component
of Vp above, we see that f(z) = —pgz + C, where C' is a constant, thus arriving at

p=—plaz + g2) + C.
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At the point where the z-axis meets the upper surface of the liquid, we have p = p,,
where p, is the atmospheric pressure. If this point is at a height h above the origin,
the last equation for p gives C = p, + pgh. Thus the pressure distribution of the
liquid is

p = pa — plax + gz — gh).

For p = p,, the last equation for p becomes

z:f(§>:z:+h.

This is the shape of the upper surface of the liquid. Evidently, this surface is a
plane, making an acute angle § = tan~!(a/g) with the horizontal. In the limiting
case when a — 0, the liquid moves with a constant velocity and the upper surface
of the liquid becomes a horizontal plane.

The interested reader is invited to apply the method of solution of the last
problem in order to solve

Problem 2. A column of a nonviscous liquid of constant density contained in
a vertical circular vessel rotates like a rigid body about the axis of the vessel with a
constant angular velocity w. Gravitational force is the only external force. Find the
pressure distribution in the liquid and the geometrical form of the upper surface of
the liquid.

In the next problem we will use Bernoulli’s equation

g—:—i—wxv:—VH7

where w is the vorticity vector and H = P + x + v?/2. Here P is

1
P:/falp7
p

with p being the pressure. This equation is known after Daniel Bernoulli (1738). It
is the equation of motion for an elastic fluid moving under conservative body force
—Vx. Since Bernoulli’s equation holds for an elastic fluid for which p = p(p), it
automatically holds in the special case of p = constant.

Problem 3. For a certain flow of a nonviscous fluid of constant density under
the Earth’s gravitational field, the velocity distribution is given by v = V¢, where
¢ = x3 — 3zy>. Find the pressure distribution.

Solution. From the given v, we find that curl v = 0 and 0v/9t = 0. Thus
the fluid is irrotational and steady. Then dv/Jt = 0 and either the vorticity vector
w = 0 or v x w = 0. Further, since the body force is the gravitational force, it is
conservative. With these observations, Bernoulli’s equation

86—;’+WXV:—VH,
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where H is the Bernoulli’s function H = P + x + v?/2, reduces to
VH =0.

Since 0H /0t = 0, it follows that
2

HEP+X+%=constant

everywhere in the fluid. Thus, under the assumed conditions, the function H is an
integral of the equation of motion of the elastic fluid.

Since the body force is conservative, x = gz, where z is measured vertically
upward. Accordingly, from H = P + x +v?/2 = constant with P = p/p we obtain

1
B+7v2+gz=C7
p 2

where C' is a constant.
From the given v we also find

0
v1:—¢:3($2—y2)7 vy = — = —bzy, v3 =0

Jr oy

and hence
v? = v% + v% = 9(x2 + y2)2.

Substituting this result into the equation relating v2, p and z (above), we obtain

9
§+§( 24 %) +g2=C.

From this result it is evident that C = p°/p, where p° is the pressure at the origin.
Thus,
9
p=1"- 9(5(»@2 +y%)? + 92)
is the sought pressure distribution.

Many interesting problems in Continuum Mechanics can be fond in the book
of Chandrasekharaiah and Debnath [3].

8. LINEARLY VISCOUS FLUIDS

Let us now consider a medium which in equilibrium, satisfies Euler’s equation
(35)
gradp = pf,
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but when in motion can support appropriate shearing stresses. More specifically,
let us assume that the stress tensor o is a linear function of the velocity x and the
velocity gradient, namely

o =g(x,w,d), (37)

where g is a linear function. Here d is Euler’s stretching tensor and w is Cauchy’s
spin tensor. The constitutive equations (37) define linearly viscous fluid. By
applying the principle that the constitutive equation must have the same form for
all observers, one shows that in fact ¢ is independent of x and w, i.e.,

0= g(d)7 (38)a

with the function g being linear. This equation in an internal frame, along with
f(0) = —p 1, was taken as the definition of a fluid by Stokes [35] in 1845. If we now
use a coordinate system with axes that coincide with the principal directions of d,
so that (38) becomes

Okm = [rm(d1,d2, d3)

it is easily seen that the principal axes of stretching are also principal axes of stress.
Another interesting property of fluids included in the definition (37) is that such
fluids are necessarily isotropic.

The most general linear isotropic function o of a symmetric second order tensor
d may be written in the form of Navier-Poisson law:

o=—pl+AIq1+2ud

or in components
Okm = —P Okm + A dqq5km +2u dim » (39)

where a use is made of the requirement that 0 = —p 1 when d = 0. Historically, the
simplest case of this law was proposed by Newton [31], Lib. II, Chap.IX. It follows
from (39) that o is symmetric, thus Cauchy’s second law is automatically satisfied.
Thus, for the fluids in question, ballance of momentum implies ballance of moment
of momentum. Substitution of (39) into Cauchy’s first law of motion

dv

0ij,5 +pfl:pd7tza 22172a3

yields a system of three differential equations, known, when subjected to further
simplifying assumptions, as the Navier-Stokes equations:

d
PV + (A + p)V(divy) — Vp + pf = p%. (40)
They are attributed to Navier (1822) and Stokes (1845) and hold for both

compressible and incompressible viscous fluid flows; in the incompressible case
p = po and divv = 0.
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The coefficients A and g are the viscosities of the fluid. In the absence of
viscosity, that is if A and p are negligibly small, this equation reduces to Euler’s
equation of motion (35) for perfect fluids. Because of that perfect fluids are often
called inviscid.

The portion AIq1 + 2ud of the stress is considered as arising from internal
friction. Because
Okm = 21 dgm,  when &k #m, (41)

1 is the ratio of the shear stress to the corresponding shearing of any two orthogonal
elements, and so is called the shear viscosity.

The stress power assumes the form
P = 0pm dm = —p e + Mdir)® + 20 e diie-
In 1850 Stokes had shown in [36] that for the fluids in consideration
w>0, 3A+2u > 0.

The same conclusion was reached independently by Duhem in 1901, published in
[7], Part I. These inequalities have some significant mechanical consequences. For
example, equations (40) with x4 > 0 imply that the shear stress always opposes
the shearing. These consequences show that the effect of the viscous stress o + pl,
as given by (39) is always to resist change of shape, and thus is of the nature of
frictional resistance.

For an incompressible viscous fluid, the Navier-Stokes equations (40) are

rewritten in the form: ) p

H o2 v

va—i—pr—i—f—dt. (42)
The coefficient u/p is called kinematic viscosity.

The presence of viscosity has the effect of making the propagation of most
kinds of waves impossible. In 1926 Kotchine [21] proved that the instantaneous
existence of a surface upon which x and p are continuous but &y ,, suffers a jump
discontinuity is incompatible with the law of linear viscosity (39). His result is
contained in an earlier one of Duhem from 1901 [7], Part II, Chap. III, who uses
a different terminology. In [6] and [7], Part II, Chap. III, Duhem asserts that in a
linearly viscous fluid no waves of order greater than 1 are possible.

A summary of the existing knowledge of the theories of non-linear viscosity is
given in [38]. An excellent text from the latter part of the 20th Century, which the
reader can use to get acquainted with the modern developments of the presented
theories, is the book of Timoshenko and Goodier [37].

For the readers privileged to know Russian, we list two excellent texts on
hydrodynamics [40], [41]. They can be used to deepen knowledge in the theories
presented in this review. Two prominent texts in Bulgarian on hydrodynamics are
the book of Zaprianov and that of Shkadov and Zaprianov, [39] and [42].
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9. CONDITIONS FOR COMPATABILITY OF THE STRESSES

The conditions for compatability of the stresses are due to Beltrami [1], and
were independently discovered by Mitchell in 1899 [27].

We consider the static case in which the equations of motion

0?u;
Oijg T Pfi = P

become the equations for equilibrium
Oij,5 + F;, =0, (43)

where F = rf. These equations form a system of 3 equations for the 6 unknowns
oi; (we assume that the volume forces f are given). This system has infinitely
many solutions, but not every one of them corresponds to a real deformation,
from which we can calculate the displacement u in the medium. As we know, for
the deformations, determined using equation (17), it is necessary and sufficient to
satisfy the conditions for the compatability of the deformations of St. Venant

E€ij kl F Eklij — Eik,jl — Ejl ik = 0. (44)

Let us express these conditions with the stresses. Let’s substitute the components
of the tensor of deformations, using equations (17), into the conditions (44), and
then introduce the notation o = o;. We obtain

v
Oijkl + Okiij — Oik,jl — Ojlik = m(g,ijékl + 0 10ij — 0051 — 0 j10ik).  (45)
If we set kK = [ and sum over the repeated index, we will arrive at the following
system of equations:

Tijkk + 0,ij = Tik jk — Ojk,ik = (0,15 + 0 kkij)- (46)

14
1+v
This system consists of 9 equations, from which independent are only 6. We can
obtain these 6 independent equations if we let, for example, i > j, because of the
symmetry with respect to the indexes ¢ and j. The system (46), obtained in this
manner, is equivalent to the initial system (45), because each system consists of 6
independent equations, and the equations of system (46) are linear combinations
of the equations of system (45).

Let us differentiate the equations (43) with respect to z,. We obtain
0ijik = —Fi . (47)

Substitute (47) in (46) to obtain
v 1%

1—|—ua’ij_1—|—u

Oijkk + 0 kk i = —(Fij + Fjq). (48)
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We are now going to simplify this system in the following way: We set in (45) k = ¢
and [ = j and after a few calculations obtain

1—v

Oijyij = mg,iz’- (49)
Now using (47), we can write equation (49) as
14+v
04 = ——— L.
) 1 _ I/ y

Substituting this result in (48), we finally obtain the conditions of Beltrami-
Mitchell for the compatability of the stresses:

v
Tijkk + Oij = —ﬁFch bij — (Fij + Fja).

1+v 1—
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UNIVARIATE POLYNOMIALS AND THE CONTRACTABILITY
OF CERTAIN SETS

VLADIMIR PETROV KOSTOV

We consider the set II}; of monic polynomials Q4 = z? + Zj;é aja:j, z € R, a; € R,
having d distinct real roots, and its subsets defined by fixing the signs of the coefficients
aj. We show that for every choice of these signs, the corresponding subset is non-empty
and contractible. A similar result holds true in the cases of polynomials Q4 of even
degree d and having no real roots or of odd degree and having exactly one real root.
For even d and when @4 has exactly two real roots which are of opposite signs, the
subset is contractible. For even d and when Qg has two positive (resp. two negative)
roots, the subset is contractible or empty. It is empty exactly when the constant term
is positive, among the other even coefficients there is at least one which is negative,
and all odd coefficients are positive (resp. negative).

Keywords: Real polynomial in one variable, hyperbolic polynomial, Descartes’ rule
of signs.

2020 Math. Subject Classification: 26C10, 30C15.

1. INTRODUCTION

In the present paper we consider the general family of real monic univari-
ate polynomials Qq = z¢ + Z?;& ajz?. It is a classical fact that the subsets of
R = Oay . .. ag_1 of values of the coefficients a; for which the polynomial 4 has
one and the same number of distinct real roots are contractible open sets. These
sets are the [d/2] + 1 open parts of Ry 4 := R?\ Ay, where Ay is the discriminant
set corresponding to the family Q.
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Remarks 1. (1) One defines the discriminant set by the two conditions:

(a) The set A} is defined by the equality Res(Q4,Q’,2) =0, where Res(@Qq,Q’;)
is the resultant of the polynomials Qq and @, i. e. the determinant of the corre-
sponding Sylvester matrix.

(b) One sets Ag := AL\ A2, where A? is the set of values of the coefficients a;
for which there is a multiple complex conjugate pair of roots of ()4 and no multiple
real root.

One observes that dim(Ay) =dim(A}) = d — 1 and dim(A2) = d — 2. Thus
A, is the set of values of (ag, ..., aq4—1) for which the polynomial Q4 has a multiple
real root.

(2) The discriminant set is invariant under the one-parameter group of quasi-
homogeneous dilatations a; — u?~Ja;, j =0, ..., d.

Remark 1. If one considers the subsets of R? for which the polynomial Qg
has one and the same numbers of positive and negative roots (all of them distinct)
and no zero roots, then these sets will be the open parts of the set Ry 4 := R%\
(AgU{ap = 0}). To prove their connectedness one can consider the mapping “roots
— coefficients”. Given two sets of nonzero roots with the same numbers of negative
and positive roots (in both cases they are all simple) one can continuously deform
the first set into the second one while keeping the absence of zero roots, the numbers
of positive and negative roots and their simplicity throughout the deformation. The
existence of this deformation implies the existence of a continuous path in the set
Ry 4 connecting the two polynomials ()4 with the two sets of roots.

In the present text we focus on polynomials without vanishing coefficients and
we consider the set

Rg)d::Rd\(AdU{aozo}U{al:0}U~-~U{ad_1:0}).

We discuss the question when its subsets corresponding to given numbers of positive
and negative roots of Q4 and to given signs of its coefficients are contractible.

Notation 1. (1) We denote by o the d-tuple (sign(ap), ..., sign(aq—1)), where
sign(a;) = + or —, by &g the set of elliptic polynomials g, i. e. polynomials with
no real roots (hence d is even and ag > 0), and by £4(0) C &4 the set consisting of
elliptic polynomials (04 with signs of the coefficients defined by o.

(2) For d odd and for a given d-tuple o, we denote by Fy(o) the set of monic
real polynomials Q4 with signs of their coefficients defined by the d-tuple o and
having exactly one real (and simple) root.

(3) For d even, we denote by G4(o) the set of polynomials @4 having signs of
the coefficients defined by the d-tuple ¢ and having exactly two simple real roots.

Remark 2. For an elliptic polynomial @4, one has ag > 0, because for ag < 0,
there is at least one positive root. The sign of the real root of a polynomial of Fy(o)
is opposite to sign(ag). A polynomial from G,(o) has two roots of same (resp. of
opposite) signs if ag > 0 (resp. if ag < 0).
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In order to formulate our first result we need the following definition:

Definition 1. (1) For d even and ag < 0, we set Gy (1,1)(0) := Ga(o). For d
even and ag > 0, we set Gy(0) := Gy (2,0)(0) U Gg (0,2)(0), where for Qq € Gy (2,0)
(resp. Qa € Ga,(0,2)), Qa has two positive (resp. two negative) distinct roots and
no other real roots. Clearly Gy (2,0)(0) NGy (0,2)(0) = 0.

(2) For d even, we define two special cases according to the signs of the coeffi-
cients of Q4 and the quantities of its positive or negative real roots:

Case 1). The constant term and all coefficients of monomials of odd degrees
are positive, there is at least one coefficient of even degree which is negative, and
Qg has 2 positive and no negative roots.

Case 2). The constant term is positive, all coefficients of monomials of odd
degrees are negative, there is at least one coefficient of even degree which is negative,
and Q)4 has 2 negative and no positive roots.

Note that Cases 1) and 2) are exchanged when one performs the change of variable
T —x.

Our first result concerns real polynomials with not more than 2 real roots:

Theorem 1. (1) For d even and for each d-tuple o, the subset E4(0) C Eq is
non-empty and convexr hence contractible.

(2) For d odd and for each d-tuple o, the set Fq(o) is non-empty and con-
tractible.

(3) For d even and for each d-tuple o with ag < 0, the set Gy (1,1y(o) is con-
tractible. For d even and for each d-tuple o with ag > 0, each set Gy (2,0y(0)
(resp. Ga,0,2)(0)) is contractible or empty. It is empty exactly in Case 1) (resp. in
Case 2)).

The theorem is proved in Section 4. The next result of this paper concerns
hyperbolic polynomials, i. e. polynomials )y with d real roots counted with multi-
plicity.

Notation 2. We denote by I, the hyperbolicity domain, i. e. the subset of R?
for which the corresponding polynomial Q)4 is hyperbolic. The interior of Il is the
set of polynomials having d distinct real roots and its border 9Il; equals Az N1l .
We set

H;::Hd\(AdU{a():O}U{m:O}U---U{ad_1=O}).

Thus II}; is the set of monic degree d univariate polynomials with d distinct real roots
and with all coefficients non-vanishing. We denote by 1% and IT}* the projections
of the sets II; and IT}; in the space Oag_y . . . ag—1 (hence Hg =1II; and sz =1IIY),
by OIT% the border of IT¥ and by pos and neg the numbers of positive and negative
roots of a polynomial Q)4 having no vanishing coefficients.
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We set a := (ag,a1,...,aq-1), @’ = (a1,...,aq4-1), @’ := (az,...,aq—1) and
a®) = (ak,...,aq—1). In what follows we use the same notation for functions and
for their graphs.

Remarks 2. (1) For a hyperbolic polynomial with no vanishing coefficients,
the d-tuple o defines the numbers pos and neg. Indeed, by Descartes’ rule of signs a
real univariate polynomial )4 with ¢ sign changes in its sequence of coefficients has
< ¢ positive roots and the difference c—pos is even, see [13] and [10]. When applying
this rule to the polynomial Q(—z) one finds that the number p of sign preservations
is > neg and the difference p — neg is even. For a hyperbolic polynomial one has
pos + neg = ¢+ p = d, so in this case ¢ = pos and p = neg.

(2) By Rolle’s theorem the non-constant derivatives of a hyperbolic polynomial
(resp. of a polynomial of the set IT}) are also hyperbolic (resp. are hyperbolic with
all roots non-zero and simple). Hence for two hyperbolic polynomials of the same
degree and with the same signs of their respective coefficients, their derivatives of
the same orders have one and the same numbers of positive and negative roots.

Our next result is the following theorem (proved in Section 5):

Theorem 2. For each d-tuple o, there exists exactly one open component of
the set 1L} the polynomials Qq from which have exactly pos positive simple and
neg negative simple roots and have signs of the coefficients as defined by o. This
component s contractible.

One can give more explicit information about the components of the set II7.
Denote by M such a component defined after a d-tuple o and by M¥ its projection
in the space Oag—_ - - - ag—1. It is shown in [19] (see Proposition 1 therein) that M
is non-empty. In Section 5 we prove the following statement:

Theorem 3. For k > 3, the set M* is the set of all points between the graphs
LY of two continuous functions defined on M*~1:

MF = {a(9) € RI=F | LF (a(-F+D) < gy < L (al@F+D) qld=h+D) ¢ pre-1y

The functions L% can be extended to continuous functions defined on M*=1 whose
values might coincide (but this does not necessarily happen) only on OMF—1,

Remark 3. Theorem 2 can be deduced from Theorem 3 (but we give in
Section 5 a direct proof which is short enough). Indeed, given a component M of
the set II;, one can successively contract it into its projections M= M2
M?. The latter is one of the sets H;‘li . defined in Example 2 which are contractible.

In Section 2 we remind some results which are used in the proof of Theorem 2.
In Section 3 we introduce some notation and we give examples concerning the sets
I1g and IT; for d = 1, 2 and 3. These examples are used in the proofs of Theorems 2
and 3. In Section 6 we make comments on Theorems 1, 2 and 3 and we formulate
open problems.
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2. KNOWN RESULTS ABOUT THE HYPERBOLICITY DOMAIN

Before proving Theorems 1, 2 and 3 we remind some results about the set Il
which are due to V. I. Arnold, A. B. Givental and the author, see [3], [11] and [14]
or Chapter 2 of [17] and the references therein.

Notation 3. We denote by K4 the simplicial angle {1 > 29> > 24} CR?
and by V the Viete mapping

VZ($1,---7$d)’_>(901a---790d)7 Yy = E l‘il.’fiz"'fﬁij-
1Si1<i2<"'<’ij§d

Strata of Ky are denoted by their multiplicity vectors. E. g. for d = 5, the stratum
of K5 defined by the multiplicity vector (2,2,1) is the set {1 = z2 > x3 = x4 >
x5} C R5. The same notation is used for strata of II; which is justified by parts
(3) and (4) of Theorem 4.

Remark 4. The set Ay NIl = A}i N I consists of points a € II; C R?,
for which the hyperbolic polynomial Q4 has at least one root of multiplicity > 2.
That is why 14\ Ag = II; \ A} = Sya is the stratum of II4 with multiplicity vector
14 =(1,...,1) and

I = Sya \ ({ao = 0} U+~ U {ag_y = 0}).

The strata of IT}; (they are all of dimension d, so they can also be called components)
are of the form

S1a(o) :={a € Sya | sign(a;) =0;,0<j<d-1}
for some o = (09, ...,04-1) € {}%.

Theorem 4. (1) For k > 3, every non-empty fibre fk of the projection mF -

HS — Hg_l is either a segment or a point.

(2) The fibre fr is a segment (resp. a point) exactly if the fibre is over a point
of the interior of H(lf{ (resp. over 81’[571).

(3) The mapping V : K4 — I is a homeomorphism.

(4) The restriction of the mapping V to (the closure of) any stratum of Ky
defines a homeomorphism of the (closure of the) stratum onto its image which is
(the closure of ) a stratum of 114.

(5) A stratum S of Il defined by a multiplicity vector with ¢ components
is a smooth (-dimensional real submanifold in R?. It is the graph of a smooth
(d — £)-dimensional vector-function defined on the projection of the stratum in
Oaq_g...aqg—1. Thus S is a real manifold with boundary. The field of tangent
spaces to S continuously extends to the strata from the closure of S. The extension
is everywhere transversal to the space Oaq . ..aq—¢—1. That is, the sum of the two
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vector spaces Oayg . . .aq—p—1 and (the extension of ) the field of tangent spaces to S
is the space Oayg . ..aq—1-

(6) For k > 3, the set H§ is the set of points on and between the graphs Hﬁ
and H* of two locally Lipschitz functions defined on Hsfl whose values coincide
on and only on 6H§_1:

My = {(aara@* ) e Rx T | HE (@) < aqy < HE (0],
(Hf(a(d7k+1)) - H_l"c_(a(dkarl))) PN (a(dkarl) c aHS—l).

(7) For k > 3, the graph HY (resp. H*) consists of the closures of the strata
whose multiplicity vectors are of the form (r,1,s,1,...) (resp. (1,r,1,s,...)) and
which have exactly k — 1 components. (In [17] it is written “k components” which
is wrong.)

(8) For 2 < k < {, the projection S* of every (-dimensional stratum S of Iy
in the space Oag_y ...aq—1 is the set of points on and between the graphs Hﬁ(S)
and H*(S) of two locally Lipschitz functions defined on the closure Sk—1 of Sk—1
whose values coincide on and only on OS*1.

Remarks 3. (1) The projections 7% are defined also for k = 2. For k = 2,
each fibre f, is a half-line and only the graph Hy (but not H, ) is defined, see
Example 2.

(2) Cousider two strata S; and Sy of II; defined by their multiplicity vectors
1(S1) and p(Ss2). The stratum Sy belongs to the topological and algebraic closure
of the stratum S if and only if the vector 1(S2) is obtained from the vector p(Sy)
by finitely-many replacings of two consecutive components by their sum.

Remark 5. For m > 2, consider the fibres f;, of the projection

o g =1, alte=amtlo.ont,

In particular, f; = f5_1. Suppose that such a fibre f;, is over a point A :=
(a9_,.s---,a5 ;) € II". When non-empty, the fibre f2, is either a point (when
A € 0II}) or a set homeomorphic to a (d — m)-dimensional cell and its boundary
(when A € I’} \ OII7"). This follows from part (6) of Theorem 4. The boundary of
the cell can be represented as consistsing of:

~ two 0-dimensional cells (these are the graphs of the functions HP|4),

— two 1-dimensional cells (the graphs of Hf+2\(,rm,+1)_1(A)),

— two 2-dimensional cells (the graphs of Hi”'?’\(

Trm,+1o7rnL+2)—1(A)),

—two (d—m—1)-dimensional cells (the graphs of Hi|((ﬂ-'m+1o,n-m+20,,,oﬂ-d—1)—1(A)).
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Remark 6. It is a priori clear that for the functions L% defined in Theorem 3,
one has the inequalities

Lk (@R D) < B (@WFD) and LR (al4RD) > HE (@R

for each value of a(?=%=1 where L% or L* (hence HY or H) is defined. It is
also clear that the border of each component of the set II; consists of parts of the
closures of the graphs H¢ and of parts of the hyperplanes {a; = 0}, j =1, ...,d—1.

In Chapter 2 of [17] one can find also results concerning the hyperbolicity
domain which are exposed in the thesis [21] of I. Méguerditchian.

3. NOTATION AND EXAMPLES

Notation 4. Given a d-tuple o = (0¢,...,04-1), where g; = + or —, we
denote by R(0) the subset of R?22Oay - - - a4 defined by the conditions sign(a;) =0,
Jj=0,...,d—1, and we set 113 = II} NR(o). For aset T C Oag---ag—1, we
denote by T* its projection in the space Oag_j - - - ag_1.

Example 1. For £ = 1 and for a; = 0, j = 0, ..., d — 2, there exists a
hyperbolic polynomial of the form (z + ag_1)z?~! with any as_; € R, so IT} = R.
If one chooses any hyperbolic degree d polynomial @7; with distinct roots, the shift
x +— x + g results in ag—1 — aq—1 + dg, so there exist such polynomials @} with
any values of ag_1. In addition, one can perturb the coefficients ag,...,aq4—2 to
make them all non-zero by keeping the roots real and distinct. Thus H;;l =R* =

R\ {ag-1 =0},
Hzl N {ad,1 > 0} = {Ri Ag—1 > 0} R Hzl N {ad,1 < 0} = {Rt Dag—1 < 0}

Example 2. One can formulate analogs to parts (1), (6) and (7) of Theorem 4
for k = 2 by saying that the border of the set IIZ is the set Hi while H? is empty,
see part (1) of Remarks 3.

The set H_%_ is the projection in R2 22 Oag_saq—1 of the stratum of II; consisting
of polynomials having a d-fold real root: (x + A\)9. Its multiplicity vector equals
(d). Hence aq—1 = dX, ag_o = d(d — 1)\?/2, so H? : ag_o = (d — 1)a%_,/2d. One
can observe that

7 = {ag—2 # 0 # ag—1, a4—2 < (d —1)aj_,/2d},

I N{ag—1 >0, ag—2 >0} = {ag_1 >0, 0 < ag_y < (d—1)aj_,/2d} =117 |
%2 N{ag—1 <0, ag—2 >0} ={ag-1 <0, 0 < ag_2 < (d—1)a?_,/2d} = HZ%JF ’
II? N {ag—1 >0, ag—2 <0} ={ag—1 >0, ag_2 <0} = I} and

H:;z n {ad71 <0, ag—2 < 0} = {adfl <0, ag—2 < 0} = H?f—— :
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To obtain similar formulas for IIZ instead of II%? one has to replace everywhere the
inequalities ag—1 < 0, ag—1 > 0, ag—2 < 0, ag—2 > 0 and aq—2 < (d —1)a?_,/2d by
ag—1 <0, aq-1>0,a4-2<0,a4-2>0and ag_o < (d— 1)a3_1/2d respectively.

Example 3. For d = 3 (hence o = (0¢,01,02)), we set ay := a, a; := b,
ag := ¢, and we consider the polynomial Q3 := x> +ax?+bz+c. Taking into account
the group of quasi-homogeneous dilatations which preserves the discriminant set
(see part (2) of Remarks 1) one concludes that each set II3 , is diffeomorphic to
the corresponding direct product

(3 ,N{a =1})x(0,00) if o2 =+ or (II3,N{a=—1})x(-00,0) if B2 =—.

Set ¢’ := (—09,01, —02). Using the same group of dilatations with u = —1 one
deduces that the set I3 , N {a = —1} is diffeomorphic to the set II3 , N {a = 1}.
Therefore in order to prove that all sets II3 , are contractible it suffices to show
this for the sets 115 , N {a = 1} with g, = +. The latter sets are shown in Figure 1.

-04 -03 -02 -01 O 0.3

_0.3-
Figure 1: The discriminant set of the family of polynomials 22 4+ 22 + bz + ¢ and

the sets I13 , N {a = 1}.

The figure represents the discriminant set of the polynomial Q% := 23 + 22 + bx + ¢,
i. e. the set

Res(QS, QY ) = 4b° — b2 — 18bc + 27¢* + 4c = 0.

(The set A2 is empty, because there is not more than one complex conjugate pair
of roots, so Az = Al see Remarks 1.) This is a curve in R? := Obc having a cusp
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at (b,c) = (1/3,1/27) which corresponds to the polynomial (z + 1/3)3. The four
sets 115 , N {a = 1} are the intersections of the interior of the curve with the open
coordinate quadrants. The intersections with {b > 0,¢ > 0} and {b > 0,¢ < 0} are
bounded curvilinear triangles.

4. PROOF OF THEOREM 1

Part (1). Each set £4(o) is non-empty. Indeed, given a polynomial Q4 with
ap > 0 (see Remark 2), for C' > 0 large enough, the polynomial Q4 + C' is elliptic.
If the polynomials Q41 and Qg2 belong to the set £;(o), then for ¢t € [0,1], the
polynomial le = 1Qq1 + (1 — t)Qq2 also belongs to it. Indeed, the signs of the
respective coefficients are the same and if Qg 1(z) > 0 and Qga2(z) > 0, then
Qi(x) > 0. Thus the set £;4(0) is convex hence contractible.

Part (2). Each set Fq(o) is non-empty. Indeed, for C' > 0 large enough, the
polynomial Q4+ sign(ag)C has a single real root which is simple and the sign of this
root is opposite to the sign of Q4(0). For a given polynomial Qg € Fy(o), denote
this root by £. Hence the polynomial QY := |£]¢Qq(z/|¢|) is in F4(o) and has a root
at 1 or —1. Suppose that the root is at 1 (for —1 the proof is similar). We show
that the subset F9 (o) of Fy(o) consisting of such polynomials QY is convex hence
contractible. On the other hand the set F4(c) is diffeomorphic to F3(co) x R% from
which contractibility of F4(c) follows.

For any two polynomials QS’T, Qg’* € F(o), the signs of the coefficients of the
polynomial

0=t + (1 -1)QY", telo,1],
are the same as the signs of the respective coefficients of QS’T and Qg’*, hence
2"’ € FJ(o). This proves that F3(o) is convex.
Part (3).
A) Contractibility of the sets Gg (2,0)(0) and Gg (0,2)(7)-

The two real roots of @4 have the same sign (i. e. a9 > 0). We assume
that they are positive, i. e. we prove contractibility only of G4 (2)(0); otherwise
one can consider the polynomial Qg(—2z) with the d-tuple & resulting from o via
x — —z (this mapping induces a bijection of the set of d-tuples onto itself) and
contractibility of G4 (0,2)(5) will be proved in the same way. Denote the real roots
of Qg by 0 <& <.

We can assume that at least one coefficient of odd degree of @4 is negative.
Indeed, if all coefficients of Qg of odd degree are positive, then by Descartes’ rule
of signs the polynomial Qg can have two real positive roots only if there is at least
one coefficient of even degree which is negative. However in this case (and this is
Case 1)) the set G (2,0y(0) is empty, see Proposition 4 in [7].
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Next, we assume that n = 1 (hence £ € (0,1)). Indeed, if one considers instead

of Qa € Gg,(2,0)(0) the polynomial QY == n%Qa(x/n), one has QY € Ga,(2,0)(0) and
QY(1) = 0. We denote the set of such polynomials QY by 93’(2’0)(0). As Gg,(2,0)(0)

is diffeomorphic to g27(270) (o) x R, contractibility of g37(270) (o) implies the one of
Ga,(2,0)(0).

For £* € (0,1), we denote by Qg:go)(a) the subset of polynomials of 937(2,0)(0)
with £ = &*. If Qg‘l and Qg’Q are two polynomials of ggfw (o), then for t € [0, 1],
one has tQ5" + (1 — 1)QY* ¢ Q’g:é’o) (). Therefore for each & € (0,1), the set
Qg’fz 0) (o) is convex hence contractible, and to prove contractibility of 937(2)0)(0)
(and hence of G4 (2,0y(0)) it suffices to find for each £ € (0,1) a polynomial Qg‘f €
gg’é 0) (o) depending continuously on &.

Suppose m is odd, 1 < m < d — 1, and that the coefficient of Q4 € Gg,(2,0)(7)
of ™ must be negative. There exists a unique polynomial of the form

R:=2¢—Az™+B, A>0, B>0, suchthat R(()=R(1)=0. (4.1)
Indeed, the conditions
A"+ B=1-A+B=0 (4.2)
imply
A=(1-¢H/1-¢™) >0 and B=—-1+A=¢"(1-€7™)/(1-€™) > 0. (4.3)

Remarks 4. (1) The fractions for A, B and B/{™ can be extended by conti-
nuity for £ =0 and £ = 1. For £ € [0,1], one has

Ael, 4] limg o+ A=1, lime ;- A =

m

B e [0, =m) limg_,o+ B =07, limg ,,- B=%m, (4.4)

m m

B/¢™ € [0,max(E2, 1)), limgor B/E™ =1, limg,y- B/§™ = 4.

m m

(2) The function R has a global minimum at some point zpr = xp(§) € (0, 1).
One has

lim () = zar0 = (m/d)Y @™ € (0,1), R(zaro) <0 and lm zp(€) =1.
£—0t E—1—

For m > 3, the tangent line to the graph of R for = 0 is horizontal and (0, R(0))
is an inflection point. There is also another inflection point z; = x;(§) € (0, zr).

Set
T:={1,2,,...om—1m+1Lm+2,...,d—1}. (4.5)
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We construct a polynomial ¥ := Z?;é ;27 with signs of the coefficients v, j € Z,
as defined by the d-tuple o and satisfying the conditions

U(E) = U(1) = 0. (4.6)

The latter conditions can be considered as a linear system with unknown variables
1o and 1,,. Its determinant equals {™ — 1 # 0, so for given ;, j € Z, these
conditions define a unique couple (g, ¥, ) whose signs are not necessarily the ones
defined by the d-tuple o. So to construct V¥ it suffices to fix ¢; for j € Z.

For each £ € (0,1) fixed and for ¢ > 0 sufficiently small, one has R + eV €
ggva 0) (o). Indeed, for m # j # 0, the coefficients of R+ ¥ have the signs defined
by the d-tuple o, so one has to check two things:

1) If € is small enough, then
—A+e), <0 and B+ey >0. (4.7

To obtain these two conditions simultaneously for all £ € (0,1), one has to choose
€ as a function of &.

The conditions (4.6) can be given the form
"Ym +o=U, Ym+tho=V,
where U and V' are polynomials in ¢ of degree < d — 1. Hence
o= (U—=¢"V)/(1=¢") and ¢y = (V-U)/(1-¢7). (4.8)
Formulas (4.8) imply that ¥ is of the form
K(z,)/1-¢&™, KEeR[z,€£, deg,K<d-—1. (4.9)

As £ — 0T, the quantity B decreases as £™, see (4.3) and (4.4). As & — 17, the
quantities |thg| and |iy,| increase not faster than C/(1 — &) for some C > 0. So
to obtain € = () such that conditions (4.7) hold for ¢ € (0,1), it suffices to set
£ 1= ™1 — €)3 for some ¢ > 0 small enough.

2) For £ € (0,1), one must have
R+e¥ >0 for z € (—00,§)U(1,00), and R+e¥ <0 for z € (§1). (4.10)

Lemma 1. It is possible to choose ¢ > 0 so small that conditions (4.7) and
(4.10) hold true simultaneously.

The lemma implies that for such ¢ > 0, R+ ¢(§)¥ € gg:(éz,o) (o). So one can
set Qg,g = R+ ¢(§)V from which contractibility of Gy, (2,0)(c) follows.
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Proof of Lemma 1. Conditions (4.7) were already discussed, so we focus on condi-
tions (4.10). Lowercase indices ¢ indicate differentiations w.r.t. .

a) To obtain the condition R+eW¥ > 0 for z > 1, it suffices to get (R+e¥)’ > 0
for x > 1. For x > 1, one has

R =da® ' —mAz™ ! = 2™ (dz™™ — mA) > 2™ (d — mA) (4.11)
(as R'(1) > 0, one knows that d — mA > 0). Next,
d—mA=AN0—-€m), Ai=d—m+me—dem.

There exists v > 0 such that for & € [0,1], A > a(1 —€)?. Indeed, A¢ = dm(£471 —
£m=1) <0, with equality only for £ = 0 and £ = 1, so A is strictly decreasing on
[0,1]. The existence of « follows from

AO)=d—m>0, A1) =Ag(1)=0 and
Age = dm((d —1)¢"" — (m —1)&™"!)  hence
Aee(1) = dm(d —m) >0 .
Thus for € € (0,1) and z > 1, one has
R> (2™ /m)a(l —€)?/(1-€m) and (V¥ <™ (1 - €)°K(z,8)/(1-€m),

see (4.9). One can choose ¢ > 0 sufficiently small so that for z € (1,2], R+e¥ > 0.
There exists 8 > 0 such that for z > 2, dz?™™ — mA > Br?™™ (see (4.11) and
(4.4)), so R > Baz?/d and for ¢ > 0 small enough, R+ e¥ > 0.

b) For z < —1 (resp. for x € [-1,0]), one has
R> |z|™(|z|"™ + A) (resp. R > B > (max((d—m)/m,1))™)

(see (4.1) and (4.4)) which for ¢ > 0 small enough is larger than |¢(£)¥| and (4.10)
holds true.

¢) Suppose that = € (0,£). Then R > min(h(z,§), ¢(z,€)), where
Ty=h&=R(E@-¢ and x :y=q(z):=B-Bx/¢

are the tangent line to the graph of R at the point (£,0) and the line joining
the points (0, B) and (&,0) respectively. Indeed, if z; € [£,1) (see part (2) of
Remarks 4), then the graph of R is concave for z € [0, ¢], so it is situated above the
line x. If z;y € (0,€), then for z € [z,&], one has R > h(x,§) and for z € (0,z],
one has R > ¢1(z,§), where

x1 : y=q(x,&) :=R(zxr) + (x —z1)(R(xy) — B)/x;
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is the line joining the points (0, B) and (x;, R(xy)). The line x; is above the line
x for z € (0,zy).

Consider the smaller in absolute value of the slopes of the lines 7 and Yy, i.e.
w = min(|R'(£)|, B/£). One finds that

R()=¢€""g(&)/(1—¢m), g:=de"™ —m—(d—m)e?,

with g¢ = d(d —m)(£3=™~1 — ¢4=1) > 0, with equality only for £ = 0 and & = 1.
As g(O) =-m< Oa g(l) = Oa

gee = d(d—m)((d—m -1~ (d=1)E"?) , 5o gec(1) = ~md(d—m) <0,

there exists § > 0 such that for £ € (0,1), |R/(€)| > B¢ 1(1—€)2/(1—¢™). On the
other hand B/¢ = £m~1(1—¢9=™) /(1—¢&™). Thus pu > pg := yE™ 1 (1—¢&) for some
v > 0. Hence for x € (0,&), the graph of R is above the line 6 : y = —po(z — &).

There exists Dy >0 such that for £ € (0, 1) and x € [0, 1], one has |(1-£)¥’'| < Dy,
see (4.8). Hence if ¢ > 0 is sufficiently small, the graph of ¥ is below the line §
for x € [0,¢),s0 R+¢e¥ > 0.

d) Suppose that m > 3 and that £ > 0 is close to 0. Then for x > &, the line
which is tangent to the graph of R at the point (£,0), is above the straight line
joining the points (£,0) and (xpr, R(xr)). Indeed,

RI(&) = €"Hdg™™™ —m — (d —m)¢?) /(1 - ™) = O™ ™)

7,
F;

whereas the slope of p is close to R(xa,0)/®a,0 < 0. Therefore for « € (£, zp], the
graph of R is below the line 7.

For x € [xr,1), the graph of R is below the line X joining the points (xar,R(zar))
and (1,0) whose slope —R(xpr)/(1—xr) is close to —R(xar0)/(1 —2ar0) > 0. On
the other hand one has |[(1 — £)¥'| < Dy (see c)), so |e(&)¥'| < c€™ (1 — £)2Dy.
Thus the graph of €(£)¥ is above the line 7 for « € (£, z)] and above Y for
x € [xp,1), hence it is between the graph of R and the z-axis for z € (£, 1), so
R+4¢eV <0.

e) For m > 3, we fix 6y > 0 small enough such that for £ € (0,60y], R+e¥ < 0,
see d). For m > 3, £ € [0y, 1], z € (§,1), and for m =1, £ € [0,1], z € (£, 1), one
has R+ e(§)¥ < 0 if ¢ > 0 is small enough. Indeed, one can write

R=(z-1)(z—&R; and ¥ =(x—1)(z—-¢&P;, Ry, ¥;eR[z{].
Then Ry(z,€) > 0. In particular, for £ = 1, one obtains

R=z%—(d/m)z™ 4+ (d—m)/m, R =dz®'—daz™ ', so R(1)=0,

and R" = d((d — 1)z% 2 — (m — 1)2™~2) hence R"(1) = d(d —m) > 0, i. e. R is
divisible by (z — 1)2, but not by (x — 1)3.
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For m = 1, £ = 0, one has R'(0) < 0 (whereas for m = 3, £ = 0, one has
R’(0) = 0), this why for m = 1 our reasoning is valid for £ € [0, 1], not only for
§ S [90, 1}.

Denote by R > 0 the minimal value of R; and by ¥; o the maximal value
of ¥y for x € [0,1]. One can choose ¢ > 0 so small that for x € (£,1) and for the
values of & mentioned at the beginning of e),

Ri—eU1 >Rig—e¥P10>0, so R+e¥ <0, because (xz—1)(z—¢&) <0.

The proof of the lemma results from a) — e). O

B) Contractibility of the set Gq (1,1y(0).

The two real roots of Q)4 have opposite signs (hence ag < 0). Denote them by
—n < 0 < & We define the sets

K:=Gaan@){€>n}, L:=G4a,1)(0){§ <n} and M := Gy 1.1)(0)N{ = n}.

Lemma 2. Set 0 := (09,...,0q-1), 0j =+ or —.

(1) Suppose that o9j11 =+, j=0,1, ..., (d/2) — 1. Then K =M = 0.

(2) Suppose that o9j41 =—, j=0,1, ..., (d/2) — 1. Then L =M = 0.

(3) Suppose that there exist two odd integers ji # jo, 1 < j1,jo < d —1, such
that o5, = —oj,. Then all three sets K, L and M are non-empty. There exists
an open d-dimensional ball B C Gg (1,1y(0) centered at a point in M and such that

BNK#0 and BN L # 0.

Proof. Parts (1) and (2). If 0941 = + (resp. o2j41 =—),j=0,1, ..., (d/2) — 1,

then for a polynomial Qq € Gg,(1,1)(0), one has Qq(0) < 0 and Qq(a) > Qa(—a)

(resp. Qg(0) < 0 and Qg(a) < Qgq(—a)) for a > 0. Hence &£ < i (resp. £ > n).
Part (3). We construct a polynomial Q3 € M. Set u := &1 792 and

Qg =" — "+ oy, (a7 —ua®) +2(QF° + Q5)

where
d/2 d/2—1
o, i o, i i
de:b+ E 02j$2j , beR, Qdo:TZL']1+ E 0'2j+1.’b2j+1
Jj=1 Jj=0

and € > 0 is small enough. We choose b and r such that QZ’Q(:I:S) = 0 and

97(£€) = 0 respectively. Then Q3(££) = 0 and for j # 0 and ji # j # ja, the
sign of the coefficients of 27 of Q9 is as defined by o. For £ > 0 small enough, one
has sign(Q¢(0))=sign(—¢? +¢eb) = —. The coefficient of 271 (resp. z72) of Q3 equals
0j, X (1+e(1+7)) (resp. 0, x (u+e(147))), so it has the same sign as o, (resp.
as 0j,).
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Consider a d-dimensional ball B centered at a point Qf € M, with £ =n =&
and belonging to Gg (1,1)(c). Perturb the real root & of QF so that it takes values
smaller and values larger than £y. The signs of the coefficients of Q¢ do not change.
Hence B intersects K and L. O

We show first that each of the two sets K and £, when nonempty, is con-
tractible. If we are in the conditions of part (1) or (2) of Lemma 2, then this
implies contractibility of G4 (1,1)(0). When we are in the conditions of part (3),
then one can contract K and £ into points of B and then contract B into a point,
so in this case Gg (1,1)(0) is also contractible.

We prove contractibility only of I (when non-empty). The one of £ is per-
formed by complete analogy (the change of variable x — —z exchanges the roles
of £ and £ and changes the d-tuple o accordingly). So we suppose that £ > 7. As
in the proof of A) we reduce the proof of the contractibility of K to the one of the
contractibility of KN {{ =1}. Asin A) we observe that if

QL, QT ek” =Kn{t=1,n=n"€(0,1)},

then th—i— (1 —t)Q? € K", s0 K" is convex hence contractible and contractibility
of KN {¢ =1} (and also of K) will be proved if we construct for each n € (0,1) a
polynomial @4 € K" depending continuously on 7.

Suppose that there is a negative coefficient of Q4 of odd degree m (otherwise
K is empty). For n € (0,1), we construct a polynomial

S:=a21—Az™-B, A>0, B>0, suchthat S(1)=S(-n) =0.
The latter two equalities imply
A=1-nH/1+n™) >0and B=n"(1+n%"™)/1+7n™)>0. (4.12)

Remarks 5. (1) Thus for n € [0, 1], there exist constants 0 < Bpin < Bmax
such that B/n™ € [Buin, Bmax|. Moreover one has

Aco,1], lim, .o+ A=1, lim, ,;- A=0%,
Bel0,1], lim, .o+ B=0", lim, ,,- B=1, (4.13)
lim,,_,o+ B/n™ =1 and lim, ;- B/npm=1.

(2) The derivative S” has a unique root & (which is simple) in (0,1). All
non-constant derivatives of S are increasing for x > Z)s, have one or two roots
(depending on m) in [0, Z5s) and no root outside this interval.
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We construct a polynomial ¢ := Z?;é @;jx?, where for j € T (see (4.5)), the

sign of ¢; is defined by the d-tuple o. This polynomial must satisfy the condition

which can be regarded as a linear system with known quantities ¢;, 7 € Z, and
with unknown variables ¢y and @,,:

_nm@m+@0:wa @m+¢0:T7 WTER[T]]a 50
(4.14)
wo="T+W)/(1+0™), om = (T=W)/(14+0™).

One must also have S +¢1(n)® € K", n € (0,1), for some suitably chosen positive-
valued continuous function e1(n). For £1(n) > 0 small enough, the sign of the
coefficient of 27, j € Z, of the polynomial S +¢;(n)® is as defined by the d-tuple o.
So one needs to choose £1(n) such that

—A+e1(n)em <0, —B+ei(n)po <0 (4.15)
and
S+e1(n)® > 0 for x € (—oo, —n)U(1,00), S+e1(n)® <0 for x € (—n,1). (4.16)

We set £1 := én™(1 —n)2, ¢ > 0. If one chooses ¢ small enough, conditions (4.15)
will hold true.

Lemma 3. For ¢ > 0 small enough, conditions (4.16) hold true.

Contractibility of IC follows from the lemma.

Proof of Lemma 3. All derivatives of S of order < d — 1 are increasing functions in
x for £ > 1 (see Remarks 5). As

S'(1) = (d+dn™ —m+mn?)/1+n") > (d—m)/2,

one can choose ¢ small enough so that for = € [1,2], S’ + e1(n)®" > 0. Hence
S+e1(n)® >0 for x € (1,2]. If x > 2, then for some positive constants k; and ko,
one has S’ > kyz¢ ! and @' < k‘zxdfz, so if ¢ > 0 is small enough, then for z > 2
(hence for > 1), S’ +e1(n)® > 0 and S + £1(n)P > 0.

One has

S'(=n) = —(dn® ' + (d—m)n™" " +mp™ ) /(L+9™) = 0™,

S’(—n) < 0 and S is convex for x < 0. Hence one can choose ¢ > 0 so small that
for x € [-2,—n], 8" +e1(n)®" < 0 hence S +¢&1(n)® > 0. Indeed, for n € [0,1] and
x € [-2,0], ' is bounded. For < —2, one has

S’ <kix?l and  |®'| < kja??
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for some positive constants ki, k3, so S + €1(n)® < 0 (thus this holds true for
x < —n).

The function S is convex on [—n, 0], see Remarks 5. Hence for x € [—n, 0], the
graph of S is below the line ¢ joining the points (—n,0) and (0, —B) Tts slope is
—B/n, with | — B/n| = O(y™"). Hence for z € [-n,0] and for & > 0 sufficiently
small, the graph of ® is above the line ¢ (because ®' is bounded for = € [—1,0],
n € [0,1]) and one has S +1(n)® < 0.

Suppose that = € [0, Zps]. The function S is decreasing, see Remarks 5, hence
S(x) < S(0) = —B = O(n™). As there exists k3 > 0 such that for z € [0,1],
|®| < kg3, for ¢ > 0 sufficiently small, one has S +&1(n)® < 0.

For x € [Zr,1], the function S is convex, hence its graph is below the line 5
joining the points (Zx7, S(Za7)) and (1,0). Recall that S(Zx7) <S(0)=—-B=0(n™).
There exists k4 > 0 such that for z € [0,1] and n € [0,1], |®’| < k4. Thus the slope
of C is

> B/(1—iu) > B=O0(™)
while |e®’| < én™(1 — n)%ky. Hence for sufficiently small values of & > 0, the graph

of e® is above the line ¢ and S +£1(n)® < 0. O

5. PROOFS OF THEOREMS 2 AND 3

Proof of Theorem 2. In the proof we assume that the polynomials of I1; are of the
form Qg := z% + ag_12% ' 4+ - - + asx® + a1z + a¢ and the ones of II;_; are of the
form Qg1 := 2% ' +ag_ 12?2+ -+ asx+a;. Thus the intersection ITyN{ag = 0}
can be identified with IT4_1.

We show that every polynomial 4 € II); can be continuously deformed so
that it remains in II;, the signs of its coefficients do not change throughout the
deformation except the one of ag which vanishes at the end of the deformation.
Therefore

1) throughout the deformation the quantities of positive and negative roots do
not change;

2) at the end of the deformation exactly one root vanishes and a polynomial
of the form xQ4_1 is obtained with Q4—1 € Iz N {ag = 0}.

Moreover, we show that throughout and at the end of the deformation one
obtains polynomials with distinct real roots. Thus any given component of the
set II}; can be retracted into a component of the set IT;_;; the latter is defined by
the (d — 1)-tuple obtained from o by deleting its first component. For d = 2, all
components of the set II5 are contractible, see Example 2.
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This means that for every given d and o, there exists exactly one component
of II}, and which is contractible. The deformation mentioned above is defined like
this:

d
Vo= (Qa+txQy) /(1 +td) = > (1 +t5)/(1 + td)a;a’ , t>0.
7=0

It is clear that the polynomial Yy is monic, with sign(a;) =sign((1+tj)a;/(1+td))
and lim_, o ((1 + ¢j)a;/(1 + td)) = ja;/d. There remains to prove only that Yy
has d distinct real roots.

Denote the roots of Qg by m < -+ < ns < 0 < & < -+ < &4_s. The
polynomial @/, has exactly one root in each of the intervals (71, 72), .., (Ms=1,7s)s
(s, &1), (£1,&2), -+ vy (Ed—s—1,Ed—s). We denote these roots by 7 < -+ < 74_1.

For each ¢ > 0, the polynomial Y, changes sign in each of the intervals (n;, 7;),
j=1,...,s—1, and in each of the intervals (754;-1,&), i =2, ..., d— s, so it has
a root there. This makes not less than d — 2 distinct real roots.

If 74 > 0 (resp. 75 < 0), then Yy changes sign in each of the intervals (7, 0)
and (74,&1) (resp. (ns,7s) and (0,&1)), so it has two more real distinct roots. Hence
for any t > 0, Yy is hyperbolic, with d distinct roots. O

Proof of Theorem 3. We remind that we denote by HX not only the graphs men-
tioned in Theorem 4, but also the corresponding functions.

A) We prove Theorem 3 by induction on d. The induction base are the cases
d =2 and d = 3, see Examples 2 and 3.

Suppose that Theorem 3 holds true for d = dy > 3. Set d := dy + 1. As in
the proof of Theorem 2 we set Qq := 2% + ag_12% ' + -+ + a9z? + a12 + a¢ and
Qa1 =2 +ag_ 1272 + -+ asx + ay, so that the intersection ITg N {ag = 0}
can be identified with II;_.

B) We remind that any stratum (or component) U of IT%_; is of the form (see
Notation 2 and Remark 4)

U= Sld—l(al,...,gd_l) = {a' S Sld—l | Sign(aj) = O’j,]. < j < d— 1}

Starting with such a component U (hence U = U%~1), we construct in several steps
the components Uy and U_ of the set II}; sharing with U the signs of the coefficients
aq—1, - -+, a1. One has ap > 0in U4 and a9 < 0 in U_.

At the first step we construct the sets U; 1 as follows. We remind that the
projections 7% and their fibres fi were defined in part (1) of Theorem 4. Each fibre
fa of the projection 7% which is over a point of U is a segment, see part (1) of
Theorem 4. If Q41 € U, then for £ > 0 small enough, both polynomials Q41 £¢
are hyperbolic. Indeed, all roots of Qq—1 are real and simple. The set U 4 (resp.
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Un,—) is the union of the interior points of these fibres fa which are with positive
(resp. with negative) ag-coordinates. Thus

Uiy ={ac falad €U, 0<ag< Hi(a)} and
U ={acfy|d cU, H (d') < ag <0},

see part (6) of Theorem 4). Hence the sets Uy + are open, non-empty and con-
tractible.

For d > 2, the intersection IT; N {ag = 0} is strictly included in the projection
Hill*l of Il in Oay ---aq—1. Therefore one can expect that the sets U; 4 are not
the whole of two components of II;. We construct contractible sets Uy + C Us + C
-+ CUg—1,4, where for 1 < j < d—1, the signs of the coordinates a; of each point
of Uy, (resp. Ug,—) are defined by o, and Uy_1 + are components of IT);. One has
ap > 01in Uk,_;_ and ag < 0 in Uk7_.

C) Recall that the set U consists of all the points between the graphs Li‘l of
two continuous functions defined on U%2:

U={d | LT (a") <a" < LT (a"), a" € U7},

see Notation 2. Thus (L‘_f__1 U L% ¢ 9U. Depending on the sign of a; in U, for
each of these graphs, part or the whole of it could belong to the hyperplane a; = 0.

Consider a fibre f; over a point of one of the graphs Ldifl and not belonging
to the hyperplane a; = 0. A priori the two endpoints of the fibre cannot have
ag-coordinates with opposite signs. Indeed, if this were the case for the fibre over
a' = a*’ (see Notation 2), then for all fibres over a’ close to a*’, these signs would
also be opposite, because the functions L%, whose values are the values of the ag-
coordinates of the endpoints, are continuous. Hence all these fibres fd intersect the
hyperplane ap = 0 (see part (1) of Theorem 4), but not the hyperplane a; = 0.
Hence the point a*’ is an interior point of IT; (hence of U as well) and not a point
of QU which is a contradiction, see part (2) of Theorem 4.

Both endpoints cannot have non-zero coordinates of the same sign, because
then in the same way the fibres f; over all points a’ close to a*’ would not intersect
the hyperplane ag = 0 hence a*’' € U, so a*’' & 0U.

Hence the following three possibilities remain:
a) both endpoints have zero ag-coordinates;
b) one endpoint has a zero and the other endpoint has a positive ap-coordinate;

¢) one endpoint has a zero and the other endpoint has a negative ag-coordinate.

D) Counsider the points of the graph L‘i_l which do not belong to the hyperplane
a1 =0 (for L%~ the reasoning is similar). If for B € (L4 \ {a; = 0}), possibility
a) takes place, then there is nothing to do.
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Suppose that possibility b) takes place. Denote by a; g the coordinates of the
point B (hence ag, g = 0). For each such point B, fix the coordinates a; = a; g for
j # 1 and increase a;. The interior points of the corresponding fibres f (when non-
void) have the same signs of their ag-coordinates, hence these signs are positive.
Then for some a; = a1,c > a1,B, one has either a;, ¢ = 0 (this can happen only
when a; g < 0) or the point C belongs to the graph Hffl and for a; > a; ¢, the
fibres fd are void, see Theorem 4.

In both these situations we add to the set U; 1 the points of the interior of all
fibres fd over the interval [a1,p,a1,c) (with a; = a; p for j # 1), over all points
Be (LY M\ {a1 = 0}).

If possibility c) takes place, then we fix again a; p for j # 1 and increase a;.
The interior points of the corresponding fibres f; (when non-void) have negative
sign of their ag-coordinates. We add to the set U; _ the interior points of all
fibres f; over the interval [a1,B,a1,c) (with a; = a; g for j # 1), over all points
Be (L {ar = 0)).

E) We perform a similar reasoning and construction with Lt (in which the
role of Hfﬁ_l is played by H%™!). In this case a; is to be decreased, one has
a1,c < a1,p and the interval [a1, 5, a1 ¢) is to be replaced by the interval (a1,¢, a1,5].

F) Thus we have enlarged the sets Uj 1; the new sets are denoted by Us 1:
Uy = UprU{aellly|a" U2 Lff__l(a”) <a; < Illf_‘f__l(a”)7

if LN (a”) >0, LYY (a") <ay < min(0, HY(a”)), if L9 (a”) < 0},

Us. U U{aelly|a” c U2 H Y (@) <ar < L (a"),

if L (a”) <0, max(0, H¥ ' (a")) <ay <L (a"), if L (@) > 0}.

The sets Uy + and Us 4 satisfy the conclusion of Theorem 3. We denote the
graphs L% defined for the sets U; 4+ and Us 4 by L’f,i and L’zc,i. The construction
of these graphs implies that they are graphs of continuous functions (because such
are the graphs H%). The set Uy 4 UU; _ (resp. Uz 4 UUs,, ) contains all points of
the set (74)~1(U) N 113, (vesp. (r?=1 o )~ L(U42) N I ).

G) We remind that fa = f5_1, see Remark 5. Suppose that the sets Us +,
2 < s < d— 3, are constructed such that they satisfy the conclusion of Theorem 3
(the graphs L% are denoted by L% . ) and that the set Us,+ UU, _ contains all points
of the set (745t o... o)~ H(U*) NI} ,.

Consider a point D € Lff__s which does not belong to the hyperplane a; = 0.

For the fibre £ _ of the projection 7¢=5t1o. ..o which is over D (see Remark 5)
one of the three possibilities takes place:
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a’) the minimal and the maximal possible value of the as-coordinate of the
points of the fibre are zero;

b’) the minimal possible value is 0 and the maximal possible value is positive;

¢’) the minimal possible value is negative and the maximal possible value is 0.

It is not possible to have both the maximal and minimal possible value of a4
non-zero, because in this case the point D does not belong to the set OU%*. This
is proved by analogy with C). With regard to Remark 5, when the fibre fJ__ is not
a point, then the maximal (resp. the minimal) value of ay is attained at one of the
0-dimensional cells (resp. at the other O-dimensional cell) and only there. This can
be deduced from part (2) of Theorem 4.

H) When possibility a’) takes place, then there is nothing to do. Suppose that
possibility b’) takes place. Denote by a; p the coordinates of the point D (hence
app = -+ = as—1,p = 0). Fix a; p for j # s and increase as. Then for some
as = Gs, 5 > s p, one has either as g = 0 (which is possible only if as p < 0) or the
point F belongs to the graph Hfffs. In this case we add to the set Uy 4 the points
of the interior of all fibres f _ over the interval [as p,as r) (With a; = a; p for
j # s), over all points D € (LT \ {as = 0}). The a,_i-coordinates of all points
thus added are positive.

If possibility ¢’) takes place, then we fix again a; p for j # s and increase as.
We add to the set U _ the points of the interior of all fibres fJ  over the interval
las,p,as ) (with a; = aj p for j # s), over all points D € L%*\ {as = 0}. The
as_1-coordinates of all points thus added are negative.

We consider in a similar way the graph L?~* in which case the role of Hi_s
is played by H%* a, is to be decreased, one has as,p < ag,p and the interval
[as.p,as,E) is to be replaced by the interval (as g, as,p]-

I) We have thus constructed the sets Usy; 1 which satisfy the conclusion of
Theorem 3:

U1+ = UspUfaclli|abt) ¢ yd—s-1,
LI (D) < a, < HE (@), if L) 2 0,
LA (a4D) < 0, < min(0, HE (@), if LI (a+D) <03,
Usp1,- = Us—U{aeIly|alstD e yd—-t,
HI™ (al4D) < 0y < LI (aloHD), if LI (@) <0,

max(0, HY % (attV)) < a, < LIZ*(a+Y), if L (al+V) > 0 }.

The set Usy1,+ UUst1,— contains all points of the set (79750 --or?)~L({Ud=s~1)N
113 . It should be noticed that as the fibres fj_, contain cells of dimension from 0 to
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s, all graphs L% ; would have to be changed when passing from L¥ | to L%, ;. The
new graphs are graphs of continuous functions; this follows from the construction
and from the fact that such are the graphs H¥.

J) One can construct the sets Ug—1 + in a similar way. The only difference is
the fact that there is a graph Hi, but not a graph H?2, see Example 2:
Ud_17+ = Ud_27+ U {a S HZ | ald=1) € Ul,

L§_27+(a(d_1)) < g2 < H2(al47V), if L3_27+(a(d_1)) >0,

2
Ly,

+(a(d_1)) < ag—2 < min(0, H2 (a@=1)), if L3_2,+(a(d_1)) <0},
Ui1,— = Ujo_U{aell}| a4V ecU,

ag—y < L3 5 _(a=Y), if L2, _(al4Y) <0,

0<ago<Li, (a9, if Lj , (a"Y)>0},

We set Uy := Ug—1,+. The set Uy UU_ contains all points from the set (r20---0
a))~L({U) N I ,. The sets Uy satisfy the conclusion of Theorem 3. Hence they
are contractible.

K) The functions L’jE encountered throughout the proof of the theorem can
be extended by continuity on the closures of the sets on which they are defined,
because this is the case of the functions Hi Moreover, fibres fk which are points
appear only in case they are over points of the graphs Hifl. Hence this describes
the only possibility for the values of the functions L% to coincide. O

6. COMMENTS AND OPEN PROBLEMS

One could try to generalize Theorem 2 by considering instead of the set II’; the
set R3 g, i. e. by dropping the requirement the polynomial )4 to be hyperbolic. So
an open problem can be formulated like this:

Open problem 1. For a given degree d, consider the triples (o, pos, neg)
compatible with Descartes’ rule of signs. Is it true that for each such triple, the
corresponding subset of the set R34 is either contractible or empty ?

The difference between this open problem and Theorem 2 is the necessity to
check whether the subset is empty or not (see part (3) of Theorem 1). For instance,
if d = 4, then for neither of the triples

((+’_v+7+)7 2, O) and ((_a_7_7+)7 0, 2)
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(both compatible with Descartes’ rule of signs) does there exist a polynomial
z* + azx® + agx? 4 a1z + ag with signs of the coefficients a; as defined by o and
with 2 positive and 0 negative or with 0 positive and 2 negative roots respectively,
see [12] (all roots are assumed to be simple).

The question of realizability of triples (o, pos, neg) has been asked in [2]. The
exhaustive answer to this question is known for d < 8. For d = 4, it is due to
D. Grabiner ([12]), for d = 5 and 6, to A. Albouy and Y. Fu ([1]), for d = 7 and
partially for d = 8, to J. Forsgard, V. P. Kostov and B. Shapiro ([7] and [8]) and
for d = 8 the result was completed in [15]. Other results in this direction can be
found in [4], [6] and [16].

Remarks 6. (1) It is not easy to imagine how one could prove that all compo-
nents of R34 are either contractible or empty without giving an exhaustive answer
to the question which triples (o, pos, neg) are realizable and which are not. Un-
fortunately, at present, giving such an answer for any degree d is out of reach.

(2) If one can prove not contractibility of the non-empty components, but only
that they are (simply) connected, would also be of interest.

For a degree d univariate real monic polynomial Q4 without vanishing coef-
ficients, one can define the couples (posy, negy) of the numbers of positive and
negative roots of Qg), £=0,1,..., d—1. One can observe that the d couples
(pose, megy) define the signs of the coefficients of Q4 and that their choice must be
compatible not only with Descartes’ rule of signs, but also with Rolle’s theorem.
We call such d-tuples of couples compatible for short. We assume that for ¢ = 0, 1,
..., d—1, all real roots of Qg) are simple and non-zero.

To have a geometric idea of the situation we define the discriminant sets Aj,

j=1,..., dasthe sets A; defined in the spaces Oaq_; ...aq—1 for the polynomials

Eldfj). In particular, Ay = Ag. For j =1, ..., d—1, we set A; := Aj X
Oag ...aq—j—1. We define the set Ry 4 as

Ryq =R\ (U,4)) U (U=t {a; = 0})) .

For d <5, the question when a subset of R4 4 defined by a given compatible d-tuple
of couples (posy, negy) is empty is considered in [5].

Open problem 2. Given the d compatible couples (pose, nege), is it true that
the subset of Ry q defined by them is either connected (eventually contractible) or
empty? In other words, is it true that each d-tuple of such couples defines either
exzactly one or none of the components of the set Ry q ?¢

Some problems connected with comparing the moduli of the positive and neg-
ative roots of hyperbolic polynomials are treated in [18], [20] and [19]. Other
problems concerning hyperbolic polynomials are to be found in [17]. A tropical
analog of Descartes’ rule of signs is discussed in [9].
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1. INTRODUCTION AND PRELIMINARIES

1.1. INTRODUCTION

The questions of C*-simplicity and unique trace property for a discrete group
have been studied extensively. By definition, a discrete group G is C*-simple if the
C*-algebra associated to the left regular representation, C(G), is simple; likewise
it has the unique trace property if C*(G) has a unique tracial state. An extensive
introduction to that topic was given by de la Harpe ([6]). Recently, Kalantar and
Kennedy ([10]) gave a necessary and sufficient condition for C*-simplicity in terms
of action on the Furstenberg boundary of the group in question. Later, Breuillard,
Kalantar, Kennedy, and Ozawa ([2]) studied further the question of C*-simplicity
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and also showed that a group has the unique trace property if and only if its
amenable radical is trivial. They also showed that C*-simplicity implies the unique
trace property. The reverse implication was disproven by examples given by Le
Boudec ([11]). In the case of group amalgamations and HNN-extensions, the kernel
controls the uniqueness of trace, and the quasi-kernels control the C'*-simplicity.

The notion of inner amenability for discrete groups was introduced by Effros
([5]) as an analogue to Property I for I; factors that was introduced by Murray
and von Neumann ([12]). By definition, a discrete group G is inner amenable if
there exist a conjugation invariant, positive, finitely additive, probability measure
on G\{1}. Effros showed that Property I" implies inner amenability, but the reverse
implication doesn’t hold, as demonstrated by Vaes ([14]).

Our examples (all of which being HNN-extensions) stem from the questions
of C*-simplicity and the unique trace properties for groups. In particular, all of
our examples have the unique trace property, and we also determine the C*-simple
ones and the non-C*-simple ones. The examples of section 2 generalize the example
given in [3, Section 5] (which corresponds to the group A[Sym(2), Sym(2)] of section
2). There is a resemblance to the groups introduced by Le Boudec in [11] since
they all act on trees. The main benefit is that our groups are given concretely
by generators and relations, which makes them more tractable to investigate some
further properties they possess.

We study some additional analytic properties of our examples. We show that
they are all non-inner-amenable by showing that they are finitely fledged - a prop-
erty that we introduce in [8].

We also explore some of the group-theoretical properties of our groups. We
remark that they are not finitely presented. Also, under some mild natural assump-
tions, we show that each group has a relatively large, simple, normal subgroup.

1.2. PRELIMINARIES

For a group I' acting on a set X, we denote the set-wise stabilizer of a subset
Y C X by
Fiyy = {gel|gY =Y}

and the point-wise stabilizer of a subset Y C X by
Tyy = {gel|gy=y, WyeY }.
For a point x € X, we denote its stabilizer by
Iy={gel|gz=2x}
Note that, I'ry}, I'(y), and I';; are all subgroups of I'. Also note that,

9U vy~ =Tigvy, 9Tag™ ! =Ty , and gL g~ = Tgyy.
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For a group G and its subgroup H, by ((H))c or by ((H)), we denote the
normal closure of H in G.

For some general references on group amalgamations and HNN-extensions see,
e.g., [1], [4], [13], [7], etc.

Let G = (X | R) be a group; let H be a subgroup of G; and let 6 : H — G be
a monomorphism. Then an HNN-extension of this data (named after G. Higman,
B. Neumann, H. Neumann) is the group

HNN(G,H,0) = Gx¢ = (XU{r} | Ru{(h) = 7 'h7t | h € H}).
It is convenient to denote H_1 = H and Hy =0(H). Every element y€ HNN (G, H,0)
can be written in reduced form as
Y=g gnT"gny1, where n €N, g1,..., 9041 € G, €1,...,6, = %1,
and where if €,11 = —¢; for 1 <i¢ <n—1, then g;41 ¢ H.,.

If S is a set of left coset representatives for G/H,, where ¢ = £1, satisfy S_; N
S1 = {1}, then every element v € HNN(G, H,0) can be uniquely written in
normal form as
v =517"897%2 - 5, 7°"g, where n € Ny, g € G, ¢, = £1, s, € S_.,, V1<i < n,
and where if ,_1 = —¢; for 2 < i <n, then s; # 1.

The HNN-extension HNN(G, H,0) is called nondegenerate if either H # G or
O(H) # G and is called non-ascending if H # G # 0(G).

The Bass-Serre tree T(HNN (G, H,0)) of HNN(G, H, 0) is the graph, that can be
shown to be a tree, consisting of a vertex set

Vertex(HNN (G, H,0)) =

{G}U {8171 8272 - - 5, 7°"G | n €N, 8178972 -+ - 5,7°" is in normal form}
and an edge set

Edge(HNN(G, H,0)) =
{H}YU {5172 897%% -+ - 8, 7" 841 H | nEN, 81718972 - -+ 5, 7°" is in normal form}.

The group HNN(G, H,0) acts on T(HNN(G, H,0)) by left multiplication.
The vertex v = §17%1897%2---5,7°"G is adjacent to the vertex
W= §1T°189T%2 - - 5, 7" 5, 11751 G with connecting edge

B {8175152752 Sy TS T H i ey = -1,

51T 859152 -+ - 5T s H if g1 = 1.
To see the reason for this, we need to look at the stabilizers. The stabilizer of v is

HNN(G,H,0), = 5175972 - 5,7 G (5171 5972 - - - 5,757 ) 71
) )
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and the stabilizer of w is
HNN(G,H,0)y=517"8T2 -+ - 8, 7" 8, 1 T G (517 8972 -+ - 8, T 5, 1 757 7L

Therefore the stabilizer of e is

HNN(G,H,0). = HNN(G,H,0), N HNN(G,H,0), =
1T 8972 - 8, T Spy1 [G N TEHLGT 0] (81751 89752 -~-sn75"sn+1)_1 =

S1T 8972 o5, T s 1 H o (517 5272 - - - ST Spy1) L =

51718972 5, T 8 1 H (8175189752 -+ 5,755, 11) "L if epyy = 1,
S1TE189T 2 v 8, 7o 8, TEH  HT 8041 (5175189752 - 5,757 8,01) " if g1 = —1.

Finally, since HNN (G, H, ) can be expressed as
HNN(G,H,0) = (Gx*(r))/{(r " *hr0(h™") | h € H)),
it has the following universal property (see, e.g., [4], page 36):

Remark 1.1. Let C be a group; let a : G — C' be a group homomorphism;
and let t € C be an element for which the following holds: t= a/(h)t = a(0(h)) for
each h € H. Then there is a unique group homomorphism 3 : HNN(G, H,0) — C

satisfying Ble = a and (1) = t.

To conclude this section, we recall that we called a group amenablish if it has
no nontrivial C*-simple quotients ([9, Definition 7.1]). We showed in [9] that the
class on amenablish groups is a radical class, so every group has a unique maximal
normal amenablish subgroup, the amenablish radical. Also, the class of amenablish
groups is closed under extensions. The amenablish radical 'detects’ C*-simplicity
the same way as the amenable radical ’detects’ the unique trace property (see [9,
Corollary 7.3] and [2, Theorem 1.3]).

2. HNN-EXTENSIONS
2.1. NOTATION, DEFINITIONS, QUASI-KERNELS

We use the following notations, some of which appear in [3]:

T.={y=go7°q17 -+ gnT"gnt1 | n > 0,7 € A is reduced},
T; = {’y = 7691761 .. -gnTE"gn_;’_l | n Z 07'}/ (S A iS reduCed}-
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For ¢ = £1, consider also the quasi-kernels defined in [3]:
K. = ﬂ rHr L. (1)
reA\TS
They satisfy the relation ker A = Ky N K_1, where, by definition,

ker A = m rHr— L.
reA

It follows from [3, Theorem 4.19] that A has the unique trace property if and
only if ker A has the unique trace property. It also follows from [3, Theorem 4.20]
that A is C*-simple if and only if K 1 or K is trivial or non-amenable provided A
is a non-ascending HNN-extension and ker A is trivial.

We need the following results.
Remark 2.1. Consider the Bass-Serre tree © = ©[A] of the group
A =HNN(G, H,0) = (G, 7 | 7~ *hr = 0(h) for all h € H),

and consider the edge H connecting vertices G and TG. Denote by ©1 the full
subtree of © consisting of all vertices v € O satisfying dist(v, G) < dist(v, 7G).
Also, denote by ©1 the full subtree of © consisting of all vertices v € © satisfying
dist(v, G) > dist(v,7GQ). Likewise, consider the edge T-1H connecting vertices G
and 771G. Then, denote by ©_; the full subtree of © consisting of all vertices
v € O satisfying dist(v, G) < dist(v,77'Q), and denote by ©_; the full subtree of
© consisting of all vertices v € © satisfying dist(v, G) > dist(v, 771Q).
It is easy to see that O, = T°O_,,
0.={G} U {t.G |t. e A\T! }, and ©. = { tiG | tl e T} }.

Proposition 2.2. With the notation from the previous Remark, the following
hold for each € = +1:

(i) Ke=Ae.)-
(i) K. < HNO(H).
(iif) vKev™" = Ao, for every v € A.

In particular Ag_y = 7K _c7"°.

Proof. (1)

geK. «—=rlgreH, YreA\T! <= grerH, VreA\T!
< grH =rH, VTGA\TJ < g fixes every edge of O,
<~ gEA(QE).
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(ii) From (i), we know that every element g € K. fixes all vertices adjacent to G
except for the vertex 7°G, eventually. Therefore it also fixes 7°G, so g fixes all
edges around G. In particular, g fixes the edge H, so g € H. Likewise, g fixes the
edge 77 'H,soge v Hr = 0(H).

(iii) As in (i), we have
geEVKNT! = Tlgve K. = 7 'gyeA@,
— gevho)y ! = g€Ae.).
O

Lemma 2.3. For e = +1, K. is a normal subgroup of H_., and a normal
subgroup of HNO(H). Moreover, if ker A is trivial, then K_1 and K1 have a trivial
intersection and mutually commute.

Proof. From Proposition 2.2 (ii), it follows that K; and K_; are subgroups of
HNO(H). Take h € H_.. Then
h- TJ ={ht® 17 gnT g1 | >0, TSI T gn T gy 18 reduced} =

{7°0°(h)g17%" -+ - gnT " Gny1 | n >0, 75171 -+ - g 7" gpy1 s reduced} = T;.

This gives the first assertion. For the second assertion, take k. € K, for each € = +1.
Then, from K. < H NO(H), it follows that k_1k; k=] € K; and kik_1k; ' € K_;.
Thus

K_ 13 (kik_1ky k"] = ki (k_1 kT 'kT]) € Ky,

and therefore klk,lkflk:% e KiNK_; =kerA={1}. O

Lemma 2.4.

(i) Let y=7%"gy, -+ 927 g17° €A be reduced. Then - TL D Tign. In particular,
K., <yK_.y '

(ii) Lety € G\H.. Then vTLﬁTL = (. In particular, yK_.y'NK_. = ker A.

(iii) Let~y € A be a reduced word starting and ending with 7¢. Then TiaﬂyTg = 0.
In particular, K_, N YK,y ! =ker A.

Proof. (i) Observe that

v-T-e
—e —1_—&1 —1,_—en

S {yr gt gt
m > 0, T_Engn+17'€n+1gn+2 e gn+m7-6n+mgn+m+1 is reduced}

—& 1> g g
T n o, gTL—‘—lT n+1 gTL+2T n+2 ,, . gn+m7— n+7ngn+m+l ‘

={A =70 1T Gnt2 GntmT T Grrmt1 | m >0, A is reduced}

T —€&n-
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The second statement follows from the observation
v (AT = A\ATE, c ATt

(ii) and (iii) follow easily. O

Lemma 2.5. Let v = gni17"gpn -+ - 92Tt 17, ' = g;+17'€;/g;1 . ~g’27'sllg’17'€,
and ~" = g;{HTEgg;L g7 g7 be reduced, where n >0 and € = +1. Then:

(i) If (v/)"'y € H_., then yK.y ' ="K (/)7

(i) If ker A is trivial and if (v')"'y ¢ H_., then K.y~ ! and v'K.(v')~! have
a trivial intersection and mutually commute.

(iii) If ker A is trivial, then YKy~ and v"K_.(v")~! have a trivial intersection
and mutually commute.

Proof. (i) (') 'vK.y~'4' = K. by Lemma 2.3.

(i) If (v/)~'v is an element of G \ H_., then the assertion follows from
Lemma 2.4 (ii). If (7/)~ !y starts with 77° and ends with 7°, then, by Lemma 2.4
(1), it follows that

(V)BT <K,
which, combined with K. N K_. = ker A = {1}, proves the assertion.

(iii) Observe that the reduced form of (y”) "1y starts and ends with 7¢, there-

fore the assertion follows from Lemma 2.4 (iii). O

Assume that ker A = {1}. Let S, be a left coset representatives of G/H. for
€= =£L

It follows from Lemma 2.5 that, for two reduced words

’ !
V= Sy 1T Sy - 89T s T and Y =t 1 Tty - -t T TE

with s;,t; € S_1US; and E,Ei,€; S {—1, 1},

VKA =K ()"

if and only if v = 4/, and this happens if and only if ¢; = &} and s; = t;, Vi. In
the case v # v/, yK.y~! and v/ K.(7')~! have a trivial intersection and mutually
commute.

If v = rn+175/r:rn - 1ro71 8177 is another reduced word, where r; € S_1 U S
and e € {—1,1}, then yK.y~! and v"K_.(7”)~! have a trivial intersection and
mutually commute.

g

From these considerations, it follow that

K©0)= P skis & PtK at™! (2)

seS_4 teS
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and, for n > 0,
Kn+1)= @ SnA1T " Sp - 82T€IS1TEK5T7€SI1T7€18271 ces 5517—75" s;}rl
e=+1

s, €S_1US1, g;=%1

Sp41TEn sy 82751 51 7% reduced

are normal subgroups of G. Also, consider the groups
IC(O,&') = @ SKlsil D @tK_ltil,
sES_. teS.
which are normal in H, for e = £1.

Remark 2.6. The group G acts transitively on the vertices stG, where s€S_1.
It also acts transitively on the vertices st~ 'G, where s € Si. This fact is an
important ingredient in the examples below.

Remark 2.7. It follows from Lemma 2.4 that K_1 is isomorphic to a subgroup
of K1 and vice-versa. Consequently, K_1 = {1} if and only if K1 = {1}. In this
situation, K(n) = {1} ¥Yn > 0.

2.2. A FAMILY OF EXAMPLES

For e = +1, consider nonempty sets I, and let I, = I’ U {¢.}. Also, let X,
be transitive permutation groups on I, and let I' = 3_; - 331 be the corresponding

permutation group on I_ UI;. Let ¥, = (X.),. be the respective stabilizer groups,
and define I'. =T,. = X, - X__. Define

A[Eflazl} = A[IflaIIaLflaLl;thzl}
= HNN(G, H,0) = (G,7 | 7~ hr = 0(h) for all h € H),
where
EE <{h(i1751 .. 7in75n;0n) ‘ nec Na €t € {_17 1}7 it € I—8t7 and On € FEn
satisfy i € I' . whenever g,6,_1 = —1; }) and
H.=(HU{h(o.) | 0c €T.}), e = £1.

Finally, define
G = (H.1,Hi) = (HU{h(o) |0 €T}),

where the following relations hold (there are redundancies):
(R1) Elements h(c_1)’s and h(c1)’s commute for all o, € ¥, where e = £1.

(R2) Let 1 <m < n, o, €T, ,and o, €T, . If (i1,61...,0m,&m) #
(j1,€1 -+, Jm;s€m), the elements

. . 12 . . .
h(j1,€1 -y dm,em;0r,) and h(i1,€1 .., fm, Emy - -+ iny Eni On)
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commute.

(R3) For 1 <m < n and o € I'¢,, the following holds

h(1,€1 -y im, Em;Om)RE1, €1« oy Ty Emy by Emtdy « -+ bny EnOn)R(11,E1 « oy by EmiOm)

= h(i1,€1 P ,im,Em,Um(im+1),Em+1, . ,in,En;O'n).

(R4) For o.,,0,, € T, , the following holds
h(i1,€1 -y imy €m; Tm)R(E1,€1 o oy imy Emi Oo) = R(I1,€1 -+« s s Em Tm O )-
(R5) For o,0’ €T, the following holds
h(o)h(c') = h(od’).
(R6) Forn € Z,o0 €T, and o, € I';,, the following holds
h(o)h(i1,€1 ..., in,En; crn)h(a)*1 = h(o(i1),€1,%2,€2, - -, in,En;On)-

(R7) For e = +1 and o, € T, the following holds

07 (h(oc)) = (T°h(0e)T™7) = h(1—c,&50¢).
(R8) For e =+1, n €N, and o, € T, the following holds

G_E(h(ih&,ig,ﬁg, . ,in,én; O'n)) = (Tsh(il,&ig,z’:‘g, . ,in,€n;0n)7_€)

= h(Lfs’E,il,E’ 12,82 ..., in, En; o—n)'
(R9) Fore=+1,n€eN, and o, € T, the following holds

0°(h(i1,e. .. 0in,En;00)) = (T °h(i1,€ ... in,En;0n)T°)

N h(ig,é‘z...,in,é‘n;O’n), ifilzL_E,
h(tey,—€,01,€ ... in, En;0n), if 11 # .

2.3. SOME BASIC PROPERTIES OF THE EXAMPLES AND THEIR QUASI-KERNELS

In this subsection we fix a group A = A[J_1,11,t-1,t1; 21, 21].

First, let’s note that Index[G : H.] = #(I.) for ¢ = £1. To see this, recall
that X, acts transitively on I., and for i € I., choose ué € 3. satisfying ﬂé(bs) =1.
Let’s denote AL = h(ut). If o € ¥, \ XL satisfies o(1) =4, then (p) too(te) = te.
Therefore (ut) oo €Y., so h((ul) too) € H.. It follows that h(o) e h(ul)H. =\.H.
Consequently, for each ¢ = £1,

G = H.u| |XH.. (4)
iel!
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It is easy to see in these notations that for e = 41, the set
Se ={Aliell}u{1}

is a left coset representative of H. in G.

Next, consider the action of A on its Bass-Serre tree © = O[A]. The set of all
adjacent vertices to the vertex G is

{7GY U { N yrGicel’ ;YU {77'GYy U { )\ |iel }.

This set can be indexed by the set 7_; U I in the obvious way: Denote by v((}) the
vertex G, by v(1_1,1) the vertex 7G, by v(t1, —1) the vertex 771G, by v(i_1,1)
the vertex \''7G, where i_; € I’ |, and by wv(i1, —1) the vertex /\?T’lG, where
i1 € I{. Denote a general vertex

)\1_1517'51 e )\i_"EnTE"G
by v(i1,€1,...,in,n) for an element )@61751 ~-~)\i,"an75" € A in its normal form,
ie,igel ., andife, 1 -6 = —1, theni, €I’ _ .

With the notation of Remark 2.1, for ¢ = £1, O, is the full subtree of ©
containing the vertex v(f)) = G and vertices v(i1,€1,...,%n,€n), where n > 1
and (iy,€1) # (t_c,€), and O, is the full subtree of © containing the vertices
V(t_e,€,%1,E1, -+ -, in,En), where n > 0.

Remark 2.8. It follows from [1, Exercise VI.3] that our examples are never
finitely presented since H is never finitely generated.

We continue with

Lemma 2.9. (i) Letm > 1, o, € T, , i € I_¢,, and e € {—1,1} satisfy
€€i_1 = —1=14 € ILet' Then
h(i1,eps1 ... sim,Em;0m)

= Ai_lsl 7—51 e )\i_"ém/]—em h(o—m)T75'rrL (}J:Tém)71 N 7-751 ()\i—lgl )71.

(ii) Fwvery element h of G can be written as

m
h=nh(o) [] (i} cnn,. il ehms on),
k=1

where m > 1, o € Fak,nk7 1 <n <+ < ny, and o € T satisfy the
condition: if ng = Ng4q for some 1 >k > m and some a > 1, then

-k -l ‘k+a -k+a
(Zl 7€k Lyl Ek,nk) 7& (Zl yEk+a,ly- .- aznk+a ; €k+(l7nk+a)'
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(ii) Fvery element g € T, can be written as

g= AL TN TN 7,

—E&m
where h € G and m > 0.

Proof. (i) follows by repeated applications of relations (R7), (R8), and (R6).
(ii) follows by repeated applications of relations (R3) and (R6).
(iii) follows by equation (4) and the structure of HNN-extensions. O

Lemma 2.10. Letn >m > 1 and o, € I'c,. Then the following hold

(1) h(i1,€1 DR 7ima€m; Jm)v(ihgla ey imagmvim+1;€m+1a e 7in75n)

= U(il,El, ey im,ﬁm,dm(im+1),€m+1, . 7ina€n)-
(i) A1, 1. 0msEms Om) € Ay(iy eq..sim,enm) and h(0) € Aypy for o €T,
(iii) Ifoc € I'c, then h(oe) € Ag_ ) =7 “K.7°.

(iv) Let m < n and let h(i1,€1...,in,En;00), A(J1,€1 -, Jms€m;0m) € A, If
(11,61 im, €m) Z (J1,€1 -+, Jms €m), then h(in, €1 ... in, €03 00) € Ay(yer . jomrem)
and h(jh €1y Jm»Cm; 5m) S Av(il,a‘l...,in,en)'

(IV) h(il,El...,in,En;O’n) 6‘/\((:)5) — (il,El) # (L_E,{-:).
Proof. (i) First, note that

o= ()\om(ierl))—l ° h(O’m))\ierl c F—Em+1

—E€m+1 —&m+1

since it fixes 1. . It follows by Lemma 2.9 (i) and (iii) that there are k; € I,
and a x € M., that satisfy (rsm+1 ...\ 7on)~1 = D i ...AI;TTZI;T*Eerl'
Therefore

(TEm+1 . NI e ) TLp(g)pEmat L NI e

—&n —E&n
— —€n\kn—1 . \Em+1,-—Em+1 Em+1( \em+1\—1 . (\kn-1\—1_€n,—1
=XT AT AT h(o)Tem s (A2 ir) (A=) T x
. -1
= Xh(L€n7 —€n, k’nflu —En—1y---, km+27 —Em42s bey, +15 “EMAH1; J)X

Then Lemma 2.9 (i) implies

h(il,&‘l . ,im,€m; Om)v(i1,€1, ce ,im,fm,im+1,€m+1, . ,in,én)
_ i1 €1 % € —e 7 -1 —e1 (%1 -1 i1 £1 % €
=N TN TS (o )T T (A )T T (A )T A A, TG
_\u €1, .. \im Em 41 Em+1 ... \in En
=\ T A T h(om) AT Al TG

i1 €1 ... im Em o'm(im+1) Em41 , ., . in En
=\ T AT )\%m+1 h(o)T A TG
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_vit e Vim o em \Om(Emt1) _empr . \in €
- A*EIT )\*EmT /\*€m+1 T )‘75"7—
. (Tem+1 .. )\in Tfn)_lh(o—)TEW1+l .. .)\in TG
—en —&n
)b €1 ... \im Em \Om (Im+1) _epma1 Lo )\ €n
=T AT )\_Em+1 T AT

' Xh(Lgn, —En, kn—la —En—1y---

. -1
) km+27 —Em+25 ley+1y —Em+1s U)X G

=\2_7f1.

—e1

= (i1, €1, .

.. )\im Tam)\gm(inl+1)7-5m+1 .

—€m —E€m+1

. ,’im,Em,Um(’im+1),Em+1, e

N @

—€n

yinsEn)-

(ii) The second claim is obvious. For the first claim,

h(il,é'l ey im,€m;0m)v(i1,€1 e ,im, Em)
— /\i_lalTsl. . .,\i_vréstmh(am)T—sm ()‘i—"ém)_l' LpE (/\i_lm)—l,,\i_lelTsl. . ~>\i_7';nrsm'G
=N T AT T R (00)G = 0(i1, €1 Ty Em)-

(iii) The fact Ag ) = 7 °K.7° is stated in Proposition 2.2. Let n > 0 and let
V(Le, —€,91,1, ..+ ,in,&n) € O_.. By the argument at the beginning of the proof of
(i), there are k; € I, and a x € H. satisfying

(7_8)\2517’51 . -)\ifsnTE")_lh(UE)T_E)\ijslTsl e )\ifsnTE"

—1

=xh(te,, —Enskn—1,—En—1, -1 le;s —€1,E,L—c;0c)X

Therefore
. . _ —e\ 11 £ in 5
h(oe)v(te, —€,i1,€1,. .., in,€n) = h(o)T A2 750 - A7 750
€\l €1,..\!n En . (+~—E )\l €1, .. )\in en\—1 —e\ 11 €1,..\!n €,
=7 AT A e (TR T AT m)h(o )T AT Al TG

= 77Nl 7 A

. . —1
—&1 —Em cslers _61757L—8705)X G

En
T 'Xh(LEnv_Enakn—ly_gn—lw-

= U(’/Ea —&,11,E15- .- 7Zn7€n)'

Consequently h(o.) € ©_..

(iv) Note that the element v = T*e""()\jj’ém)*l ceeTTe ()\jjel)’l)\ijeﬁal . ')\ifsnTE”
belongs to Tiem because of the condition (i1,€1...,%m,Em) # (J1,€1 -+, JmsEm)-
It follows from Lemma 2.9 (iii) that v = T*e"")\]illlTll)\’iZlQTl? e )\]islSle‘h, where
h € G and where k, € I_;,, Vt. Then

h(jh €1 ..y Jm,Cm; 5m) S Av(il,sl...,in,sn)

= N TN e h(8) T (A )T T )T € Ay ey i)
= () €T (N )T T N ) T A ey ey A T N
= h0m) €A e im Yot (VL ) o1 o)
= h(om) € Aﬂm(xﬁzm)fl-WH(Ailel)*lxile;ﬂ-wi"nffnc
& h(0m) € Arem,\’jlllrll,\’jigrlz--~>\’1757lshc
= h(0m) € Mu(ue,, ,—em krslasekosls):
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The last equivalence holds according to (iii). The inclusion h(i1, €1 ..., in,En;0n) €

Au(jr,e1 o jmaem) 18 Proven analogously.
(v) Every vertex of A,y is of the form v(i_c,¢,j1,€1,...,Jm,em), so if tuples
(i1,€1 .-+, in,en) and (t—e, €, J1,€1, - -, Jm, €m) satisfy the assumptions of (iv), then

h(it,€1. .. in €n;0n) € Mg,y By (i), h(t—c,&,51,€1, -+ s my €m; om) ¢ As.), and
the statement follows. O

Proposition 2.11. For a group A = A[I_1,11,t—1,t1;X_1,%1] and fore==1,
the following hold

() M@y =({h(c-)ocel . }uU
{h(i1751, e 77;m75m;0—m) |m2 17h(i1751v . wimﬂgm;am) €H767

and (i1,€1) # (1-¢,€) }) ;
(i) |Kel = hlte,—€50-¢) | o_c €T_. }U

{ h(te, —€,91,€1, - yin,En;on) |n > 1,0, €T, 1)
(iii) ker A = {1}.

Proof. (i) Denote the group on the right-hand-side by A. The inclusion A < Ao,
follows from Lemma 2.10 (iii) and (v). Take an element h € A ). Proposi-
tion 2.2 (iv) implies that h € H_.. If we assume h = h(c), then ¢ € T'_,, and
therefore h(o) € A. If h is not of the form h(c), Lemma 2.9 (ii) can be applied to
h~1 € H_.. It follows that

m
h = H h(i]f,fk,h e 7ika7€k,7Lk;Uk) . h(U—e)a
k=1

where m > 0, o, € T
h(i, e, .. ,ilm €l 01) ¢ A for some 1 <1 <m and that [ is the biggest number
with this property. We will derive a contradiction below. Then it is clear that
zll =t .and g, = ¢. Also, 07 € Fel,n, is not the identity, so there exist two

different elements &, p € I_y U I;, such that o;(k) = p. Let h act on

by ML 2 N2 = s 2 My 2> 1, and o_. € I'_.. Assume

3y 3y
v = U(217€l,17 s alnlagl,nlaK/7El7nz7ala€17 e 7an156n1)a
where a’s and e’s are arbitrary and allowed. The terms h(o_.) and
H;n:lﬂ h(i%, ex,- .. ,iﬁk,ak}nk;ak) leave v fixed by the choice of I. From the final

condition of Lemma 2.9 (ii) and from Lemma 2.10 (iv), it follows that the terms
with length equal to n; also leave v fixed. Finally, from Lemma 2.10 (i), it follows
that the remaining terms act on v by eventually changing only the a’s. Therefore
we conclude that

-l -l
hv(zl,sl,ly .o aan,sl,nl,’iagl,n”alaelv oo 7an1aen1)

_ :l -l
= v(llvgl,lv sty Elngy P 5l,n“51,617 ce vﬂnuenl)
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for some f3’s. This shows that i ¢ A(g_), a contradiction that proves (i).
(ii) From Proposition 2.2 (iii), it follows that
Ke=71"°K (17 )1 =7 Ao 7" = 0°(Aa,))-
The assertion follows from relation (R7) and Lemma 2.9 (i).
(iii) is obvious. O
Now, we want to explore the structure of the quasi-kernels of
A= A[I_h Il, L_1,01; 2_1, 21], in particular, that of A(@E).
First, we note that Proposition 2.11 (ii) and relation (R6) imply that for i € I,
ATy (M) = ML)
= {h(i,—€,41,€1, - ylm, Em; Om) | m >0, h(i,—€,91,€1, -, im,Em; Om) € H}).
It is clear that
Ao
—({h(o-2) |0 ET_JU U XA,y (MU U Xorhie_ym* (V)7
=({ h(o_e) | o_c €T_. } UK(0,—¢) ).

In other words,
A(@E) = IC(O, —5) R

This can be written ”recursively” as
= P K.o P KInT_.. (5)
#(SL,) #(Se)

This is in a sense a ”wreath product” representation.
Let’s denote

He(0)=({ hlo-c) [0-c €T }).
Forn > 1, let
Hem)={{h(i1,€1, - -y in,En;0n) | R(i1, €15 - s iny En;on) € H and (i1,61) # (t—e, &) }).

Note that, each H(n) is isomorphic to a direct sum of copies of T'; and T'_;. Let
us also denote
Heln] =

Relation (R3) implies that H.
(

(H(O)UH(1)U---UH(n) ).
(n) < Hen ] and that there is an extension
{1} — He(n) — Heln] — Heln — 1] — {1}. (6)

The natural embeddings H.[m] — H.[n] give a representation of A(g_) as a direct
limit of groups
Ao,y = lii>n’H5[n]. (7)

n
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Lemma 2.12. K_1 is amenable if and only if K1 is amenable, if and only if
T'_1 and 'y are both amenable, and if and only if >_1 and X1 are both amenable.

Proof. Assume that I'; is not amenable for some ¢ = £1. Then, by equation (5),
it follows that K_. is not amenable, so equation (5), applied once more, gives the
nonamenability of K.

Conversely, assume that I'_; and T'; are both amenable. Then H.(n) is
amenable as a direct sum of copies of I'_; and I'y. Also, H.[0] = H.(0) = T'_,
is amenable for ¢ = 1. Therefore an easy induction based on the extension (6 )
gives the amenability of H.[n] for each ¢ = £1 and each n > 0. Finally, the direct
limit representation (7) of A(g_y implies the amenability of A(g_) for and therefore
that of K. =77°Ag_y7° for € = £1. 0

2.4. GROUP-THEORETIC STRUCTURE

We give a result about the structure of our groups.

Theorem 2.13. Take A = A[I_1,I1,t_1,t1;2_1,%1]. Let’s assume that:

(i) ¥_1 and 31 are 2-transitive, that is, all stabilizers (X.);. are transitive on
the sets I. \ {ic} for all ic € I. and e = £1;

(ii) For each e = £1, either . = ((X:)i. | te € Ic) or ¥ = Sym(2).
Then A has a simple normal subgroup = for which there is a group extension
1—2— A5 T/, T)Z —1,
where 1 is defined on the generators by
n(h(o))=1((...,0,...,0,([¢],0),0,...,0,...),0), n(r)=((...,0,...),1), and
n(h(i1, €1y yinyenion)) = ((-..,0,...,0,([on],e1 + - +€5),0,...,0,...),0).
Here [o] denotes the image of the permutation o € I' in T'/[T,T.

Proof. It follows from relations (R7), (R8), and (R9) that the action of § on an
element h(i1,€1,...,10n,€n; 0n) is consistent with the definition of 7 and the multi-
plication in the wreath product, that is,
n(O(h(i1, €1, inen;on))) = (T (i1, €1, . . .y in, En; 00)T)
=((...,0,...,0,([on),e1+ - +&,—1),0,...,0,...),0).

It is easy to see that, since the commutant is in the kernel, the homomorphism
n:G— (T/[I,T]) iz Z is well defined by

"7(9) = ((’( H [O'n]’m)"-'),0>7

g1t e =m
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where the products are taken over all the factors h(i1,e1, ..., 4n,&n; 0n) of g. These
two observations together with the universal property of the HNN-extensions (Re-
mark 1.1) enable us to extend 7 to the entire group A.

Now, notice that if A\ = g1 751 g27°2¢37%3 - - - g, 7" gp 41 € E, then e+ - -4€, =0.
Thus

e1tez

gsT gnT

—e1—¢€ e1teatten_
1 2),,,(7_ 1tez2+-+ 1 Gni1

A = 91(7'81927'751)(7' *61*62*"'*5”71)
can be represented as products of 7-conjugates of elements from G.

Using Lemma 2.9 (ii), we see that every A = 7"¢g7~ " can be written as a
product of elements of the form 7h(c)7~™ and 7"h(i1,€1 - - -, bm, Em; Om)T . The
second element equals either 7"~ h(op,)T™ ™ or h(j1,€,. .., jk, €} om) for some
Jp's and g’s. Therefore, it is easy to see that = is generated by the following set

{h(il,sl,...7in,sn;an)h(i'1,51, o ,i;,en;a,fl) |er==%£1, ik,i;CEI,Ek, Vk;n > 2 op€l,}
U {i,e,i0, —€,11,,02,€2, . .. in,En; 0n)h(i, e, 0,89, . . in,en;on ") |
n>2,, i€l ib €1 c,, i,i €I c;ix €1 ¢, €,6 ==+1, Vk}
U {h(o:)h(ic, —€,i—c ;0. ") | 0e €Tey i €12, ic €[, e = £1}
U {h(i1,€1,5 -5 0my Ems by €5 Jy —€, J1, €1 - -+, Jrus En; T)
~h(il,sl,...,im,sm,j',fs,i/,s,jl,sll,...,jn,sg;afl) |
m,n € No, i,i',€ Ic,j,j’ €I, 0 € Tey; €,6n, 6% = £1,in € oy, jn € I_or, K}
U {7"h(o— )T "h(t—c,e,. .. t-c,e;0_ L) | 0-c €T_.,e = %1, n € N}
U {7"h(o—e)T " |neN, o_. eT_.N[LT], e =+x1} U {h(o) | o €[[,T]}.
(8)

Take any element a € Z\{1}. It remains to show that ((a))=z = E. Relations
(R3), (R8), and (R9) and Lemma 2.9 (iii) imply that we can find a big enough n
and ix’s so that the element h(i1,e1,...,4p,,6n;0,) does not commute with a and
does not modify a. Moreover, if we take

v = (i1, €1, yin, en;on)h(i) 61, .. i, ensont) € 2\ {1},

for any i},’s (not all equal to ix’s), we will have
{{a))z 2 b=ava v

== h(plylla cee >pm7lm;0n)h(p/1al/17 ... 7piia /d;agl)

. . . -/ -/ . —1
“h(i1, €1, yin, Enyon)h(i], €1, i, Ens O )
for some m, d, px’s, p).’s, li’s, and I}’s.
Now, it is clear that we can find big enough s and appropriate e;’s, €}’s, jx’s, and

Ji’s, so that h(j7,ef,...,5”,€”;07!) commutes with b and h(ji1,e1,..., s, es;0)
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does not. Then,

<<a/>>E = b/ = bh(]la €1,... 7j87es; U)h( .1176/117 cee aj;/»€/5/5 U_l)b_l
"
)

h’(ji/? 6/1/’ s 7j.;/a €50 h(.jl? €1,.-- 7jsa €s; 0-71)
= h(ji, ety jh,es;0)h(jrs €1, .. sses;0 1) # 1
for some j}’s, from relation (R3). We can take s to be big enough and adjust the
"tail’ of (j1,€1,...,Js, €s) so that e+ - -+e, = 0. Since the tuples (j1,e1,...,js, €s)

and (ji,e1,...,]j.,es) are different, it follows from Lemma 2.9 (i) and from the
assumption €7 + - - - + £, = 0 that

BUB™Y = h(pl.el’,....pk el 0" es;o)h(0 ™) € ((a))

1

for some k € N, p/’s, and €]"’s, where

—es ()\js )71 L T—elo\jl )71_

= > 6 =T —eg —€s
k .k k k - ~k -k =k -k = ., Jk
: H h(p17w17'"aptkawtk7waluu’fek)' H h(plawla"'7pt;c,wt;caw7_1a,ufek)7
eszl ek:1

and where the last two factors are chosen appropriately to bring £ into =Z. This
argument does not depend on the ’tail’ of (py, e, ...,ps,€s), therefore we can take
es to be either 1 or —1.

We conclude that the following are elements of ((a))= :

c= h’(o—l)h(bh _171017617 -y Pky €Ky Py 170;1) and
d= h(a—l)h -1, 17Q17llv cee 7Qkalk7q7 _I,U:i)

for any big enough even number k, for any o1 € I'; and o_; € I'_;, and for some
Pm’S, Gm’S, em’s, and [,,’s.

We claim that, in the tuples (¢1,—1,p1,€e1,...,08,€5,p0,1) and
(t-1,1,q1, 01, ..., qr, Ik, g, —1), the indices p, g, pt’s, and g;’s can be chosen arbi-
trary. To see this, consider

—_

= 2 f = h<l’17_1aplaela-~-7ptaet;wt)h(q07_17ql701a"'7qT70T7Q7et;w;1)7

where gy # ¢1 and where the second factor is chosen appropriately. Then by relation
(R3),

fcf_l = h(Ul)h(Lla_17p15617"'7wt(pt+1)a"'ap/wek?apal;U;I) S <<a>>

[

Because of the transitivity and 2-transitivity of ¥_; and X1, the claim is proven.
The element d can be manipulated similarly.

Now, consider

—_ . . . ’ / / / / ., —1
=3 s = h(Lfla17127627"'7Zt76t,wt)h(L17_17Q17017'"7qr70r7q7et7wt )
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for an appropriate choice of ¢’s and p’s so it commutes with
h(Lh—l,pl,el,...7pk,ek,p71;of1). Therefore

sesTle™ = h(i_1, 1,00, 0, ..oy ig e wi)h(o1(t-1), 1,09, €0, . . .y ig, e300 ) € (@)

(1]

)

so by the transitivity of the group X _1, we see that every element of the form
h<l’71) 17 i2a E2yvvny it, Et;wt)h(ila 17 2.27 €2,... 7it7 Ety W;I)
belongs to ({a))=. Products of such elements yield

h(i/h177;27527"‘7it78t;wt)h(i1717i27‘€27"'ait76t;w;1) S <<a>>

(11

for any i1,4] € I_;. By making the same argument that uses transitivity and 2-
transitivity, we see that we can change the 4; indices of the first factor, so we infer
that the first set of (8) belongs to ((a}))= .

Consider an integer n > 2, an even number k > 2, and an appropriate

h(j1,€h, ..., jr,€f;0) that commutes with h(iy,e1,42,€2,...,9n,En;0y,) and with
h(t_c,,€1,i2,€2,...,in,En;0, ) and has the property that
§' =7 h(o)T h(jr, €y koY)

belongs to =. Then

5lh(7;17€177;27€27 v 7in7€n; O—n)h(bfslvgluinEQ? v 7in7€n; 051)(5/)_1
:h(b—aly‘gla 0’(”61)7 —€&1, 7:1,61,2’2,52, s 7ina5n; Un)
R(t_e, e1,0(i2),€2, ... yin,ensont) € ((a))=.

Products of those elements with elements from the first set give all the elements
from the second set of (8), so it is included in ({(a))= .

The third set of (8) belongs to ({(a))= since its elements are products of the
elements ¢ and d above with elements from the second set.

A generic element of the fourth set of (8) can be written as
. . . . - . / . /.
h(ll,fl, ey tmyEmy 4, E, ], —E,1,E,02,€9, - -+, Iny Eps 0')'
. . -/ -/ - . ! . /. —1
h(i1,€15 -« ylmyEmyJ s —E,0 ,€,1,€,J2,E5, - oy JnsEns o ), (9)

where we have written ¢} = e. We must show that this element belongs to ({a))= .

First, we start with the following element from the first set of (8)

. . . . - . / . /
({a)yz 2 2z = h(i1,€1, -, bmyEmy b, €y ey €40y —Ey Jy —E, 6, €, J2,E9y + « oy Jiny Eni O)

. . . - . / . r. _—1
h(ll,@h ey tmy Emy L, EL—6,E, 4, —E, Lg, _671767.]27€2a e 7.]”’57150' )7

where ¢ € I..
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Next, using Lemma 2.9 (i) and adopting the notations thereof, we define

= 3 ’7_)‘st )\1,,1 Em)\i 25(}\(]) 1 —26()\176)—1

—Em

. T_Em (Ainém)_l . _El ()\2:61) 1 . h/(/rla €1y...,721—1,€2]—1, F*Ea &, Ng)

for appropriate r;’s and ey’s satisfying e; + -+ 4+ e9;—1 + € = 0 and for which the
last factor commutes with everything in the next expressions. Then

’yzﬁyil = h(ilvsla s 7ima5mai7€ajv —5,{,6,]&,6; cee 7jn7€;1; U) : Ba
where
Bo=Yh(i1, €1, . iy Emy €, bcy €,y —Ey Ley —E, 15 €, §2,Eny v v vy jmrEns 0 )y "
=L TN T AL N, P (o)
)T L) T ) e i ) )
N R T S NI T (=N 0= SR SIY-re s TO XA Rl O VAT R iy VA I

=AU AT TRl L (0) 6 2, Eh, o dnsEpso )T (AL )T (A )T

—€1 —€m

Likewise, we consider the following element from the first set of (8)

<<a>>59Zl:h(i17513'"7im75m3.j/3_€7L57 —&, P& l—¢,E, l’L () 8]27827"’7]‘”75:1;0-)

hi . ./ . - - . s, —1
: (117517"'717”757”7] 7_€7LE7_57p757Z,57M76(Z)787J27E27~~~7.]7L7€n70 )7

where p € I’ _ and define

23y =N r N pEe M (N )T ()
ST Em ()\l_";m)fl Y (/\1_151)7 h(ry,er, . Thy 1y €01, e 5 )

for appropriate 7,’s. Then,
' onN—1 _ 7 . . -/ -/ i [z . . 1. —1
ryz(’}/) - h'h(zhgla"'almangy.]a_aaz767,u—5(7’)a6a.72a527'"7.]n7€n7a )a
where

’:-LE’ylh(ihela"'7im7€maj/)_€ Lg,—E,p,E,Lfg,E,,LLi_ (7) &, ]’2,5/2,-”7_].77,75;;0')(7/)71
All - )‘Z—m Em)‘J ( () & j255/25"'7jn75n7 )(A]) B 75m()‘l—rzm)7l”’ - (Ailal)7

,51
>‘Z—151 - )‘lj::m Emh’(us ( (5)) 87j278/27"~7]n75n70') ()\z:,::m)—l _61(>\1_151)_1
=7,

since pd (i (7)) = pt (i), due to relation (R6) and ui _(i) € I_.. Finally,

<<a>>E 2 72771'7,2/(7/)71 = h(ilagla cee 7im76mai7€7ja 7€7g357j235/27 e 7jn’€;; J)

. . i -/ '3 ~ . / . /N —1
'h(21,51,~~-,lm,5m,] , —E,1 ,5,#_5(2),€7j2,€2,...,]n,En,U )7

and after a multiplication with an element from the first set of (8), we get the
element (9).
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Therefore the fourth set of (8) is in ({a))= .

Repeating almost verbatim the corresponding part of the proof of Theorem [8,
Theorem 3.16] gives us that the seventh set of (8) belongs to ((a))=. Note that if
Y. = Sym(2), then [3, X.] is the trivial group.

Next, we take numbers m > n and

'YI/ = Tamh(o—/—s),riamh(jlv [SP ,jerlv ‘Saja —&; (0—/75)71) S Ea

where o/ _ € T'_., ji, € I'_, Vk, and j € I/, with the relation (¢’ _)71(c.) = ¢ for
some ¢ € I/.

After that, we take the following element of ((a))z (it is a product of elements from
the second and fourth set)

T = hleey &yl €,Q, —Eyley —E, vy bey, —E;0_¢)-
m times m—n—1 times
(b €y ey €5y —E ey =€y ley, —E3 Dy Ey by €y ey b, E50—¢),
m times m times n—1 times

where p € I’ .. Then

1

m

Y'e(Y") T =1 (o )T (D, ety eyl 50-c) € {{a))
—_—

n—1 times
Therefore upon a multiplication by an element from the first set of (8), we infer

that the fifth set of (8) belongs to ({a))= .

Finally, the argument from Theorem [8, Theorem 3.16] can be used for the
sixth set of (8) the same way it was used for the seventh set.

This completes the proof. O

Remark 2.14. The example introduced in [3, Section 5] corresponds to the
case $_1 2 Yy = Sym(2). Theorem 2.13 corresponds to [3, Proposition 5.11] in
this particular case.

2.5. ANALYTIC STRUCTURE

In this section, we use some results from [8, Section 2].

Lemma 2.15. The group A = A[I_1,11,1-1,t1;2_1,%1] 48 a non-ascending
HNN-extension and its action on its Bass-Serre tree is minimal and of general type.

Proof. Since the action is transitive, it is minimal. Since H # G # 6(H), then A
is nondegenerate and non-ascending. The result now follows from [7, Proposition
20]. O
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Theorem 2.16. The HNN-extension A = A[l_1,11,t-1,t1;3-1,%1] has a
unique trace. It is C*-simple if and only if either one of the groups ¥_1 and 31 is
non-amenable.

Proof. Lemma 2.15 enables us to apply [3, Theorem 4.19] to conclude that A has the
unique trace property since ker A is trivial. It also enables us to apply [3, Theorem
4.20] to conclude that A is C*-simple if and only if K_; and K are non-amenable,
which, by Lemma 2.12, is equivalent to the requirement that some of the groups
Y _1 and X is non-amenable. O

Finally, we prove

Theorem 2.17. The HNN-extension A = A[X_1,%1] in not inner amenable.

Proof. Lemma 2.15 allows us to apply [8, Proposition 2.3], so we need to show that
the action of A = A[I_y,I1,t_1,t1;%_1,%1] on its Bass-Serre is finitely fledged.

For this, take any elliptic element g € A\ {1}. Since g fixes some vertex, it
is a conjugate of an element of G. The finite fledgedness property is conjugation
invariant, so we can assume g € G \ {1}.

From Lemma 2.9 (ii), we can write g = h(o)h_1hy, where o € T,
m
h*l = H h(llfa _17i’§7€k,27 e 7i2k78k,nk;ak) 3

k=1
r
hy = h(i, 1, " 0
1= (117 72275l,2;~~'aznl,5l,nla l);
l=m+1

r>m=>0,0, €l 0 €T, ,and i €Il . We also require 0 <ni <...< ny,
and 0 < nppq1 < -+ <y

Let us assume that g fixes a vertex v = wv(i1,€1,...,0n,6n), where
n > max{nm,,n,} + 1, and let’s take w = v(i1,€1,...,%n,En,- -, intd,Entd) fOr
any d > 1. We note that h_., fixes w and h(c)h., modifies only indices with
numbers no greater than {n,,,n,} + 1 < n. Therefore

h(o)he,v =v(i},e1,...,10,,6,) and

s b

. .t . .
h(a)haw = U(Zlv €1y 5l Enylnt1sEntls -+ 5 Intd, 5n+d)

for some i), € I’ By our assumption, it follows that

—er"

v = gv = h(o)he,v = v(i},E1,.-,00n,En)-

Thus ¢}, = i), for all 1 < k < n, and therefore gw = w.
This concludes the proof. O
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Corollary 2.18. Theorems 2.16 and 2.13 imply:
If either X_1 or X1 is non-amenable, then the amenablish radical of A is trivial.
If X1 and X1 are both amenable, then A is amenablish.

Proof. If we show that the centralizer Cy () is trivial, [2, Theorem 4.1] will im-
ply that A is C*-simple if and only if = is C*-simple. Since Z is simple, if it is
not C*-simple, then it is amenablish, and therefore A is also amenablish because
(T/IT,T)) iz Z is amenable. If = is C*-simple, then so is A, thus both of their
amenablish radicals are trivial.

To illustrate that Cy (Z) is trivial, assume that there is a nontrivial g € Cy (2).
Then g can be written as in Lemma 2.9 (iii), and using relations (R3), (R7), and
(R8), we can find a non-trivial element of =

. . A . /. . . o oo, _—1
h(zlyﬁgh--~7’Lma5m7.717€17"'7jn75n70)'h(zlagla---azmaamm]lagla"'7.]na5n70' )

that does not commute with g, a contradiction. O
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1. INTRODUCTION AND STATEMENT OF THE RESULT

Throughout this paper, the notation 7, will stand for the set of algebraic poly-
nomials of degree not exceeding n. In 1906 G. D. Birkhoff [2] formulated a general
problem on interpolation by algebraic polynomials, which includes as particular
cases the Lagrange and Hermite interpolation problems. Before formulating the
Birkhoff interpolation problem (BIP), we need the following:

Definition 1. An incidence matriz E = {e;;};,"; ;7 is a matrix with elements
eij € {0,1}. The number of 1-entries in E is denoted by |E|, and we shall assume
always that E is a normal incidence matriz, i.e., |E| =1+ 1.

The Birkhoff interpolation problem (BIP). Given an incidence matrix
E = {eij};%, jLo, a vector of interpolation nodes X = (z1,22,...,2,) € R",
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T < xg < .-+ < T, and a data set {y;; € C : e; = 1}, find a polynomial
p € mg|—1 such that

P9 (x) = 7ij, {i,5} + ey =1. (1.1)

It should be pointed out that, unlike the Lagrange and Hermite interpolation
problems, which are known to have a unique solution, the general BIP is not always
solvable.

Definition 2. An incidence matrix E = {e;;},; ;7 is said to be (order)
regular, if for every vector of interpolation nodes X = (x1,x2,...,2,) € R", 1 <
g < -+ < Ty, and a data set {v;; € C : e;; = 1}, the BIP (1.1) has a unique
solution.

Surprisingly enough, despite the efforts of many mathematicians, the problem
of complete characterization of the regular incidence matrices remains open. A
simple necessary condition for regularity was found by Pdlya.

n T

Pélya condition. A necessary condition for £ = {e;;},"; ;2 to be regular

is .
D> ei=k+1,  k=0,...|E 1. (1.2)

i=1 j=0

In 1969 Atkinson and Sharma [1] found a simple sufficient condition for regu-
larity. We need another definition before formulating their result.

Definition 3. A block is called any maximal sequence of 1-entries in a row of
E. A block €;; =€; j41 =+ =€ j44—1 = 1 is called even, resp. odd, if its length
¢ is even, resp. odd number. The smallest column index j of 1-entry in a block
defines its level. Hermitian block is a block with level 0.

A row e; = (e;0,€i1,...,¢ir) of E is called Hermitian row of length k if it
contains a single block which is Hermitian with length k.

A block e;; = €;j41 = -+ = €;j4¢—1 = 1 in an interior row e;, 1 < i < n, is
called supported, if there are 1-entries in rows i1 and i3, i1 < i < i with column
indices j1,j2 < J.

Atkinson—Sharma Theorem. FEvery incidence matrizv E = {e;;},"; ;1
which satisfies the Pdlya condition (1.2) and does not contain supported odd blocks
is regular.

Note that the incidence matrices corresponding to Lagrange’s and Hermite’s
interpolation problems fulfill the assumptions of the Atkinson—Sharma Theorem.
Indeed, their incidence matrices contain only Hermitian rows (with length one in
the Lagrange case), therefore obviously satisfy the Pélya condition and, as their
rows contain only blocks with level 0, these blocks are not be supported.
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Atkinson and Sharma also conjectured that all matrices that contain odd sup-
ported blocks are not regular. However, Lorentz and Zeller [11] found a counterex-
ample to this conjecture, showing that the three-row incidence matrix

110000
E=[0 10010 (1.3)
110000

is regular, despite having two odd supported blocks.

Since the problem of characterizing the regularity of general incidence matrices
turns out to be a very difficult one, some authors [3, 4, 5, 6, 9, 10] have studied
the special class of almost Hermitian matrices, which are incidence matrices which
have only one (interior) non-Hermitian row. Special attention has been paid to the
three-row almost Hermitian matrices. Particular reason for the interest in three—
row matrices is that, by applying technique of splitting (de-coalescence) of rows,
singularity of such matrices can imply singularity of incidence matrices with more
rows, see e.g. [8].

Definition 4. A three-row almost Hermitian incidence matrix E(p, ¢; k1, k2)
is an incidence matrix with its first and third row Hermitian of length p and ¢,
respectively (with p < ¢), and single 1-entries (blocks of length one) in the middle
row in positions k; and ko, where 1 < k3 < ko — 1 (the case k1 = ky — 1 is handled
by the Atkinson-Sharma theorem).

It follows from the results in [9, 10] that E(p, ¢; k1, k2) is not regular unless one
of the following conditions is satisfied (see [13, Theorem 8.5]):

p<ki <ks—1<gq, (1.4)

qg+1<ky and ki +keo=p+qg+1. (1.5)

Ounly in the second case (called in [13, p. 104] as the symmetric exterior case)
the regularity is completely characterized. Precisely, in this case E(p,q; k1, k2) is
regular if and only if p = ¢ (for more details, see [13, Theorem 8.15]). In the present

note we present a short proof of the “if part” (the sufficiency). More precisely, we
prove the following

Theorem 1. The almost Hermitian matriz E(m,m;k,2m + 1 — k) is regular
for every k e N, 1 <k <m.

Notice that the matrix in (1.3) corresponds to the case m = 2,k = 1.

Our proof of Theorem 1 makes use of some properties of the Gegenbauer poly-
nomials, in particular of the Legendre polynomials.
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2. PROOF OF THEOREM 1

The claim of Theorem 1 is equivalent to the following statement:

Proposition 1. Let m,k € N, 1 < k < m. Then for every x € (—=1,1) and
data set {(a;,b;), 7 =0,1,...,m—1; ¢, d} there exist a unique algebraic polynomial
Q(z) of degree not exceeding 2m + 1 satisfying the interpolation conditions

Q(j)(_l) =a;, j=0,1,....m—1,
Q(j)(l):bj, i=0,1,...,m—1,
QW(x) =c,

QMR (1) =d.

(2.1)

The linear system for the coefficients of () has a unique solution if and only if
the corresponding homogeneous system has only trivial solution. The polynomial Q)
which satisfy the homogeneous system has zeros of multiplicity m at +1, therefore
is of the form

Qt) =w(t)[A(t —z) + B], wt) = (x> =1)™

with constants A and B determined by Q) (z) = Q®™+1=k)(z) = 0, i.e., by the
linear system

Bw® (x) + Akw®D(2) =0

Bw®m 1=k () + A@2m+1-k)w®F@) = 0.
To prove Proposition 1, and thereby Theorem 1, we heed to show that the unique

solution of this last system is A = B = 0, which is equivalent to showing that
A(x) # 0 for every z € (—1,1), where

A(z) = ko™ D (@)w®™ P () — (2m + 1 = k)o® (2)w®™ F(2).  (2.2)

For the proof of (2.2) we shall use some properties of the Legendre polynomials,
the orthogonal polynomials in [—1, 1] with respect to the constant weight function.
Recall that the n-th Legendre polynomial P, is defined by

Po(z) = — (%)"{(gﬁ —m.

= onpl

For j =1,2,...,m, we define recursively the j-fold anti-derivative S;(z) of P, by

x
S;(x) = / S,a(t)dt,  So(a) = Pulx).
Z1
In view of the definition of Legendre polynomials, we have
1
= 2mml

For the proof of (2.2) we shall need the following lemma.

S;(x) wm Nz, j=0,1,...,m. (2.3)

132 Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 129-135.



Lemma 1. For j =1,2,...,m, there holds

(m—7)", 5 crd NI
Site) = o @ 07 () AP} (2.4
Proof. We apply backward induction on j. Since (%)m{Pm(:c)} = ;Enmw)l’!,

(2.3) shows that equality (2.4) is true for j = m. Assuming that (2.4) is true for
some j, 1 < j < m, we obtain

ijl(l') = S;(.’L‘) = m jr{(:l,‘2 — ]_)j (i)J{Pm(i)}}

1!

(m_‘].);(xQ—l)j1{(x2—1)(di)jH{Pm(x)}—ijm(;i)j{Pm(x)}} (2.5)

(m+j)!

<Z;j;:(a¢2 - 1)7_1{(1;2 —-1)z2" + 2jscz'}7
where P
)= () {Pul@)}. (2.6)

At this point we exploit some well-known properties of the Gegenbauer polynomials.
The Gegenbauer polynomial C is the n-th orthogonal polynomial in [—1,1] with
respect to the weight function wy(z) = (1 — 22)*~1/2 (and the n-th Legendre
polynomials P, equals Cp/ %)
differential equation

. The Gegenbauer polynomials satisfy the ordinary

(1—-2")y" = @A+ Day +n(n+20)y =0,  y=Ch(x) (2.7)

and their derivatives satisty -L{C)(z)} = 2AC T} (x) (see [14, eqns. (4.7.5) and
(4.7.14)]). From this last property we observe that, apart from a constant factor,
the polynomial z(z) in (2.6) is equal to Cﬁ,:_lj/il(a?). Then, according to (2.7),

(2% = 1)2" +2j 22" = (m—j+1)(m+j) 2,

and substituting this expression in (2.5) we obtain

(m—j+D! , i—1
Si_ =< -1y .
1) = g @ 1 ()
With this the induction step from j to j — 1 is done. Lemma 1 is proved. U

We proceed with the proof of (2.2). From (2.3) and

(32) (Pt} = gy 0
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we observe that Lemma 1 is equivalent to the identity

wm=7)(z) _ i w(m+9) (1)

S TETI ~1) g AT beem (2.8)

With j =m — k+ 1 and j = m — k this yields

w(k—l)(x) o il w(2m+1—k)(x
Gy @l v @m+1-k)!’
w(@) 5w R (2)
o @l ' 2m —k)!

By expressing w1 =) and w(?*™~*) and substitution in (2.2) we find that

Alz) = Kl(2m+1— k:)!{

w(k_l)(x) w(2m+1—k)(x) w(k)(x) w(Qm—k')(l‘)
(k—1! CGm+1—k)! k' (2m—k) }
@2m+1-k)!

= T(x2 _ l)kfmfl{ [kw(kfl)(l,)]2 + (1 o IZ) [w(k)(m)}Q} .

Since the zeros of w1 and w®) interlace, the sum in the last curl brackets is
positive for x € (—1,1), and consequently A(x) # 0 for x € (—1,1). With this the
proof of Proposition 1 is complete.
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