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In this paper we consider transformations of the series

l(x) =

∞∑
n=1

xn

n
and L(z) =

∞∑
n=0

z2n+1

2n+ 1

in the forms: (A) l(x) =
∑∞
n=1

Anx
n

1−αnx
, (B) L(z) =

∑∞
n=0

Bn
1−bnz2

(
z

1−βnz2

)4n+1

and (C) l(x) =
∑∞
n=1

Cnx
n

(1−γ1x)···(1−γnx)
. Minimization of the coefficients in (A)

and (B), under the restrictions |αn|, |βn| ≤ 1, is explored numerically. The resulting
hypothesis is that we can accelerate the convergence like a geometric progression. We

prove that the unique lacunary series l(x) =
∑∞
i=0

Aix
2i+1

1−αix
and L(z) =

∑∞
i=0

Biz
4i+1

1−biz2
diverge for x 6= 0 and z 6= 0. Assuming |γn| ≤ 1 we prove lower and upper bounds for

the optimal rate of convergence of (C). A similar upper bound for (A) is proved. Also,

some new accelerated series for the logarithmic and other transcendental functions are
obtained.
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1. INTRODUCTION

In this study we consider some rational transformations of the series

f(x) := a1x+ a2x
2 + a3x

3 + · · · , (1)
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which is assumed to have radius of convergence equal to 1. Mainly, we restrict

our attention to representations of l(x) := ln
( 1

1− x

)
, i.e. with an =

1

n
, and other

related functions of the forms

f(x) ≈ A1x

1− α1x
+

A2x
2

1− α2x
+

A3x
3

1− α3x
+ · · · (2)

and

f(x) ≈ C1x

1− γ1x
+

C2x
2

(1− γ1x)(1− γ2x)
+

C3x
3

(1− γ1x)(1− γ2x)(1− γ3x)
+ · · · . (3)

The symbol ”≈” can be considered as coincidence of formal power series, or as
asymptotic expansion for x → 0. The goal is to obtain series that converge faster
than the initial one and that coincide with the corresponding function in a neigh-
borhood of x = 0. The form (2) is a sum of geometric series, while (3) is similar
to a Newton series and having the same computational efficiency as (2) it allows
much easier treatment.

Everywhere in this paper, if the area of validity of an equality involving series
is not specified, then it can be considered as certain neighborhood of the origin or
more specifically, the disk {w ∈ C : |w| < |p1|}, where p1 is the closest to 0 non-zero
singular point (sometimes 0 will be a removable singularity).

As there are extremely fast methods for computing the logarithmic function
(see e.g. [4, Ch.1.3]), transformations (2) and (3) of (1) do not bring something new
in this area. Actually, l(x) serves as a model function in studying the possibilities
of the forms like (2) and (3) for acceleration of power series. Such transformations
can occur in calculating other transcendental functions like Lik(x) or the Euler
digamma function. Another aim of the study is to point out to some interesting
and difficult analytical problems which appear meanwhile.

Note that for the transformation of (1) in the form (2) (similarly for (3)) the
convergence of the series does not matter. Given {an}, if we fix the series {αn},
then the numbers {An} in (2) are obtained easily by the recursive formulas

A1α
n−1
1 +A2α

n−2
2 + · · ·+An−1αn−1 +An = an. (4)

Conversely, if we choose in advance {An}, then the numbers {αn} are obtained by
the same formulas, provided no division by zero is encountered. Formally, it is an
easy task to rewrite the series (1) in the form (2) with coefficients {An} that tend
arbitrarily fast to 0. However, the requirement the series in (2) to converge to f(x)
in a neighborhood of x = 0 poses the restriction on the poles {1/αn} to be distinct
from zero, that is, the sequence of parameters {αn} to be bounded.

What we have is a coding of the power series (1) by using twice as much
parameters {An, αn} (or {Cn, γn}). From this point of view we arrive at an extremal
problem of optimizing over the extra parameters according to certain minimization
criterion. We shall try to formulate simple criteria in order to decompose the
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minimization of the overall series {An} ({Cn}) by greedy type algorithms, which
determine the series step by step. Also, we study numerically other rational forms
generalizing (2).

Finally, lacunary series are of great interest. We shall prove that the unique
transformation of l(x) in the type (2) with A2k = 0, k = 1, 2, . . . is divergent. In
contrast, it is easy to obtain lacunary representations of l(x) in the type (3) that

converge. Actually, the well known series for ln
(1 + z

1− z

)
, |z| < 1, can be written as

l(x) = 2
(
z +

z3

3
+
z5

5
+
z7

7
+ · · ·

)
=: 2L(z), z =

x

2− x
, (5)

which is of type (3) with parameters sequences {γn} =
{

1
2 ,

1
2 ,

1
2 , . . .

}
and {Cn} ={

1
1 , 0,

1
3

(
1
2

)2

, 0, 1
5

(
1
2

)4

, 0, . . . ,
}

. Also, this example shows that there is a choice of

a bounded sequence {γn} in (3) for l(x), having rate of convergence of {Cn} as a
geometric series with ratio 1

2 .

The paper is organized as follows. In Section 2 some classical methods for
accelerating series are applied to l(x) and L(z). In Section 3 we describe numerical
experiments for optimization of the representations of l(x) and zL(z) in the form

(2) and the lacunary form f(x) ≈
∑
i

Bi
1−bix

x2i+1

(1−βix)ki
. Using different algorithms

we found parameter sequences such that |αi|(|βi−1|) ≤ 1 and |Ai|(|Bi−1|) ≤ qi−1,
i = 1, . . . , i1 (q < 1). The above representation with βi = p is of particular interest.
This special case is partially investigated for convergence in Section 4. As a result,
the following theorem is proved there:

Theorem 1. The unique lacunary representations

a) l(x) ≈
∞∑
i=0

Aix
2i+1

1− aix
and b) L(z) ≈

∞∑
i=0

Biz
4i+1

1− biz2

are divergent for every nonzero value of the argument.

In Section 5 we consider the representation (3) for l(x) and prove the following

Theorem 2. Let {Cn} and {γn} be the parameters in (3) for f(x) = l(x).
Then, for every ε ∈ (0, 1],

a) there exists a choice of {γn} such that γn ∈ [0, 1] and the corresponding
coefficients satisfy |Cn| < M(4− ε)−n for every n ∈ N with some M = M(ε).

b) there is no choice of {γn} such that γn ∈ [0, 1] and |Cn| < M(8 + ε)−n for
every n ∈ N with some M = M(ε).

As a consequence of this we obtain

Theorem 3. Let f(x) = l(x) and the parameters {αn}∞1 , {γn}∞1 satisfy the
restrictions |αn|, |γn| ≤ 1. Then for the sequences {An}∞1 and {Cn}∞1 determined
by (2) and (3) correspondingly, there is no positive number M such that

|An| ≤M · 31−n for every n ∈ N or |Cn| ≤M · 25−n for every n ∈ N.
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Also, in this section some concrete series with periodic {γn} are obtained and a
comparison of the series (3) with continued fraction representation for l(x) is done.
Finally, in Section 6 we consider some accelerated series for other transcendental
functions, including Li2(x) and ψ(x).

We finish the introductory section with presenting another point of view.
The form (2) can be considered as a power series with varying coefficients, i.e.,
f(x) ≈

∑∞
n=0 Fn(x).xn, where {Fn(x)} are functions of a specific class (in (2),

Fn(x) = An
1−αnx ). Obviously, the simplest choice Fn(x) = An + Bnx brings noth-

ing for the acceleration of (1). The next natural choice actually is the complete
linear fractional transformation Fn(x) = An+Bnx

Cn+Dnx
. This form perhaps deserves

more attention than (2) because of the following property, which is preserved by
the form (3), but not by (2). Namely, if the first n poles {γ−1

i }ni=1 in (3) inter-
change their order, then the residual (and the n-th partial sum) do not change.
Similarly, in the above generalization of (2), we can change the order of two
poles, with an appropriate change of the other parameters, so that the residual

of the series remains the same. Indeed, let S =
αn + βnx

1− γnx
xn +

αn+1 + βn+1x

1− γn+1x
xn+1

be the sum of two consecutive terms. Then, if γn+1 6= 0, we have the identity

S =
ᾱn + β̄nx

1− γn+1x
xn +

ᾱn+1 + β̄n+1x

1− γnx
xn+1, where ᾱn = αn, β̄n = αn+1 − αnγn+1 +

βn+1

γn+1
, ᾱn+1 = αnγn + βn − βn+1

γn+1
and β̄n+1 = γn

βn+1

γn+1
. In the exceptional case

γn+1 = 0 we have S =
αn + αn+1x

1− 0.x
xn +

αnγn + βn
1− γnx

xn+1 + βn+1x
n+2 and the last

summand can be joined to the next term in the series.

2. SOME SIMPLE EXAMPLES

Let us consider the case αn = 1, n = 1, 2, 3, . . .. Then it is easily verified that

l(x) =
1

1− x

(
x− x2

1.2
− x3

2.3
− x4

3.4
− · · ·

)
.

This is a Kummer type acceleration but also it can be explained as follows. l(x) has
a singularity at x = 1 which have logaritmic order divergence. Then (1− x)l(x) is
“more regular”, having at least finite limit when x→ 1. This explains why the later
function has smaller Maclaurin series than l(x). Following this line of reasoning,
for every r ∈ N, we can write the acceleration formula:

1

r!

(
1− 1

x

)r
l(x) = Pr−1

( 1

x

)
+

∞∑
n=1

xn

n(n+ 1) . . . (n+ r)
,

where Pr−1(z) is a polynomial of degree r − 1. The proof easily follows if we

substitute in the infinite sum 1
n(n+1)...(n+r) = (−1)r

r! ∆r 1
n by 1

r!

∑r
k=0

(
r
k

) (−1)k

n+k . For
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example, when r = 2 it follows that ([3, 1.513])(
1− 1

x

)2

l(x) =
1

x
− 3

2
+ 2

∞∑
n=1

xn

n(n+ 1)(n+ 2)
.

Since it is not easy to improve formula (5) for l(x), by the end of this section
we are going to accelerate L(z). Similarly as above we get(1

z
− z
)
L(z) = 1− 2z

( z

1.3
+
z3

3.5
+
z5

5.7
+
z7

7.9
+ · · ·

)
and (1

z
− z
)2

L(z) =
1

z
− 5

3
z + 8

( z3

1.3.5
+

z5

3.5.7
+

z7

5.7.9
+ · · ·

)
.

For another type acceleration let us consider the changes of the variables

L(z) = z

∞∑
n=0

z2n

2n+ 1
= z

∞∑
n=0

tn

2n+ 1
= z

∞∑
n=0

Cn

( t

1− pt

)n
=: zf(τ),

where t = z2, τ =
t

1− pt
and p is a real parameter. We shall see that the best

choice for p, when the sequence {Cn} decreases in the fastest way, is p = 1
2 . Indeed,

since the change τ = t
1−pt and its inverse t = τ

1+pτ are regular in a neighborhood

of the origin, the same is true for the function f(τ). The radius of convergence of
f(τ) depends on its smallest singular point. For real τ we have

f(τ) =


1

2
√
t
ln 1+

√
t

1−
√
t
, for t ∈ (0, 1)

1
2
√
−tarctan

√
−t, for t ∈ [−1, 0)

1, for t = 0

, t =
τ

1 + pτ
.

It is quite clear from this expression that the singular points of any analytic continu-
ation of f(τ) are τ = − 1

p and τ = 1
1−p , when t = 1. (Note that τ = 0 is a removable

singular point.) Then the radius of convergence of f is R(p) = min{ 1
|p| ,

1
|1−p|} and

it is easy to verify that maxp∈RR(p) = R(1/2) = 2. As a result we conclude that
the optimal acceleration of L(z) by this transformation gives coefficients {Cn} that
tend to 0 like a geometric series with ratio 1

2 . Next, with p = 1
2 , it is easy to check

out the identity f(τ) + τ(2 + τ)f ′(τ) = 1+τ/2
1−τ/2 from where we find the recurrence

formula

(2n+ 1)Cn + (n− 1)Cn−1 = 21−n, n = 1, 2, 3, . . . (C0 = 1).

Thus, the transformed series starts as follows

L(z) = z

[
1 +

1

3
τ +

1

2.5!!
τ2 +

11

4.7!!
τ3 +

39

8.9!!
τ4 +

633

16.11!!
τ5 + · · ·

]
, τ =

z2

1−z2/2
.
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An acceleration of the same order but with more explicit coefficients can be
obtained using Euler transform applied in certain succession. If F (x) =

∑∞
n=0 anx

n

then the Euler transform is defined by the identity
1

1 + t
F
( t

1 + t

)
=

∞∑
n=0

(∆na0)tn,

where ∆ai = ai+1 − ai and ∆nai = ∆(∆n−1ai). Sometimes by Euler transform it
is understood the particular case for x = −1, i.e. when t = − 1

2 , which converts an
alternating numerical series usually into a faster converging one. For an = 1

2n+1 ,

n = 0, 1, 2, . . . it is easy to find that ∆na0 = (−1)n (2n)!!
(2n+1)!! . Then, the Euler

transform leads to

L(z) =
z

1− z2

∞∑
n=0

(2n)!!

(2n+ 1)!!
(−y)n, y =

z2

1− z2
, (6)

which is the well known series ([3, 1.515])

ln(
√
y +
√

1 + y)
√

1 + y
=

∞∑
n=0

(−1)n
(2n)!!

(2n+ 1)!!
(
√
y)2n+1.

Note that the series (6) has approximately the same rate of convergence as (5), and
if we apply the Euler transform to (6), then we return exactly at (5). Actually, the
idempotence is a general property of the Euler transform after the change y = −t
(see [5]). The key observation for accelerating L(z) in this way is that an application
of the Euler transform from a larger index is more effective. So, leaving the first
term in (5) unchanged and applying Euler transform to the residual we get

L(z) = z

{
1 +

z2

1− z2

[1

3
− 2!!

5!!
y +

4!!

7!!
y2 − 6!!

9!!
y3 +− · · ·

]}
, y =

z2

1− z2
.

Again leaving the first term in the square brackets and applying the Euler transform
to the residual (with argument −y) we obtain

L(z) = z

{
1 +

1

3
y − z2y

[ 2

3.5
+

2

5.7
z2 +

2

7.9
z4 +

2

9.11
z6 + · · ·

]}
.

Continuing in the same way we find

L(z) = z

{
1 +

1

3
y − 2

3.5
yz2 − 3y2z2

[2!!

7!!
− 4!!

9!!
y +

6!!

11!!
y2 − · · ·

]}
= z

{
1 +

1

3
y − 2!

5!!
yz2 − 3!

7!!
y2z2 + y2z4

[ 4!!

5.7.9
+

4!!

7.9.11
z2 +

4!!

9.11.13
z4 + · · ·

]}

= z

{
1 +

1

3
y − 2!

5!!
yz2 − 3!

7!!
y2z2 +

4!

9!!
y2z4 + 5!!y3z4

[ 4!!

11!!
− 6!!

13!!
y +

8!!

15!!
y2 − · · ·

]}
and so on to arrive at the series

L(z) = z

{
1 +

1!

3!!
y − 2!

5!!
yz2 − 3!

7!!
y2z2 +

4!

9!!
y2z4 +

5!

11!!
y3z4 − 6!

13!!
y3z6−· · ·

}
. (7)
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The same result can be obtained more directly. Namely, starting from (6) and using
the identities 1

1−z2 = 1 + y and y2 = yz2(1 + y) we can transform L(z) as follows:

L(z) = z

{
1 +

1

3
y − y2

[2!!

5!!
− 4!!

7!!
y +

6!!

9!!
y2 − 8!!

11!!
y3 + · · ·

]}
= z

{
1 +

1

3
y − yz2

[ 2!

5!!
+

3!

7!!
y − 3.4!!

9!!
y2 +

3.6!!

11!!
y3 − 3.8!!

13!!
y4 +− · · ·

]}
= z

{
1 +

1

3
y − 2!

5!!
yz2 − 3!

7!!
y2z2 + 3y3z2

[4!!

9!!
− 6!!

11!!
y +

8!!

13!!
y2 −+ · · ·

]}
=z

{
1+

1

3
y− 2!

5!!
yz2− 3!

7!!
y2z2+3y2z4

[4!!

9!!
+

5.4!!

11!!
y− 5.6!!

13!!
y2+

5.8!!

15!!
y3−· · ·

]}
=z

{
1+

1

3
y− 2!

5!!
yz2− 3!

7!!
y2z2+

4!

9!!
y2z4+

5!

11!!
y3z4−5!!y4z4

[ 6!!

13!!
− 8!!

15!!
y+· · ·

]}
=z

{
1+

1

3
y− 2!

5!!
yz2− 3!

7!!
y2z2+

4!

9!!
y2z4+

5!

11!!
y3z4−5!!y3z6

[ 6!!

13!!
+

7.6!!

15!!
y−· · ·

]}
and so on. Finally, let us remark that formula (7) is of type (3) with z2 = x.

3. SOME COMPUTER EXPERIMENTS

1. We start with the choice of the parameters {αn}∞n=1 in the form (2) of f(x) =
l(x), suggested by the simplest greedy algorithm. Namely, we choose every next
αn such that |An+1| to be minimal. Thus we arrive at a lacunary representation
of l(x). Let us explain the derivation of the first four coefficients. Clearly A1 = 1
and the requirement A2 = 0 leads, by (4), to the equation A1α1 + 0 = 1

2 , i.e.
to α1 = 1

2 . As a result of A2 = 0, we have no control on A3 and the relation
A1α

2
1 +A2α2 +A3 = 1

3 gives A3 = 1
12 . Next, the choice A4 = 0 is possible because

the equation A1α
3
1 + 0 + A3α3 + 0 = 1

4 has a solution α3 = 3
2 . Continuing in this

way we obtain

{αn} = { 1
2 , ∗,

3
2 , ∗,

35
12 , ∗,

35077
6324 , ∗,

167344077283
15930229780 = 10.504..., ∗, 19.899..., ∗, . . .};

{An} = {1, 0, 1
12 , 0,−

1
20 , 0,

527
4032 , 0,−

1511407
1214208 , 0, 42.385..., 0,−5174.4..., . . .},

where ”*” means an arbitrary number. It is seen that the obtained series diverge
rapidly and we shall prove this in the next section. An heuristic explanation is from
the type of the recurrence relations (4). Once an |αn| larger than 1 occurs, then
larger and larger numbers will appear in (4), which most likely will draw {|An|} to
infinity. A similar behavior is observed in the following lacunary representation

L(z) ≈ z

1− 1
3z

2
+

4
45z

5

1− 25
21z

2
−

4
147z

9

1− 1609
693 z

2
+

0.043699... z13

1− 4.4448... z2
− 0.26698... z17

1− 8.4284... z2
· · · .
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2. In view of the above observations, in the next two examples we pose the
requirement for the summands to be regular in the open unit disk, i.e. |αn| ≤ 1.
We have that

l(x) ≈ x

1− 0.2x
+

0.3x2

1− 0.8x
+
x3/18.75

1− x
− x4/300

1 + 0.4x
− x5/101.35...

1− 0.8x
− x6/694.44...

1− x

− x7/767.54...

1− 0.x
− x8/2425.6...

1 + x
− x9/9582.6...

1− α9 x
± · · · ,

where the coefficients satisfy |An| ≤ 31−n, n = 1, ..., 9. For the method used for
obtaining this series see the next example. Now we formulate the following

Hypothesis 1. There is a choice of {αn} ⊂ R with |αn| ≤ 1 such that the
coefficients in the form (2) of l(x) satisfy |An| ≤M qn for some M > 0 and q < 1.

For the function L we found that

L(z)≈ z

1− 51
350 z

2
+
z3/5.329...

1− 1009
1400 z

2
+
z5/22.96...

1− z2
− z7/806.9...

1 + 59
100 z

2
− z9/259.3...

1− z2

+
z11/1039.7...

1− 1567
2100 z

2
− z13/4274.2...

1 + z2
+
z15/16697.9...

1 + z2
− z17/73749.6...

1− α9 z2
...,

(8)

where the n-th coefficient is less than 41−n for n ≤ 9. The method is the following
branch and bound algorithm. Fix an integer m and consider k nested cycles for
αn, n = 1, ...., k ranging from −1 to 1 with step 2/m. The bound is An+1 ≤ 4−n

and if this is not fulfilled, the corresponding cycle continues with the next iteration,
avoiding going into deeper levels. The algorithm works successfully up to k = 7.
For (8), a modification was used to justify the coefficients to k = 8.

3. Consider the following lacunary representation

L(z) ≈
∞∑
k=0

Bk

( z

1− βkz2

)4k+1

. (9)

The parameters in (9) are uniquely determined, with the first several of them given
by:

B0 = 1, β0 =
1

3
; B1 =

4

45
=

1

11.25
, β1 =

5

21
= 0.23809...;

B2 =
92

632
=

1

43.14...
, β2 =

163

759
= 0.21475...;

B3 =
22458728

3015483471
=

1

134.2...
, β3 =

4150546877

20339185545
= 0.20406...;

B4 =
1

378.6...
, β4 = 0.197876...;

B5 =
1

1007.8...
, β5 = 0.193803...;
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Thus, we can formulate the following

Hypothesis 2. The representation (9) of L(z) converges when z belongs to a
certain disk centered at the origin.

Note that the analogous representation for l(x) leads exactly to (5).

4. Let us consider the following combination of (2) and the above form:

L(z) ≈ B0

1− b0z2

( z

1− β0z2

)
+

B1

1− b1z2

( z

1− β1z2

)5

+
B2

1− b2z2

( z

1− β2z2

)9

+ · · · .

(10)
In this form, keeping the lacunary property, we have a series of extra parameters in
order to optimize the coefficients. Say if we choose {βn}, the parameters {Bn} and
{bn} are uniquely determined, provided it does not appear division by zero. The
following choice satisfy: |βn|, |bn| ≤ 1 for n = 0, ..., 3; |Bn| ≤ 20−n for n = 0, ..., 4;
and provide a possibility for arbitrary small |B5| with |β4| ≤ 1:
{βn}30 = {0.4254, 0.1427, 0.0238, 0.411};
{bn}30 = {−0.092066..., 0.889557..., 0.925184...,−0.478074...};
{Bn}40 = {1, 1/20.1111...,−1/521.310..., 1/19118.7..., 1/161497.8...}.

The method is by considering the graphs of two consecutive Bn and Bn+1

with respect to βn−1 and βn in order to choose βn−1. The graph of Bn(βn−1) is a
parabola and we introduce the notion balanced choice of the previous parameters
if the graph intersects the abscissa for βn−1 ∈ [−1, 1], that is if we can make |Bn|
arbitrarily small. But if we take Bn = 0 then Bn+1 becomes undefined because of
division by zero. This is clearly seen from the second graph of Bn+1(βn−1, βn) which
has infinite branches, at the places where Bn = 0. So, it is good to choose βn−1

close to these vertical asymptotes (the zeros of Bn(βn−1)) so that the corresponding
section of the 3D graph (which is the planar graph for the next step) crosses the
zero level. Actually, considering the 3D graphs is an auxiliary process, and we can
avoid this. We can try several specific values of βn−1 close to the zeros of Bn(βn−1)
so that |Bn| is small and the next graph of Bn+1(βn), βn ∈ [−1, 1] has zeros, i.e.
the choice of βn−1 to be balanced. If, say, Bn(βn−1) has two zeros in [−1, 1], then
it can happen to exist four appropriate areas for choosing βn−1, on the both sides
of the two zeros. An additional reasoning which helps the choice is the goal to
keep the parameters {bn} in [−1, 1]. Then, the choice of βn−1 has to be such that
|bn−1| ≤ 1 and since the function bn(βn) = A(βn−1)βn + B(βn−1) is linear, it is
easy to estimate in advance the range of bn when βn ∈ [−1, 1].

A natural question is if there exists a balanced choice of {βn−1} for every
n ∈ N.

Revisiting example (9) considered as a particular case of (10) we make the
following observations. The choice of {βi}n−1

i=0 is balanced up to n = 30, as the
graphs of Bn+1(βn) (with specified previous {βi}) have two roots in [−1, 1] and the
specific value for βn in (9) is between the middle of them and the second root. It
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seems that the series {βn} has a limit around 0.17 and the ratios Bn+1/Bn belong
to (0, 1/2).

Other interesting choice is to specify βn at the extreme point of the parabola
y = Bn+1(βn). On the basis of calculations made up to n = 30, the situation
appears to be very similar to the one described above, but now βn is exactly the
middle of the two roots of Bn+1(βn). Surprisingly, we observe that bn = βn and
seemingly this series tends to the same limit as above.

Clearly, there is much subjectivity in the approach described above, but it
is not easy to avoid it. For example, if we use the least squares criterion Mn =
λnB

2
n + (1 − λn)B2

n+1 → min then the subjectivity transfers to the choice of the
λ-s. The function Mn(βn−1, βn) usually has several local extrema and a decent
optimization of the sequence {Bn}k1 needs considering of a tree of possibilities.
Note that the attempt to manage the parameters by minimizing of the three term
sums λnB

2
n +µnB

2
n+1 + νnB

2
n+2 was not successful because of the complicatedness

of this three variable function.

4. CONVERGENCE CONSIDERATIONS

Let us consider the representation (10) with equal parameters βn = p, n =
0, 1, 2, .... This form is motivated as a simple generalization of the lacunary variant
of (2) (for zL(z), x = z2), which hopefully will converge for certain p. We start the
study of the series {Bn(p)} and {bn(p)} with some particular examples. For p = 0
we have the second lacunary example from 3.1, while for p = 1

4 we have

{Bn} = {1, 1.0972...10−1, 2.1442...10−2, 4.5910...10−3, 8.9862...10−4,−7.5297...10−5,

3.0626...10−3,−3.8502...10−2, 3.4662...,−1.2595...103, 1.6502...106, . . .};
{bn} = {1/12,−0.15898...,−0.25539...,−0.20173..., 0.17256...,−6.7384...,−8.4293...,

− 17.216...,−33.759...,−64.545...,−122.64..., . . .}.

The behavior of this sequence is typical: For common values of p, in the begin-
ning |Bn| decreases like a geometric series, later on the decreasing slows down and
changes to increasing and finally we observe again a rapid divergence to∞. Slightly
before the turning of {Bn} it is preceded by breaking the restriction |bn| ≤ 1. Espe-
cially, for p = 0.17 the decreasing lasts up to n = 336, when B336 = 9.1654...10−119,
and after that again |Bn| goes to ∞. A natural question is whether there exist real
values of p for which {Bn(p)}∞0 is bounded. However, a numerical search for such
values encounters some difficulties. For example, the above number was obtained
by using long arithmetics and a precision of 200 decimal digits was not sufficient.

Usually we get the limit behavior bn ≈ A.qn and Bn ≈ (−1)nB.qn
2−αn with

q > 1. While A, B and α in the above empirical formulas depend on p, it is
interesting that q ≈ 1.894 is an absolute constant. Indeed, assume that the above
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relations hold as asymptotic equivalences ”∼” and |q| > 1. By (10) with βn = p we
obtain the following system for the coefficients Bn and bn:

B0

2n∑
i=0

pib2n−i0 +B1

2n−2∑
i=0

(
4+i
i

)
pib2n−2−i

1 +B2

2n−4∑
i=0

(
8+i
i

)
pib2n−4−i

2 + · · ·+Bn =
1

4n+ 1
,

B0

2n+1∑
i=0

pib2n+1−i
0 +B1

2n−1∑
i=0

(
4+i
i

)
pib2n−1−i

1 +B2

2n−3∑
i=0

(
8+i
i

)
pib2n−3−i

2 + · · · (11)

+Bn(bn + (4n+ 1)p) =
1

4n+ 3
.

We observe that, for a sufficiently large n the back terms in (11) are significant,
while the first terms are relatively small (we assume that |p| < 1). Also, the first
summands b2j+δn−j , δ ∈ {0, 1} in the rear sums (for i = 0) are equivalent to the whole
sums. For example, next to the last term in the left hand side of the first equation
is Bn−1(b2n−1 +(4n−3)pbn−1 +(2n−1)(4n−3)p2) ∼ Bn−1b

2
n−1 for n→∞. That’s

why the terms containing p are negligible for n→∞ according to the assumption.
Thus, for a sufficiently large n we come to the limit system

Bn.1 +Bn−1.b
2
n−1 +Bn−2.b

4
n−2 + · · ·+B0.b

2n
0 = o

(
Bn
)
,

Bn.bn +Bn−1.b
3
n−1 +Bn−2.b

5
n−2 + · · ·+B0.b

2n+1
0 = o

(
Bn
)
.

Substituting here the asymptotic relations for bn and Bn we see that A2n and qαn

are combined. Then, with u = A2qα, letting n → ∞ we come to the following
system

1− uq−12

+ u2.q−22

− u3.q−32

+ · · · = 0,

1− uq−1.2 + u2.q−2.3 − u3.q−3.4 + · · · = 0.

We did not investigate this system for all real solutions, but considering truncated
systems, which are algebraic, we found a series of real solutions that stabilizes to
(q, u) = (1.8947..., 6.1450...).

In order to understand better the behavior of the series {Bn} and {bn} we
consider first the truncated recurrence system

Bn +Bn−1

[
b2n−1 +

(
4n−3

1

)
pbn−1 +

(
4n−2

2

)
p2
]

=
1

4n+ 1
(12)

Bn
(
bn+(4n+1)p

)
+Bn−1

[
b3n−1+

(
4n−3

1

)
pb2n−1+

(
4n−2

2

)
p2bn−1+

(
4n−1

3

)
p3
]

=
1

4n+3
.

and its specification (with p = 0)

Bn +Bn−1b
2
n−1 =

1

4n+ 1

Bnbn +Bn−1b
3
n−1 =

1

4n+ 3
.

(13)
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The system (13) appears to have a similar behavior as (11) in qualitative sense,
but in quantitative sense it is weaker. Depending on B0 and b0, in the general case
the series fluctuates in the beginning and from some place on stabilizes to the
asymptotic formulas bn → ρ, |ρ| > 1 and Bn ∼ C(−ρ2)n. It is possible that the
series terminates if some Bk vanishes and consequently bk = c/0. We shall prove
a ”divergence criterion” which imply the asymptotic formulas (if they hold) for a
concrete initial pair (B0, b0).

Consider first the case when Bk = ε for a sufficiently small |ε|. Then, bk = c/ε
and let us assume that |c| is not very small, say ε = o(c) for ε(B0, b0) → 0 and
B0 = const. For the next terms, we find from (13)

Bk+1 =
1

4k + 5
− c2

ε
= −

( c
ε

)2

Bk

(
1 +O(ε)

)
bk+1 =

( 1

4k + 7
− c3

ε2

)
/Bk+1 = bk

(
1 +O(ε)

)
.

Similarly, Bk+j =
(
− c2

ε2

)j
Bk

(
1 +O(ε)

)
and bk+j = bk

(
1 +O(ε)

)
for every fixed

j ∈ N. Thus, if Bk happens to be very close to 0, then the asymptotic formulas
take place immediately after k with a large ρ.

Proposition 1. Let {(Bn, bn)} satisfy (13) and for a fixed k the conditions

|bk−1| ≥ r > 1 and |Bk−1b
2
k−1| ≥

Q

4k + 1
with Q > 3 hold true. Then

|bk| ≥ r −
1 + r

Q− 1
and |Bkb2k| ≥

r2(Q− 3)2

(4k + 5)(Q− 1)
.

Proof. From (13) it follows |Bk| ≥ |Bk−1b
2
k−1|− 1

4k+1 and Bk
bk
bk−1

+
(

1
4k+1−Bk

)
= 1/bk−1

4k+3 . Therefore, |Bk| ≥ Q−1
4k+1 and |Bk| ·

∣∣∣ bk
bk−1

− 1
∣∣∣ ≤ 1

4k+1 + 1/r
4k+3 ≤

1+1/r
4k+1 . As

a consequence we have
∣∣∣ bk
bk−1
− 1
∣∣∣ ≤ 1+1/r

Q−1 . Hence, bk
bk−1

≥ 1− 1+1/r
Q−1 , and since the

latter number is positive (Q > 3), we obtain that

|bk| ≥ |bk−1|
(

1− 1 + 1/r

Q− 1

)
≥ r
(

1− 1 + 1/r

Q− 1

)
= r − 1 + r

Q− 1

and

|Bkb2k| ≥
Q− 1

4k + 1

(rQ− 2r − 1

Q− 1

)2

>
r2(Q− 3)2

(4k + 5)(Q− 1)
.

�

The following assertion (which is a divergence criterion) makes use of the fact
that for a sufficiently large Q, the estimates from Proposition 1 essentially repeat
recursively and imply that {Bn} increases at least as a geometric sequence.
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Corollary 1. Let {(Bn, bn)} satisfy (13) and for a given k the estimates |bk| ≥
q + ε and |Bkb2k| ≥

Q
4k+5 hold true, where q > 1, ε > 0 and Q > 3. If in addition

ε(Q− 3) ≥ q2

q−1 , then for every j ∈ N0 we have

|bk+j | ≥ q, |Bk+jb
2
k+j | ≥

(Q− 3)q2j

4(k + j) + 5
and |Bk+j+1| ≥

(Q− 3)q2j − 1

4(k + j) + 5
.

Before proving Corollary 1, we will prove a technical lemma.

Lemma 1. For given q > 1, ε > 0 and Q > 3 let us define the sequences
{εj}∞0 and {Qj}∞0 by ε0 = ε, (q + εj+1) = (q + εj) − 1+(q+εj)

Qj−1 and Q0 = Q,

Qj+1 = (q + εj)
2 (Qj−3)2

(Qj−1) . If in addition ε(Q− 3) ≥ q2

q−1 , then for every j ∈ N0 the

inequalities εj ≥ q2

(q−1)(Qj−3) > 0 and (Qj − 3) ≥ (Q− 3)q2j > 0 hold true.

Proof. Clearly, it is enough to prove the assertion only for j = 1, as for larger
j it follows inductively. For brevity, set Q̄ := Q− 3.

We start with the proof of inequality (Q1 − 3) ≥ (Q− 3)q2. It is equivalent to

(q + ε)2Q̄2 ≥ (Q̄q2 + 3)(Q̄+ 2).

In view of the additional assumption for ε, the above will follow from

q2Q̄2 +
2q3

q − 1
Q̄+

q4

(q − 1)2
≥ (Q̄q2 + 3)(Q̄+ 2),

which is
2q3

q − 1
Q̄+

q4

(q − 1)2
≥ (2q2 + 3)Q̄+ 6 and easily follows by termwise com-

parison of the summands in the left- and right-hand sides, taking into account that
q > 1.

The inequality ε1 ≥
q2

(q − 1)(Q1 − 3)
, by the definitions and the just proved

Q1 > 3, is equivalent to[
ε
(Q− 2

Q− 1

)
− 1 + q

Q− 1

]
·
[
(q + ε)2 (Q− 3)2

Q− 1
− 3
]
≥ q2

q − 1
.

It is not difficult one to verify that the first factor in the left-hand side is positive,

as it is positive for ε replaced with its lower bound q2

(q−1)(Q−3) . Therefore, the above

inequality will hold true if it is true with ε = q2

(q−1)(Q−3) , which is

[ q2

q − 1
· Q− 2

(Q− 1)(Q− 3)
− 1 + q

Q− 1

]
·
[(
q +

q2

(q − 1)(Q− 3)

)2 (Q− 3)2

Q− 1
− 3
]
≥ q2

q − 1
.

The latter is equivalent to the inequality[
q2 + Q̄

]
·
[
q2(q−1)2Q̄2 +2q3(q−1)Q̄+q4−3(q−1)2(Q̄+2)

]
≥ q2(q−1)2(Q̄+2)2Q̄
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which after simplification takes the form AQ̄2 + B Q̄ + C ≥ 0 with coefficients
A = (q − 1)

(
2q3 + (q − 1)(q4 − 4q2 − 3)

)
, B = q4 + 2(q − 1)q5 − (q − 1)2(7q2 + 6)

and C = q2(q4 − 6(q − 1)2).

It is easy to verify that polynomials A, B and C are positive for q > 1. The
positivity C follows from q4−6(q−1)2 = (q−1)4+4(q−1)3+4(q−1)+1 > 0. To check
that A > 0 we write 2q3 + (q − 1)(q4 − 4q2 − 3) = 2q3 − 7(q − 1) + (q − 1)(q2 − 2)2

and 2q3 − 7(q − 1) = 2(q − 1)3 + 6(q − 1)2 − (q − 1) + 1 > 0 since q − 1 is
majorized either by (q − 1)2 or by 1. Finally, to verify that B > 0 we rewrite it
as
(
q4 − 6(q − 1)2

)
+ q2(q − 1)

(
2q3 − 7(q − 1)

)
, where the positivity of the both

summands was already shown. The lemma is proved. �

Proof of Corollary 1. Define the sequences {εj}∞0 and {Qj}∞0 as in Lemma 1.
The definitions are coherent with Proposition 1 so that (by induction) |bk+j | ≥ q+εj
and |Bk+jb

2
k+j | ≥

Qj
4(k+j)+5 for j ≥ 0. The conditions of Proposition 1, q + εj > 1

and Qj > 3, are ensured by Lemma 1 on the basis of the additional condition for ε
and Q. Furthermore, the estimates from Lemma 1, εj ≥ 0 and (Qj−3) ≥ (Q−3)q2j ,
imply the first two claimed estimates in the corollary. The third inequality is an
elementary consequence from the second one and the first row of (13). �

The next assertion claims that, essentially, the above lower estimates describe
the asymptotical behavior of the series generated by (13).

Corollary 2. Under the conditions of Corollary 1 the asymptotic relations
bn → ρ, |ρ| > 1 and Bn ∼ C (−ρ2)n hold for n → ∞, where ρ = ρ(B0, b0) and
C = C(B0, b0).

Proof. Denote Bnb
2
n by Mn. Increasing if necessary the index k in Corollary 1,

we may assume that Q > 6, hence (4(k + j) + 5)Mk+j > 3 for every j > 0. Using

(13) we obtain Bk+j+1 = −Mk+j

(
1− 1

(4(k+j)+5)Mk+j

)
and

bk+j+1 =
−Mk+jbk+j + 1

4(k+j)+7

Bk+j+1
=
bk+j − 1

(4(k+j)+7)Mk+j

1− 1
(4(k+j)+5)Mk+j

=: bk+j

(
1 + τk+j

)
.

Then we have

|τk+j | =

∣∣∣∣∣
1

(4(k+j)+5)Mk+j
− 1

(4(k+j)+7)bk+jMk+j

1− 1
(4(k+j)+5)Mk+j

∣∣∣∣∣ ≤
(

1
4(k+j)+5 + q

4(k+j)+7

)
1

|Mk+j |

1− 1
(4(k+j)+5)|Mk+j |

≤ 2

(4(k + j) + 5)|Mk+j |
1

1− 1/3
≤ 3

(Q− 3)q2j
≤ 1/2

q2j
.

Therefore, for every natural n ≥ k and j the inequalities

bn+j

bn
=

j−1∏
i=0

(1 + τn+i) ≥
j−1∏
i=0

(1− |τn+i|) ≥
∞∏
i=0

(1− |τn+i|) ≥ 1−
∞∑
i=0

|τn+i|
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and

bn+j

bn
=

j−1∏
i=0

(1 + τn+i) ≤
j−1∏
i=0

(1 + |τn+i|) ≤
∞∏
i=0

(1 + |τn+i|) ≤ exp
( ∞∑
i=0

|τn+i|
)

hold true. As a consequence, in view of the estimates for τm, we obtain

− (1/2)

q2(n−k)(1− q−2)
≤ bn+j

bn
− 1 ≤ exp

( (1/2)

q2(n−k)(1− q−2)

)
− 1.

Since these bounds can be arbitrarily close to 0 for a sufficiently large n and {|bm|}
is bounded (by the same inequalities with n = k), we conclude that the sequence
{bm} is fundamental, and hence convergent to a limit ρ with |ρ| ≥ q > 1.

In addition, letting j to infinity, we find the estimates

− 1/2

q2(n−k)(1− q−2)
≤ ρ

bn
− 1 ≤ exp

( 1/2

q2(n−k)(1− q−2)

)
− 1, n ≥ k.

Or, we can simplify these to∣∣∣ ρ
bn
− 1
∣∣∣ ≤ c(q)

q2(n−k)
, n ≥ k,

where c(q) = maxx∈[0,1]
1
x

[
exp

(
x/2

1−q−2

)
− 1
]
. Then, with bn =: ρ/(1 + θn), the

bound |θn| ≤ c(q)q2(k−n) holds for n ≥ k. Next, by the first equation in (13) it
follows that

Bn+1

Bn
= −b2n

(
1− 1

b2n(4n+ 5)Bn

)
=

−ρ2

(1 + θn)2

(
1− 1

(4n+ 5)Mn

)
.

Thus, for n ≥ k we have

Bn = Bk(−ρ2)n−k
n−k−1∏
j=0

(
1 + θk+j

)−2
(

1− 1

(4(k + j) + 5)Mk+j

)
.

Finally, the estimates |θk+j | ≤ c(q)q−2j and 1
(4(k+j)+5)|Mk+j | ≤

1
(Q−3)q2j ensure the

convergence of the infinite product P :=
∏∞
j=0

(
1 + θk+j

)−2
(

1 − 1
(4(k+j)+5)Mk+j

)
.

(In view of Corollary 1 we have Bn 6= 0 and the all factors in P do not vanish.)
Therefore, the partial product is asymptotically equivalent to its limit and we obtain
Bn ∼ BkP (−ρ2)n−k = C(−ρ2)n. The proof is complete. �

Let us consider an example for application of Corollary 1. Let B0 = 1 and
b0 = 0. By (13) we obtain: B1 = 1/5, b1 = 5/7; B2 = 4/441, b2 = 153/77;
B3 = 0.04111..., b3 = −0.10924...; B4 = 0.05833..., b4 = 0.90318...; B5 = 3.4754...×
10−5, b5 = 14.4152...; B6 = 0.03277..., b6 = −2.04617...; B7 = −0.10275..., b7 =
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−3.04678...; B8 = 0.98415..., b8 = −2.92393...; B9 = −8.38692..., b9 = −2.93641...;
etc. It can be verified that the assumptions of Corollary 1 hold for k = 7 with
q = 2.8, ε = 0.2 and Q = 31. Then, this particular sequence tends to infinity like

a geometrical series and the lower bounds |bn| ≥ 2.8 and |Bn+1| ≥ 28(2.8)2n−14−1
4n+5

hold for all n ≥ 7.

Remark 1. It seems that there are bounded solutions of (13) even with
B0 = 1. We have not a strict proof but there is a particular candidate - the
sequence with B0 = 1 and b0 = b∗, where b∗ ∈ (0.9512609, 0.9512610).

Let us turn our attention to the system (12). For p 6= 0 the usual limit
behavior of the sequences defined by (12) is Bn ∼ C(p, b0, B0)(−4p2)nn![(n− 1)!]3

and bn ∼ −2pn2. A divergence criterion is given by the following

Proposition 2. Let {(Bn, bn)} satisfy (12) and for certain k ≥ 1
2|p| there holds

|Bk| ≥ 1. Then the sequence {|Bn|} tends to infinity faster than any geometrical
series.

Proof. Let us set Ln := b2n + (4n + 1)pbn +
(

4n+2
2

)
p2. It is easily verified that

Ln ≥ p2

4 (4n+ 1)(4n+ 3). Then by (12) and |Bk| ≥ 1 we have

|Bk+1| =
∣∣∣ 1

4k + 5
−BkLk

∣∣∣ ≥ (Lk − 1

(4k + 5)|Bk|

)
|Bk|

≥
(
Lk −

1

(4k + 5)

)
|Bk| ≥

(p2

4
(4k + 1)(4k + 3)− 1

(4k + 5)

)
|Bk|.

(14)

Now, the condition k ≥ 1
2|p| imply that (4k + 1)2 > 4

p2 and by (14), |Bk+1| > |Bk|.
It follows inductively that |Bn+1| > |Bn| ≥ 1 for every n ≥ k. Now, take an
arbitrary q > 1. In view of the last inequality for Bn, we may assume that k is

sufficiently large so that ρk := p2

4 (4k + 1)(4k + 3) − 1
(4k+5) ≥ q. Then (14) yields

|Bk+1| ≥ q|Bk|. Since ρk is increasing, we can prove by induction using (14) that
|Bn+1| ≥ q|Bn| for every n ≥ k. �

Now we will prove that in the general case (except eventually for some special
values of p) there is a choice of (B0, b0), such that the sequence {Bn} is bounded.

The basic observation is that the asymptotic formulasBn ∼ 6|ȳ|
(4n)3p2 and bn ∼ ȳ(4np)

are compatible with the system (12) if ȳ ≈ −0.62654 is the unique real solution of
the equation y3 + y2 + 1

2 y+ 1
6 = 0. The next assertion states the existence of such

type solutions of (12).

Proposition 3. For every nonzero real number p there exist k ∈ N0 and
Bk, bk ∈ R such that the sequences {Bn} and {bn} determined by (12) for n ≥ k
satisfy Bn = O(n−3) and bn = O(n) as n→∞.

18 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44.



For the proof of this proposition we need the following auxiliary result.

Lemma 2. Let (α, β) belongs to the domain D = {(α, β) ∈ R2 : |α|, |β| ≤ 1
10}.

Then the equation y3 + y2 + 1+α
2 y + 1+β

6 = 0 has a unique real solution y(α, β) ∈
(−0.75,−0.5] which is a Lipschitz function in D. Moreover, if (αi, βi) ∈ D, i = 1, 2,
then |y(α2, β2)− y(α1, β1)| ≤ 15

8 |α2 − α1|+ 5
6 |β2 − β1|.

Proof. Let f(y) = y3 + y2 + 1+α
2 y + 1+β

6 . Then f ′(y) = 3y2 + 2y + 1+α
2

has a negative discriminant when |α| ≤ 1
10 and hence f ′(y) > 0 for every y ∈ R.

Consequently, for (α, β) ∈ D the equation f(y) = 0 has one real solution, which is

denoted by y(α, β). Next, since f(− 3
4 ) ≤

(
− 3

4

)3
+
(
− 3

4

)2
+ 0.9

2

(
− 3

4

)
+ 1.1

6 < 0

and f(− 1
2 ) ≥

(
− 1

2

)3
+
(
− 1

2

)2
+ 1.1

2

(
− 1

2

)
+ 0.9

6 = 0, then y(α, β) ∈ (−0.75,−0.5]
provided (α, β) ∈ D.

For (α0, β0) = (0, 0) and fixed (α1, β1), (α2, β2) ∈ D let us set yi := y(αi, βi)
and fi(y) := y3 + y2 + 1+αi

2 y + 1+βi
6 , i = 0, 1, 2. Then

0 = f2(y2)− f1(y1) = f0(y2)− f0(y1) +
α2y2

2
+
β2

6
− α1y1

2
− β1

6

= f ′0(η)(y2 − y1) +
α2

2
(y2 − y1) +

α2 − α1

2
y1 +

β2 − β1

6

with some η ∈ [y1, y2] (or [y2, y1]). Therefore,

|y2 − y1| ≤
( |α2 − α1|

2
|y1|+

|β2 − β1|
6

)/∣∣∣f ′0(η) +
α2

2

∣∣∣.
Using that η ∈ [− 3

4 ,−
1
2 ] we obtain

f ′0(η) +
α2

2
= 3η2 + 2η +

1 + α2

2
≥ 3η2 + 2η + 0.45 ≥ 0.2,

hence

|y2 − y1| ≤
(0.75

2
|α2 − α1|+

1

6
|β2 − β1|

)
× 5 =

15

8
|α2 − α1|+

5

6
|β2 − β1|.

The lemma is proved. �

Proof of Proposition 3. Let us define the sequences {(bn,i, Bn,i)}∞n=k, for i =
0, 1, 2, . . . and k ∈ N, which will be specified later, by the recurrence formulas:

bn,0 := (4n+ 1)pȳ, Bn,0 :=
6|ȳ|

(4n+ 1)2(4n+ 5)p2
;

bn,i : Bn,i−1

[
b3n,i +

(
4n+1

1

)
pb2n,i +

(
4n+2

2

)
p2bn,i +

(
4n+3

3

)
p3
]

=
1

4n+ 7
−Bn+1,i−1

(
bn+1,i−1 + (4n+ 5)p

)
,

Bn,i : Bn,i

[
b2n,i +

(
4n+1

1

)
pbn,i +

(
4n+2

2

)
p2
]

=
1

4n+ 5
−Bn+1,i−1.
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Set bn,i := (1 + δn,i)bn,i−1 and Bn,i := (1 + ∆n,i)Bn,i−1. We shall show that the
relative distances δn,i and ∆n,i decay (with i) like a geometrical series, from where
it will follow that (bn,i, Bn,i) converge to a certain limit as i→∞.

We estimate separately δn,1 and ∆n,1. The ratio X = Xn := bn,1
/

((4n+1)p) is

a solution of the equation X3+X2+ 1
2

(
1+ 1

4n+1

)
X+ 1

6

(
1+ 1

4n+1

)(
1+ 2

4n+1

)
= A0,

where A0 :=
[

1
4n+7 − Bn+1,0

(
bn+1,0 + (4n + 5)p

)]/[
(4n + 1)3p3Bn,0

]
. Let us set

α = 1
4n+1 and β = βn,1 = 3

4n+1 + 2
(4n+1)2 − 6A0. In view of the definitions of bn,0

and Bn,0 we have

|β| ≤ 3

4n+ 1
+

2

(4n+ 1)2
+

4n+ 5

4n+ 7
· 1

(4n+ 1)|pȳ|
+

6(1 + ȳ)

(4n+ 1)(4n+ 9)p2

≤ 3 + 1.6/|p|
4n+ 1

+
2 + 2.25/p2

(4n+ 1)2
=: β̄n.

Now, choose k such that β̄n ≤ 1
20 for n ≥ k. Thus, |β| ≤ 1

20 and 3
4n+1 ≤

1
20 ,

i.e. |α| ≤ 1
60 . Then, an application of Lemma 2 gives

|X − ȳ| = |y(α, β)− y(0, 0)| ≤ 15

8
α+

5

6
|β| ≤ 15/8

60
+

5/6

20
≤ 0.073 .

Therefore, X ∈ (−0.7,−0.553) and |δn,1| =
∣∣bn,1/bn,0 − 1

∣∣ =
∣∣X/ȳ − 1

∣∣ < 0.118.

Before estimating ∆n,1 we estimate

Ln,1 = b2n,1+(4n+1)pbn,1+
1

2

(
1+

1

4n+1

)
(4n+1)2p2 = (4n+1)2p2

(
X2+X+

1+α

2

)
.

Since X ∈ (−0.7,−0.5) and α ∈
(
0, 1

60

)
, then Ln,1

/
(4n+ 1)2p2 ∈ (0.25, 0.3). This,

in view of

Bn,1 =
( 1

4n+5
−Bn+1,0

)/
Ln,1 = Bn,0

( 1

6|ȳ|
− 1/p2

(4n+5)(4n+9)

)/[
Ln,1

/
(4n+1)2p2

]
and 1/|p|

4n+1 < 0.03 (a consequence of β̄n ≤ 1
20 ) implies that Bn,1/Bn,0 ∈ (0.883, 1.065)

(the numerator belongs to (0.265, 0.2661)). Therefore, |∆n,1| ≤ 0.117.

Our goal is to prove by induction that |δn,i|, |∆n,i| ≤ 7−i. The above estimates
prove this assertion for i = 1, and we assume that i ≥ 2 by the end of the proof.
Next, with Yi = Yn,i := bn,i

/
(4n+ 1)p, we have

Y 3
i + Y 2

i +
1

2

(
1 +

1

4n+ 1

)
Yi +

1

6

(
1 +

1

4n+ 1

)(
1 +

2

4n+ 1

)
= Ai−1,

where Ai−1 :=
[

1
4n+7 −Bn+1,i−1

(
bn+1,i−1 + (4n+ 5)p

)]/[
(4n+ 1)3p3Bn,i−1

]
. As
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above, we set α = 1
4n+1 and β = βn,i = 3

4n+1 + 2
(4n+1)2 − 6Ai−1. Then

βn,i − βn,i−1 =
−6/p2

(4n+ 1)3

[
1/p

4n+ 7

( 1

Bn,i−1
− 1

Bn,i−2

)
−
(bn+1,i−1

p
+ 4n+ 5

)Bn+1,i−1

Bn,i−1
+
(bn+1,i−2

p
+ 4n+ 5

)Bn+1,i−2

Bn,i−2

]
.

Consequently,

|βn,i−βn,i−1| ≤
6/p2

(4n+1)3

[ (
1/|p|

)
|K|

(4n+7)Bn,i−2
+
|bn+1,i−2/p+4n+5|Bn+1,i−2|M |

Bn,i−2

]
, (15)

where K = 1− Bn,i−2

Bn,i−1
and M = 1− bn+1,i−1/p+4n+5

bn+1,i−2/p+4n+5 ·
Bn+1,i−1

Bn+1,i−2
· Bn,i−2

Bn,i−1
. By induction,

the following estimate for K holds true:

|K| =
∣∣∣1− 1

1 + ∆n,i−1

∣∣∣ =
|∆n,i−1|

1 + ∆n,i−1
≤ 49

48
· 71−i .

Here we have used |∆n,i−1| ≤ 1
49 for i ≥ 3 and |∆n,1| ≤ 0.117 for i = 2. Now, we

estimate the factor M . By induction,

Bn+1,i−1

Bn+1,i−2
· Bn,i−2

Bn,i−1
=

1 + ∆n+1,i−1

1 + ∆n,i−1
∈
[1− 71−i

1 + 71−i ,
1 + 71−i

1− 71−i

]
and let

bn+1,i−1/p+ 4n+ 5

bn+1,i−2/p+ 4n+ 5
= 1 +

bn+1,i−1 − bn+1,i−2

bn+1,i−2 + (4n+ 5)p
=: 1 + ε .

Then |ε| = |δn+1,i−1|
/∣∣∣1 + (4n+5)p

bn+1,i−2

∣∣∣ and we need to estimate the denominator. For

i = 2, by definition it is |1 + 1/ȳ| ≈ 0.5961 (hence |ε| < 0.2), while for i ≥ 3 we
have (see above)

Y −1
n+1,i−2 =

(4n+5)p

bn+1,i−2
=
bn+1,i−3

bn+1,i−2

bn+1,i−4

bn+1,i−3
· · · bn+1,1

bn+1,2

(4n+5)p

bn+1,1
=
[
X

i−2∏
j=2

(1+δn+1,j)
]−1

.

By induction we conclude that

Y −1
n+1,i−2 ∈

([
X

∞∏
j=2

(1− 7−j)
]−1

,
[
X

∞∏
j=2

(1 + 7−j)
]−1)

⊂
(
− 1.853,−1.395

)
,

where we have used X = Xn+1 ∈ (−0.7,−0.553) and
∏∞
j=2(1 + 7−j) ≈ 1.02388,∏∞

j=2(1− 7−j) ≈ 0.97626. Hence, |ε| ≤ 2.54× 71−i.

It follows from the above estimates that

M ∈
[
1− 1 + 71−i

1− 71−i

(
1 + 2.54× 71−i

)
, 1− 1− 71−i

1 + 71−i

(
1− 2.54× 71−i

)]
.
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As a consequence, |M | ≤ 4.54+2.54×71−i

1−71−i 71−i ≤ 5.72× 71−i (i ≥ 2).

The remaining factors in (15) we estimate by the induction. For j = 0, 1 we
have

Bn+j,i−2

Bn+j,0
= (1 + ∆n+j,1) · · · (1 + ∆n+j,i−2) ∈

{
(0.883, 1.065), for i = 3

(0.862, 1.091), for i > 3
.

From Y −1
n+1,i−2 = (4n+5)p

bn+1,i−2
∈
(
−1.853,−1.395

)
we infer (bn+1,i−2/p+4n+5)/(4n+5) ∈

(0.283, 0.461), and the latter inclusion holds for i = 2 as well. Then (15) implies

|βn,i − βn,i−1| ≤
6/p2

(4n+1)3 × 0.862Bn,0

[ 1/|p|
(4n+7)

× 49

48
× 71−i+0.461(4n+5)× 1.091Bn+1,0× 5.72×71−i

]
≤ 71−i

0.862(4n+ 1)

[ 1

|pȳ| ·
49

48
+

2.877× 6

(4n+ 9)p2

]
≤
[13.24/|p|

4n+ 1
+

140.2/p2

(4n+ 1)2

]
× 7−i.

Hence, from 1/|p|
4n+1 < 0.03 we get |βn,i − βn,i−1| ≤ 0.524× 7−i (i ≥ 2).

Inductively, similar inequalities hold for all {βn,j}i−1
j=2 and we conclude that

|βn,i| ≤ |βn,1|+
i∑

j=2

|βn,j − βn,j−1| <
0.524× 7−2

1− 7−1
+

1

20
<

1

10
.

Therefore, we can apply Lemma 2 to find for i ≥ 2

|Yi − Yi−1| = |y(α, βn,i)− y(α, βn,i−1)| ≤ 15

8
×0 +

5

6
|βn,i − βn,i−1| < 0.437× 7−i .

Also, Lemma 2 gives the estimate Yi−1 ∈ (−0.75,−0.5] and we obtain

|δn,i| =
∣∣Yi/Yi−1 − 1

∣∣ =
∣∣Yi − Yi−1

∣∣/|Yi−1| ≤ 0.874× 7−i, i ≥ 2.

In order to estimate ∆n,i for i ≥ 2 we use the identity

∆n,i =
Bn,i
Bn,i−1

− 1 =
1/(4n+ 5)−Bn+1,i−1

Ln,i

Ln,i−1

1/(4n+ 5)−Bn+1,i−2
− 1 ,

where Ln,i := b2n,i +
(

4n+1
1

)
pbn,i +

(
4n+2

2

)
p2. Clearly,

|Ln,i − Ln,i−1| = |bn,i − bn,i−1| × |bn,i + bn,i−1 + (4n+ 1)p|
= |bn,i−1 δn,i| × (4n+ 1)|p| × |Yi + Yi−1 + 1|.

Recalling that Y0 = ȳ and Y1 =X ∈ (−0.7,−0.553) we can refine the estimate Yi ∈
(−0.75,−0.5] by |Yi| ≤ |X|+|Y1−Y2|+· · ·+|Yi−1−Yi| < 0.7+ 0.437×7−2

1−7−1 < 0.711, i.e.
Yi ∈ (−0.711,−0.5]. The same holds for Yi−1 as well. Hence, |Yi+Yi−1 +1| < 0.422
and we get∣∣∣ Ln,i
Ln,i−1

− 1
∣∣∣ ≤ 0.369× 7−i

|bn,i−1(4n+ 1)p|
|b2n,i−1 + (4n+ 1)pbn,i−1 +

(
4n+2

2

)
p2|

<
0.369× 7−i|z|
z2 + z + 1/2

,
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where z =
bn,i−1

(4n+1)p = Yi−1. The last expression we estimate by

|z|
z2 + z + 1/2

=
1

|z| − 1 + 1
2|z|

=:
1

g(|z|)
≤ 1

mint>0 g(t)
=
√

2 + 1 .

Therefore,
∣∣∣ Ln,i
Ln,i−1

− 1
∣∣∣ < 0.891× 7−i. Next, let

N :=
1/(4n+5)−Bn+1,i−1

1/(4n+5)−Bn+1,i−2
= 1− Bn+1,i−1 −Bn+1,i−2

1/(4n+5)−Bn+1,i−2
= 1− Bn+1,i−2 ∆n+1,i−1

1/(4n+5)−Bn+1,i−2
.

We found above
Bn+1,i−2

Bn+1,0
∈ (0.862, 1.091), hence (4n+ 5)Bn+1,i−2 ≤ 1.091×6|ȳ|

(4n+5)(4n+9)p2

< 4.102× 0.032 < 0.0037. As a consequence,
Bn+1,i−2

1/(4n+5)−Bn+1,i−2
< 0.004. Therefore,

|1−N | < 0.004× 71−i = 0.028× 7−i and, finally,

|∆n,i| =
∣∣∣ N

Ln,i
/
Ln,i−1

− 1
∣∣∣ ≤ (0.028 + 0.891)7−i

1− 0.891× 7−i
≤ 0.937× 7−i, i ≥ 2.

The claimed estimates |δn,i|, |∆n,i| ≤ 7−i are proved.

These estimates imply that the sequences

bn,i = bn,0

i∏
j=1

(1 + δn,j) , Bn,i = Bn,0

i∏
j=1

(1 + ∆n,j)

converge as i → ∞ to certain limits b∗n and B∗n, n ≥ k. By the definitions of
{(bn,i, Bn,i)}∞n=k it follows that the limit sequences satisfy (12). In addition, b∗n/bn,0
and B∗n/Bn,0 are bounded, i.e. b∗n = O(np) and B∗n = O(1/n3p2). �

Thus we proved the existence of a solution {(Bn, bn)} of (12) with bounded
Bn and bn = O(n) starting from a certain index k(p). It is easily seen that (12)
considered as a system for (Bn−1, bn−1) is solvable in R2 provided 1

4n+1 −Bn 6= 0.
Then, with the exception of some very special values for p, we can complete the
obtained bounded sequence to the starting values (B∗0(p), b∗0(p)). For example, when
p = 1

2 , the condition βk ≤ 1
20 is fulfilled for k = 32 and the values (B∗32, b

∗
32) =

(6.7280929...× 10−6,−40.023137...) allow to complete uniquely the sequence up to
(B∗0 , b

∗
0) = (0.28687201..., 0.34268557...) (b∗n < 0, n ≥ 1). Note that in contrast

to the backward calculations, which are stable, in order to get the above values
for (B∗32, b

∗
32) starting from (B∗0 , b

∗
0), the latter have to be given with at least 100

decimal digits.

Remark 2. In the special case B0 = 1, b0 = 1
3 − p, which is of interest for us

(see (11)), it seems that there is no real p which determines a bounded sequence
{Bn} satisfying (12). This claim is based on exhaustive computer experiments.
For example: when |p| ≥ 5

4 , |B1| = | 15 − [( 1
3 − p)

2 + p( 1
3 − p) + p2]| > 1 and by
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Proposition 2, |Bn| → ∞; when p ∈ [0.04277, 0.0428], the graph of log |B23(p)| is
clearly positive and Proposition 2 implies |Bn| → ∞ in this case, too.

In view of the above results it is reasonable to consider lacunary transforma-
tions of L(z) depending on two parameters. We formulate the following

Hypothesis 3. There is a choice of the real parameters p and q such that the
representation

L(z) ≈ qt+

∞∑
n=0

Bnt
4n+1

1− bnz2
, t =

z

1− pz2

has coefficients satisfying Bn = O(ρn) for some ρ > 0.

There is even some reason to expect the validity of Hypothesis 3 for p = 0,
i.e. when t = z. This is because Bn is a rational function of q, whose numerator
is an odd degree polynomial, and hence for every n there are values of q producing
arbitrarily small Bn.

Of course, the magnitude of bn is also important for the convergence of the
series. If {Bn} is bounded, but {bn} is not, then still it is enough bn to be negative
for n ≥ n0 and the convergence will hold in a real neighborhood of z = 0.

For the system (11) we will consider theoretically only the case p = 0. We can
prove the following divergence criterion.

Proposition 4. Assume that the sequences {Bn}∞0 and {bn}∞0 satisfy the
system

Bn +Bn−1b
2
n−1 +Bn−2b

4
n−2 + · · ·+B0b

2n
0 = d(0)

n

Bnbn +Bn−1b
3
n−1 +Bn−2b

5
n−2 + · · ·+B0b

2n+1
0 = d(1)

n ,
(16)

where |d(j)
n | ≤ 1 for j = 0, 1. Let us denote Yn := bn/bn−1, Zn := −Bn/(Bn−1b

2
n−1),

Xn := YnZn and (Z̃∗, X̃∗) := (0.30834705, 0.58425448). Then the conditions

|Zk−i − Z̃∗|, |Xk−i − X̃∗| ≤ r, i = 0, 1, 2, 3 ;

|Zk−4 − Z̃∗|, |Xk−4 − X̃∗| ≤ 5× 10−5 ; (17)(
1 +

k−6∑
i=0

∣∣Bib2(k+1−i)+j
i

∣∣)/∣∣Bkb2+j
k

∣∣ ≤ 10−8, j = 0, 1 ;

|bk−1| = max
i≤k−1

|bi| ≥ 1,

for a given k ≥ 5 and r = 10−6 imply that |Bn| tends to infinity faster than any
geometrical series and |bn| → ∞.

Proof. We first change the variables and introduce vector notations. It is not
difficult to verify that (16) is equivalent to

1− 1/Zn + 1/(ZnZn−1Y
2
n−1)− 1/(ZnZn−1Zn−2Y

2
n−1Y

4
n−2) + · · · = d(0)

n /Bn

1−1/(ZnYn) + 1/(ZnZn−1YnY
3
n−1)− 1/(ZnZn−1Zn−2YnY

3
n−1Y

5
n−2) + · · · = d(1)

n /Bnbn,

24 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44.



which is

Zn = 1− Zn−1

X2
n−1

+
Zn−1Z

3
n−2

X2
n−1X

4
n−2

−
Zn−1Z

3
n−2Z

5
n−3

X2
n−1X

4
n−2X

6
n−3

+ · · · − d
(0)
n

Bn−1b2n−1

Xn = 1−
Z2
n−1

X3
n−1

+
Z2
n−1Z

4
n−2

X3
n−1X

5
n−2

−
Z2
n−1Z

4
n−2Z

6
n−3

X3
n−1X

5
n−2X

7
n−3

+ · · · − d
(1)
n

Bn−1b3n−1

,

(18)

where the sums are expanded to Z1 and X1, respectively. In this way we reduce
the problem to the proof that the stationary point near (Z̃∗, X̃∗) is stable. Indeed,
then it will follow that, for n → ∞, bn ≈ A.(Y ∗)n, where Y ∗ ≈ X̃∗/Z̃∗ ≈ 1.8948
and |Bn+1/Bn| ≈ Z̃∗b2n →∞.

To prove the stability of the stationary point (Z∗, X∗) of (18) we use the
approach based on fixed point theorems (see e.g. [8] and the references therein).
Note that, formally, we will not use the existence of (Z∗, X∗).

In what follows we care mainly for the impact of the first four summands in
(18) (excluding 1) while the remainder we estimate with less precision. So, let us
denote V n := (Zn, Xn, Zn−1, Xn−1, Zn−2, Xn−2, Zn−3, Xn−3)T , then (18) becomes
V n = f̄(V n−1) + θ̄n, or more precisely,

V n(1) = ϕ(V n−1) + εn
V n(2) = ψ(V n−1) + δn
V n(i) = V n−1(i− 2), i = 3, . . . , 8,

where

ϕ(z1, x1, . . . , z4, x4) := ã∗ +

4∑
i=1

(−1)iz1 . . . z
2i−1
i /(x2

1 . . . x
2i
i ),

ψ(z1, x1, . . . , z4, x4) := b̃∗ +

4∑
i=1

(−1)iz2
1 . . . z

2i
i /(x

3
1 . . . x

2i+1
i ).

Here,

ã∗ = 1 +

∞∑
i=5

(−1)i(Z̃∗)i
2

/(X̃∗)i(i+1) and b̃∗ = 1 +

∞∑
i=5

(−1)i(Z̃∗)i(i+1)/(X̃∗)i(i+2)

are approximations of the remainders of the sums in (18) when (Zn, Xn) approaches
the stationary point (Z∗, X∗). Assuming convergence of {(Zn, Xn)}, the residuals
εn and δn will become very small, but do not tend exactly to 0, because of the
difference between (Z̃∗, X̃∗) and (Z∗, X∗).

Our next step is to prove that conditions (17), but with k = n and r = 2×10−5,
imply the representation

(V n+1 − Ṽ ∗) = J̃ .(V n − Ṽ ∗) + εn, (19)

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44. 25



where Ṽ ∗ = (Z̃∗, X̃∗, . . . , Z̃∗, X̃∗) ∈ R8, J̃ is a given approximation of the Jacobi

matrix J̃∗ = D(f̄)

D(V )
calculated at Ṽ ∗ and ||εn||∞ ≤ ε := 10−7.

Before doing this, we adopt the convention (for this proof only) that || · || :=
|| · ||∞ and α ≈ β will mean that β is the rounded value of α to the corresponding
decimal digit. For example α ≈ −1.230×10−5 means |α+1.23×10−5| ≤ 1

2 ×10−8.

The Jacobian D(ϕ,ψ, v1, ..., v6)/D(v1, ..., v8), v̄ = (z1, ..., x4), at the point Ṽ ∗,
is calculated to be J̃∗ ≈ J̃ := (g1, g2, e1, e2, e3, e4, e5, e6)T , where

g1 = (−2.2431, 2.3676, 2.0593,−1.4491,−0.2532, 0.1604, 0.0071,−0.0043),

g2 = (−2.6966, 2.1347, 0.7911,−0.5219,−0.0451, 0.0278, 0.0006,−0.0004),

and ej is the unit row vector in R8 whose j-th component equals 1.

It is important that the spectral radius ρ(J̃) ≈ 0.2539 is less than 1. This
means that the iterations of (19) will remain bounded provided the perturbation is
sufficiently small. Now we start with the estimation of εn.

We have V n+1 = f̄(V n) + θ̄n+1 and set ε1:= θ̄n+1 = (εn+1, δn+1, 0, ..., 0)T.

Next we justify the approximation f̄(Ṽ ∗) ≈ Ṽ ∗ by introducing ε2 = f̄(Ṽ ∗)−Ṽ ∗,
hence (V n+1 − Ṽ ∗) = f̄(V n)− f̄(Ṽ ∗) + ε1 + ε2.

Applying Taylor’s formula to the second order around Ṽ ∗ we get

f̄(V n) = f̄(Ṽ ∗) + J̃∗.(V n − Ṽ ∗) +
1

2
Q̄(V n − Ṽ ∗),

where Q̄(V ) is a vector whose components are quadratic forms of V and more pre-

cisely Q̄1(V ) =
∑
i,j

∂2ϕ
∂vi∂vj

(η̄1)ViVj , η̄1 ∈ [Ṽ ∗, V n], Q̄2(V ) =
∑
i,j

∂2ψ
∂vi∂vj

(η̄2)ViVj ,

η̄2 ∈ [Ṽ ∗, V n] and Q̄i(V ) = 0 for i = 3, . . . , 8. We denote 1
2 Q̄(V n − Ṽ ∗) by ε3 and

then (V n+1 − Ṽ ∗) = J̃∗.(V n − Ṽ ∗) +
∑3
i=1 ε

i.

Finally, the Jacobian J̃∗ is calculated approximately, hence with ∆J̃ := J̃∗− J̃
and ε4 := ∆J̃ .(V n − Ṽ ∗) we arrive at

(V n+1 − Ṽ ∗) = J̃ .(V n − Ṽ ∗) +

4∑
i=1

εi.

The estimation of ε4 is easy: we have

||ε4|| ≤ ||∆J̃ ||.||V n − Ṽ ∗|| ≤ 8 · 1

2
× 10−4r = 8× 10−9.

In order to estimate ||ε3|| = 1

2
max
i=1,2

|Q̄i(V n − Ṽ ∗)| ≤ max
i=1,2

||Q̄i|| · r2/2 we use

the obvious inequality: ||
∑
i,j

ai jvivj ||∞ := max
||v̄||=1

∣∣∣∑
i,j

ai jvivj

∣∣∣ ≤∑
i,j

|ai j |.
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The quadratic form Q̄1 has coefficients ∂2ϕ
∂vi∂vj

(η̄1) =
∑4
k=1(−1)k ∂2ϕk

∂vi∂vj
(η̄1),

where ϕk(v̄) := ϕk(z1, x1, ..., z4, x4) = z1...z
2k−1
k /(x2

1...x
2k
k ) (for k ≤ 4). Since ϕk

(and ψk below) has the form zα1
1 ...zαkk x−β1

1 ...x−βkk , αi, βi ∈ N we can use the general
estimate

∑
i,j

∣∣∣ ∂2ϕk
∂vi∂vj

(η̄1)
∣∣∣ ≤ 2 z

∑
αi

+ x
−

∑
βi

−

[∑
i<j αiαj +

∑
i
αi(αi−1)

2

z2
+

+

∑
i<j βiβj +

∑
i
βi(βi+1)

2

x2
−

+

∑
i,j αiβj

z+x−

]

= z
∑
αi

+ x
−

∑
βi

−

[(∑αi
z+

+

∑
βi

x−

)2

−
∑
αi

z2
+

+

∑
βi

x2
−

]
,

where z+(x−) is an upper(a lower) bound of the odd(even) components of η̄1. Then,
from η̄1 ∈ [Ṽ ∗, V n] and ||V n − Ṽ ∗|| ≤ r it follows that ||η̄1 − Ṽ ∗|| ≤ r. Hence, we
can take z+ = 0.3084 > Z̃∗ + r and x− = 0.5842 < X̃∗ − r. So, for k = 1, 2, 3, 4 we
have
ᾱ = (1), β̄ = (2)⇒

∑
i,j

∣∣∣ ∂2ϕ1

∂vi∂vj
(η̄1)

∣∣∣ ≤ z+
x2
−

[
6
x2
−

+ 4
z+x−

]
< 36;

ᾱ = (1, 3), β̄ = (2, 4)⇒
∑
i,j

∣∣∣ ∂2ϕ2

∂vi∂vj
(η̄1)

∣∣∣ ≤ z4+
x6
−

[(
4
z+

+ 6
x−

)2

− 4
z2+

+ 6
x2
−

]
< 117.4;

ᾱ = (1, 3, 5), β̄ = (2, 4, 6)⇒
∑
i,j

∣∣∣ ∂2ϕ3

∂vi∂vj
(η̄1)

∣∣∣ ≤ z9+
x12
−

[(
9
z+

+ 12
x−

)2

− 9
z2+

+ 12
x2
−

]
< 39;

ᾱ = (1, 3, 5, 7), β̄ = (2, 4, 6, 8)⇒
∑
i,j

∣∣∣ ∂2ϕ4

∂vi∂vj
(η̄1)

∣∣∣≤ z16+
x20
−

[(
16
z+

+ 20
x−

)2

− 16
z2+

+ 20
x2
−

]
<2.3.

As a consequence, ||Q̄1|| ≤
∑
i,j

∣∣∣ ∂2ϕ
∂vi∂vj

(η̄1)
∣∣∣ ≤ 195.

Analogously, Q̄2 has coefficients ∂2ψ
∂vi∂vj

(η̄2) =
∑4
k=1(−1)k ∂2ψk

∂vi∂vj
(η̄2), where

ψk(v̄) := ψk(z1, x1, ..., z4, x4) = z2
1 ...z

2k
k /(x

3
1...x

2k+1
k ) and hence ||Q̄2|| is estimated

by the sum of∑
i,j

∣∣∣ ∂2ψ1

∂vi∂vj
(η̄2)

∣∣∣<59;
∑
i,j

∣∣∣ ∂2ψ2

∂vi∂vj
(η̄2)

∣∣∣<68;
∑
i,j

∣∣∣ ∂2ψ3

∂vi∂vj
(η̄2)

∣∣∣<10;
∑
i,j

∣∣∣ ∂2ψ4

∂vi∂vj
(η̄2)

∣∣∣<1.

Thus, ||Q̄2|| < 138 and therefore ||ε3|| ≤ max
(
||Q̄1||, ||Q̄2||

)
r2/2 < 4× 10−8.

Next, we have

ε2 =
(
ϕ(Ṽ ∗)− Z̃∗, ψ(Ṽ ∗)− X̃∗, 0, ..., 0

)T
=
( ∞∑
i=0

(−1)i
(Z̃∗)i

2

(X̃∗)i(i+1)
− Z̃∗,

∞∑
i=0

(−1)i
(Z̃∗)i(i+1)

(X̃∗)i(i+2)
− X̃∗, 0, ..., 0

)T
≈
(
− 8.0× 10−9,−8.1× 10−9, 0, ..., 0

)T
,

and the Leibnitz type series are easy to estimate, yielding ||ε2|| < 10−8.
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For an estimate of ε1 = (εn+1, δn+1, 0, ..., 0)T we write

εn+1 = −
ZnZ

3
n−1Z

5
n−2Z

7
n−3Z

9
n−4

X2
nX

4
n−1X

6
n−2X

8
n−3X

10
n−4

+− · · · (to X1)−
d

(0)
n+1

Bnb2n
−
∞∑
i=5

(−1)i
(Z̃∗)i

2

(X̃∗)i(i+1)

=
[
− ϕ5(Zn, . . . , Xn−4) +

(Z̃∗)25

(X̃∗)30

]
+
[
· · ·
]
−
∞∑
i=6

(−1)i
(Z̃∗)i

2

(X̃∗)i(i+1)

=: A+B + C.

|A| =
∣∣ϕ5(Zn, ..., Xn−4)− (Z̃∗)25

(X̃∗)30

∣∣ ≤ max
{∣∣ (z+)25

(x−)30
− (Z̃∗)25

(X̃∗)30

∣∣, ∣∣ (z−)25

(x+)30
− (Z̃∗)25

(X̃∗)30

∣∣},
where z+ and x− are as above while z− := 0.30829 and x+ := 0.58431. Note that
Z̃∗±5×10−5 ∈ [z−, z+] and X̃∗±5×10−5 ∈ [x−, x+], so in view of (17), {Zn−i}4i=0

and {Xn−i}4i=0 belong to these intervals, too. Thus, we find |A| < 1.3× 10−8.

For the estimate of |B| we return to the initial variables and use (17):

|B| ≤
( n−6∑
i=0

∣∣Bib2(n+1−i)
i

∣∣+ |d(0)
n+1|

)/
|Bnb2n| < 10−8.

We also easily find |C| < (Z̃∗)36/(X̃∗)42 < (z+)36/(x−)42 < 3 × 10−9. As a
result we have |εn+1| < 3× 10−8. In a very similar way we estimate

δn+1 = −
Z2
nZ

4
n−1Z

6
n−2Z

8
n−3Z

10
n−4

X3
nX

5
n−1X

7
n−2X

9
n−3X

11
n−4

+− · · · (to X1) +
d

(1)
n+1

Bnb3n
−
∞∑
i=5

(−1)i
(Z̃∗)i(i+1)

(X̃∗)i(i+2)

=
[
− ψ5(Zn, . . . , Xn−4) +

(Z̃∗)30

(X̃∗)35

]
+
[
· · ·
]
−
∞∑
i=6

(−1)i
(Z̃∗)i(i+1)

(X̃∗)i(i+2)

=: A1 +B1 + C1,

whence |δn+1| ≤ |A1|+ |B1|+ |C1| < 7× 10−10 + 10−8 + 6× 10−11 < 2× 10−8.

Thus we obtain ||ε1|| < 3× 10−8 and hence ||εn|| ≤
∑4
i=1 ||ε

i|| < 9× 10−8 < ε.
The relation (19) is proved under the corresponding conditions.

Now we will prove the following

Claim. Let conditions (17) are fulfilled with r = 2 × 10−5 and assume that
|Zk+i− Z̃∗|, |Xk+i− X̃∗| ≤ r, i = 1, . . . , 6. Then ||V n− Ṽ ∗|| ≤ r ∀n ≥ k, i.e. the
above inequalities hold for all i ≥ 0.

First note that from (17) with any positive r ≤ 2 × 10−5 they follow all but
the first two similar inequalities with k + 1 in place of k. Indeed, the relations
|Zk+1−i − Z̃∗|, |Xk+1−i − X̃∗| ≤ r, i = 1, 2, 3 are contained in (17) and the
inequalities |Zk+1−4 − Z̃∗|, |Xk+1−4 − X̃∗| ≤ 5 × 10−5 are obvious consequences.
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The last condition follows from |bk| = |Ykbk−1| > x−
z+
|bk−1| > 1.894|bk−1|. It

remains to estimate for j = 0, 1

R(j) :=
(

1 +

k−5∑
i=0

∣∣Bib2(k+2−i)+j
i

∣∣)/∣∣Bk+1b
2+j
k+1

∣∣
≤
(

1 + b2+j
k−1

k−6∑
i=0

∣∣Bib2(k+1−i)
i

∣∣+
∣∣Bk−5b

14+j
k−5

∣∣)/∣∣Bkb2k∣∣ · ∣∣∣ Bkb
2
k

Bk+1b
2+j
k+1

∣∣∣
≤ b2+j

k−1

(
1 +

k−6∑
i=0

∣∣Bib2(k+1−i)
i

∣∣+
(bk−5

bk−1

)2+j∣∣Bk−5b
12
k−5

∣∣)/∣∣Bkb2k∣∣ · ∣∣∣ 1

Zk+1b
2+j
k+1

∣∣∣
≤ 1∣∣Zk+1(Yk+1Yk)2+j

∣∣[10−8 +
(
Yk−1...Yk−4

)−2−j |ϕ5(Zk, ..., Xk−4)|
]

≤ Zk+1Z
2
k∣∣X2

k+1X
2
k(Yk+1Yk)j

∣∣ [10−8 + (x−/z+)−8−4jz25
+ /x30

−
]
,

where we have used Yn = Xn/Zn and Zk−i < z+, Xk−i > x− for i = 0, . . . , 4. Now,
by (19) we conclude that ||V k+1 − Ṽ ∗|| ≤ ||J̃ ||r + ε < 8.54r + ε < 2× 10−4, which
implies Zk+1 < 0.3086, Xk+1 > 0.5840 and Yk+1 > 1. Therefore, in view of Yk > 1,
we get R(j) < 0.2522

[
10−8 + z33

+ /x38
−
]
< 10−8, j = 0, 1.

From this and the conditions of the claim we conclude that (17) and (19) are
fulfilled for n = k, . . . , k + 6. Therefore we have

||V k+7 − Ṽ ∗|| =
∥∥J̃ .(V k+6 − Ṽ ∗) + εk+6

∥∥ = · · · =
∥∥J̃7.(V k − Ṽ ∗) +

6∑
i=0

J̃ iεk+6−i
∥∥

≤
∥∥J̃7

∥∥.r +

6∑
i=0

∥∥J̃ i∥∥.ε .
We calculated

∥∥J̃∥∥ ≈ 8.53,
∥∥J̃2

∥∥ ≈ 11.13,
∥∥J̃3

∥∥ ≈ 11.13,
∥∥J̃4

∥∥ ≈ 11.13,∥∥J̃5
∥∥ ≈ 11.13,

∥∥J̃6
∥∥ ≈ 2.38 and

∥∥J̃7
∥∥ ≈ 0.274. Thus we obtain

||V k+7 − Ṽ ∗|| < 0.275r + 56.5ε < 1.2× 10−5 < r ,

and the claim follows by induction.

To accomplish the proof of Proposition 4 it remains to show that conditions
(17) with r = 10−6 imply the conditions of the claim. Indeed, it follows from the
claim that bn/bn−1 = Yn > x−/z+ > 1.894 for n ≥ k, and hence |Bn/Bn−1| =
Znb

2
n−1 > (z−)b2n−1 →∞.

Let (17) be fulfilled with r = 10−6 and for a j ∈ {1, . . . , 6}, ‖V k+i − Ṽ ∗‖ ≤
2× 10−5, i = 1, . . . , j − 1. Then (19) holds for n = k, . . . , k + j − 1 and

‖V k+j − Ṽ ∗‖ =
∥∥J̃j .(V k − Ṽ ∗) + J̃j−1.εk + · · ·+ J̃0.εk+j−1

∥∥
≤ 11.14 r + 54.1 ε < 2× 10−5.
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This observation inductively implies the conditions of the claim and completes
the proof of the stability of (Z∗, X∗), i.e. the proof of Proposition 4. �

Proof of Theorem 1. We apply Proposition 4 to the series a) for l(x) with

Bn = An, bn = an and d
(j)
n = 1

2n+1+j , j = 0, 1. It is calculated that for k = 13 the
conditions of the proposition are fulfilled. Namely,
{Zn − Z̃∗}13

n=9 ≈
{

1× 10−6, 9× 10−8,−6× 10−8,−1× 10−8,−1× 10−9
}

;

{Xn − X̃∗}13
n=9 ≈

{
2× 10−6, 7× 10−8,−9× 10−8,−1× 10−8, 7× 10−9

}
;(

1 +
∑k−6
i=0

∣∣Aia2(k+1−i)+j
i

∣∣)/∣∣Aka2+j
k

∣∣ ≈ 3× 10−9, 6× 10−11 for j = 0, 1;

ak−1 = maxi≤k−1 |ai| ≈ 1744.92 ≥ 1.

Then, by Proposition 4, |An| tends to ∞ faster than any geometrical series,
while an in the denominator behave as C.(Y ∗)n. Therefore, the common term in
the sum of a) does not tend to 0 (unless for x = 0) and the series diverges.

A very similar argument holds for the series b). Now, d
(j)
n = 1

4n+1+2j , j = 0, 1
and again for k = 13 the conditions of Proposition 4 are fulfilled:
{Zn − Z̃∗}13

n=9 ≈
{

1× 10−6, 5× 10−7,−3× 10−8,−3× 10−8,−5× 10−9
}

;

{Xn − X̃∗}13
n=9 ≈

{
3× 10−6, 7× 10−7,−7× 10−8,−4× 10−8, 2× 10−9

}
;(

1 +
∑k−6
i=0

∣∣Bib2(k+1−i)+j
i

∣∣)/∣∣Bkb2+j
k

∣∣ ≈ 3× 10−9, 6× 10−11 for j = 0, 1;

bk−1 = maxi≤k−1 |bi| ≈ 1399.65 ≥ 1.

Then, Proposition 4 implies the divergence of b) for z 6= 0. Theorem 1 is
proved. �

5. BOUNDS FOR THE RATE OF CONVERGENCE OF (2) AND (3).

We first note an useful formula connecting the coefficients in the representation

A0

1− α0x
+

A1x

(1− α0x)(1− α1x)
+

A2x
2

(1− α0x)(1− α1x)(1− α2x)
+ · · · ≈

∞∑
n=0

anx
n.

Namely,

A0 = a0; A1 = a1 − α0a0;

A2 = a2 − (α0 + α1)a1 + (α0α1)a0;

A3 = a3 − (α0 + α1 + α2)a2 + (α0α1 + α1α2 + α2α0)a1 − (α0α1α2)a0; (20)

A4 = a4−σ1(α0, ..., α3)a3+σ2(α0, ..., α3)a2−σ3(α0, ..., α3)a1+σ4(α0, ..., α3)a0;

...

where σk(α0, . . . , αn) =
∑

0≤i1<···<ik≤n

αi1 . . . αik . Formulas (20) easily follow by in-

duction. Indeed, the relations for A0 and A1 are easily verified. Let the formula
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holds for Ak with a fixed k ≥ 1 and arbitrary parameters {αi} and {ai} . Then,
removing the denominator 1− α0x, subtracting A0 and dividing by x we obtain

A1

(1− α1x)
+

A2x

(1− α1x)(1− α2x)
+ · · · ≈

∞∑
n=0

an+1x
n − α0

∞∑
n=0

anx
n.

So, by the induction and the linearity, for the coefficient of xk
/∏k+1

i=1 (1− αix)
we find

Ak+1 =
[
ak+1 − σ1(α1, ..., αk)ak + σ2(α1, ..., αk)ak−1 − · · ·+ (−1)kσk(α1, ..., αk)a1

]
− α0

[
ak − σ1(α1, ..., αk)ak−1 + · · ·+ (−1)kσk(α1, ..., αk)a0

]
=ak+1 − σ1(α0, ..., αk)ak +

(
σ2(α1, ..., αk) + α0σ1(α1, ..., αk)

)
ak−1 −+ · · ·

+ (−1)k
(
σk(α1, ..., αk) + α0σk−1(α1, ..., αk)

)
a1 + (−1)k+1α0α1...αk · a0 ,

as for k = 1 the middle terms in the brackets do not appear. For k ≥ 2 the
induction step follows by the properties of the combinatorial sums {σi}.

In the particular case a0 = α0 = 0 and an = 1
n , n ≥ 1, we arrive at the formula

l(x) ≈ C1x

1− γ1x
+

C2x
2

(1− γ1x)(1− γ2x)
+

C3x
3

(1− γ1x)(1− γ2x)(1− γ3x)
+ · · · ,

where

Ck =
1

k
− σ1(γ1, ..., γk−1)

1

k−1
+ σ2(γ1, ..., γk−1)

1

k−2
− · · ·+ (−1)k−1(γ1 · · · γk−1)

=

∫ 1

0

(x− γ1)...(x− γk−1)d x. (21)

Let us consider some concrete representations of l(x) with periodic {γi}. As
was mentioned before, the choice {γi}∞1 = { 1

2}
∞
1 leads to the series (5). Let now

{γi}∞1 = {0, a, b, a, b, ...}. We take γ1 = 0 in order to write the series in the form

l(x) = D0x+ (B1 +D1x)u+ (B2 +D2x)u2 + (B3 +D3x)u3 + · · · , (22)

where u =
x2

(1− ax)(1− bx)
. Then D0 = 1 while for n ≥ 1, from (21) and

(Bn +Dnx)un =
Bnx

2n

(1− 0.x)(1− ax)n(1− bx)n−1
+

(bBn +Dn)x2n+1

(1− 0.x)(1− ax)n(1− bx)n
,

it follows thatBn =
∫ 1

0
x
[
(x−a)(x−b)

]n−1
d x, Dn+bBn =

∫ 1

0
x(x−a)n(x−b)n−1d x,

hence Dn =
∫ 1

0
x2
[
(x− a)(x− b)

]n−1
d x− sBn, where s = a+ b.

Introducing An =
∫ 1

0

[
(x− a)(x− b)

]n−1
d x, Cn =

∫ 1

0
x2
[
(x− a)(x− b)

]n−1
d x

and a′ = 1− a, b′ = 1− b, one can easily verify the recurrence relations

Bn =
(a′b′)n − (ab)n

2n
+
s

2
An; Cn =

(a′b′)n + (n+ 1)sBn − abAn
2n+ 1

;

Dn = Cn − sBn; An+1 = Dn + abAn.
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To minimize the asymptotics of the coefficients in (22) we choose (x−a)(x−b) =
x2−x+ 1

8 , which is the Chebyshev polynomial of the first kind T ∗2 (x), transformed
to the interval [0, 1]. Recall that the polynomials T ∗k (x) = xk + · · · associated
with the interval [α, β] provide the minimal uniform norm on [α, β] amongst all

polynomials of the form xk +
∑k−1
i=0 aix

i and the value of this minimal norm is
(β−α)k

22k−1 ([4, Ch.2.2.3]). In the our case, ‖T ∗2 ‖C[0,1] = −T ∗2 (1/2) = 1
8 which yields

that the above integrals are asymptotic to const√
n

(
− 1

8

)n
for n→∞. For this choice

we have s = a+ b = 1 and the recurrence relations simplify to

An+1 =
1

2n+ 1

[ 1

8n
− n

4
An
]
; Bn =

1

2
An; Dn = An+1 −

1

8
An.

It is convenient to substitute An =
(

1
8

)n−1

αn, where αn+1 =
1− 2nαn

2n+ 1
. Then,

the rate of convergence of this special case of (22), considered as a series of type
(3), i.e. with each summand counted twice, is like a geometrical series with ratio√
u

2
√

2
∼ x

2
√

2
(x → 0). In addition we can rewrite the series in a lacunary form.

Namely, by the recurrence formulas and D0 = A1 = 1 we get

l(x) = A1x+
(1

2
A1 +

(
A2 −

1

8
A1

)
x
)
u+

(1

2
A2 +

(
A3 −

1

8
A2

)
x
)
u2 + · · ·

=
[
x+

(1

2
− x

8

)
u
] [
A1 +A2u+A3u

2 + · · ·
]
,

(23)

where An satisfies the above formulas and u = x2

1−x+x2/8 . (The second factor is

lacunary, considered as a series of the form (3).)

Remark 3. Although the series (23) converges faster than (5), and is lacunary
as well, it is still less effective. This is because the coefficients are more complicated.
Indeed, let us count only multiplications and divisions as the most costly arithmetic
operations with equal cost. Then every next term in (5) needs two operations
(z2n+1 = z2n−1 × z2 and z2n+1/(2n + 1)), while every next term in (23) needs
three operations (αn+1 = (1 + αn)/(2n+ 1)− αn, (u/8)n = (u/8)n−1 × (u/8) and
αn+1 × (u/8)n). Actually, even the example below hardly improves (5).

Remark 4. We see that the first factor in (23) vanishes for x = 0 and x = 2.
In fact, l(0) = 0 but l(2) = log(−1) 6= 0. Recall our adoption that when the region
of validity of some identity is not specified, it is certain neighborhood of 0. In
particular, (23) converges for |x| < 1 and represents l(x) in the open unit disc. On
the other hand, a continuation of (23) for x outside the unit disc is questionable
because of l(1) =∞.

Consider now ”periodic” representations

l(x) = b0x+ c0x
2 +

∞∑
n=1

(an + bnx+ cnx
2)vn, v =

x3

(1− ax)(1− bx)(1− cx)
,
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i.e. of the form (3) with {γi}∞1 = {0, 0, a, b, c, a, b, c, ...}. Transforming (3) in the
above form, in view of (21), we find the following integral formulas for n ≥ 1:

an =

∫ 1

0

t2
[
(t− a)(t− b)(t− c)

]n−1
dt;

bn =

∫ 1

0

t2(t− a− b− c)
[
(t− a)(t− b)(t− c)

]n−1
dt;

cn =

∫ 1

0

t2
(
t2 − (a+ b+ c)t+ ab+ bc+ ca

)[
(t− a)(t− b)(t− c)

]n−1
dt.

For simplicity let us assume that the points a, b and c are symmetrically placed
in [0, 1], or more precisely let a + b = 1 and c = 1/2. Then, with the notations

In :=
∫ 1

0
[P (t)]ndt and Jn :=

∫ 1

0
t[P (t)]ndt where P (t)= (t − a)(t − b)(t − c), we

easily get I2m−1 = 0 and J2m = 1
2I2m. Next, using P (t)=

(
1
3P
′(t) + 4ab−1

6

)(
t− 1

2

)
we calculate

In =
n/2

3n+ 1

[
(4ab− 1)

(
Jn−1 −

1

2
In−1

)
+

1− (−1)n

n

(ab
2

)n]
;

Jn =
n/2

3n+ 2

[ 1

n
In + (2ab− 1

2 )
(
Jn−1 −

2ab+1

3
In−1

)
+
(ab

2

)n( 1

n
+ (4ab−1)

1−(−1)n

3n

)]
;

an =Jn−1 −
2ab+ 1

6
In−1 +

1− (−1)n

3n

(ab
2

)n
;

bn =In −
(
ab+

1

2

)
Jn−1 +

ab

2
In−1;

cn =Jn +
ab

2
Jn−1.

In particular, a nice formula is obtained if we take a = 0 and b = 1. Then

Jn =

{
− 1

12
n

3n+2Jn−1 for odd n > 0

− 1
4

n
3n+1Jn−1 for even n > 0 ,

an + bnx+ cnx
2 =

{(
2
3 −

x
2

)
Jn−1 + x2Jn for odd n(

1− x
2

)
Jn−1 + (x2 + 2x)Jn for even n .

The starting value is J0 = 1
2 and even the second formula holds for n = 0 with

J−1 := 0. Therefore, with v = x3

(1−x/2)(1−x) ,

l(x) =
(
x+

x2

2
+
(1

3
− x

4

)
v
)[

1 +
1

48

2!v2

5.7
+

1

482

4!v4

5.7.11.13
+

1

483

6!v6

5.7.11.13.17.19
+ · · ·

]
− 1

24

(
x2 +

(
1− x

2

)
v
)[1!v

5
+

1

48

3!v3

5.7.11
+

1

482

5!v5

5.7.11.13.17
+ · · ·

]
. (24)
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The both parts of (24), considered together and as a series of type (3), converge

like a geometric series with ratio 6

√
1

48·9x ≈
x

2.75 (x→ 0).

Proof of Theorem 2. To prove a), we denote by 0 < x1 < x2 < · · · < xk < 1
the zeros of the Chebyshev polynomial T ∗k (x) for the interval [0, 1] and take the
periodic sequence {γi}∞1 = {x1, . . . , xk, x1, . . . , xk, . . .}. Then, by (21) we have

|Cn+1| ≤
∫ 1

0

|T ∗k (t)|m |(t− γkm+1)...(t− γn)|d t ≤
(
2−2k+1

)m
< 2(−2k+1)(n/k−1),

where n = km+ r, r ∈ {0, . . . , k − 1}. Hence,

lim sup
n→∞

|Cn+1|1/n ≤ 4−1+1/2k =: q(k).

Therefore, with a fixed ε ∈ (0, 1], the inequality q(k) < 1
4−ε holds true, provided k

is sufficiently large. With such a k, the sequence {γi} above satisfies a).

To prove b) we shall exploit some properties of the Legendre polynomials
Pn(x) = 1

2nn! [(x
2 − 1)n](n). Let pn(x) = Pn(2x − 1) be the normalized Legen-

dre polynomials for the interval [0, 1]. It follows from
∫ 1

−1
Pn(x)Qm(x)d x = 0 for

every polynomial Qm(x) of degree m < n that
∫ 1

0
pn(x)qm(x)d x = 0 provided

deg(qm) = m < n. In addition,
∫ 1

−1
P 2
n(x)d x = 2

2n+1 implies
∫ 1

0
p2
n(x)d x = 1

2n+1 .

Now consider a representation of l(x) in the form (3) with γi ∈ [0, 1]. By

(21) Cn+1 =
∫ 1

0
øn(t)d t, where øn(x) :=

∏n
i=1(x − γi). Given a fixed n ∈ N, let

us represent pn(x) by the Newton interpolation formula at the points {γi}2n+1
i=n+1,

namely

pn(x) =

n∑
k=0

pn[γn+1, ..., γn+k+1](x− γn+1)...(x− γn+k)

=

n∑
k=0

p
(k)
n (ηk)

k!
(x− γn+1) . . . (x− γn+k),

where ηk ∈ [0, 1], k = 0, . . . , n. Now we will use the relation Pn(x) = P

(
1
2

)
n (x)

and the following properties (see [7, Ch.4.7,7.33]) of the ultraspherical polynomi-

als P
(λ)
n (x) (note that here λ represents a parameter, and not derivative order):

d

dx

{
P (λ)
m (x)

}
= 2λP

(λ+1)
m−1 (x); P

(λ)
m (1) =

(
m+2λ−1

m

)
and max

−1≤x≤1
|P (λ)
m (x)| = P (λ)

m (1),

for λ > 0. Then, with λ = k + 1
2 , we have P

(k)
n (x) = (2k − 1)!!P

(λ)
n−k(x) and hence,

for k = 0, . . . , n,

|p(k)
n (ηk)| = 2k|P (k)

n (2ηk − 1)| ≤ 2k‖P (k)
n ‖C[−1,1] = 2kP (k)

n (1) =
(n+ k)!

k!(n− k)!
.
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In particular, for k = n we find that the leading coefficient of pn(x) is qn =
(

2n
n

)
.

Thus, from the above representation of pn(x) and (21) we obtain

In :=

∫ 1

0

øn(x)pn(x)d x =

n∑
k=0

p
(k)
n (ηk)

k!
Cn+k+1. (25)

On the other hand

In = q−1
n

∫ 1

0

(
(qnøn(x)− pn(x)) + pn(x)

)
pn(x)d x = q−1

n

∫ 1

0

p2
n(x)d x =

(n!)2

(2n+ 1)!
.

Therefore, for at least one summand in (25) we have that

(n!)2

(n+ 1)(2n+ 1)!
≤ p

(k)
n (ηk)

k!
Cn+k+1

≤ (n+ k)!

(k!)2(n− k)!
|Cn+k+1| =

(
n+k
2k

)(
2k
k

)
|Cn+k+1| < 2n+3k|Cn+k+1|,

i.e. |Cn+k+1| > 2−n−3k · (n!)2

(n+1)(2n+1)! = 2−n−3k

(n+1)(2n+1)(2n
n )

> 1
(n+1)(2n+1)

(
1
8

)n+k
. As

a consequence, the inequalities |Cj | ≤ M
(8+ε)j ∀j ∈ N can not hold true for any

positive M and ε. Hence part b) and the theorem are proved. �

Proof of Theorem 3. First we shall prove the assertion for {Cn}. We can apply
the same reasoning as in the proof of part b) of Theorem 2 to the estimation

(n!)2

(n+ 1)(2n+ 1)!
≤ p

(k)
n (ηk)

k!
Cn+k+1, (26)

for some k ∈ {0, . . . , n}, but now the restriction is |ηk| ≤ 1. So, we need of an

upper bound for |p(k)
n (ηk)|. In view of the monotonicity of |P (k)

n (x)| for |x| ≥ 1 we
have

|p(k)
n (ηk)| = 2k|P (k)

n (2ηk − 1)| ≤ 2k|P (k)
n (−3)| = 2k|P (k)

n (3)|
= 2kQn,k(32 − x2

1,k)(32 − x2
2,k) . . . ≤ 2kQn,k 3n−k,

where Qn,k and {±xi,k} are the leading coefficient and the zeros of P
(k)
n , re-

spectively. From the definition of Pn(x) (by the Rodrigues’ formula) we find

Qn,k = (2n)!
2nn!(n−k)! from where |p(k)

n (ηk)| ≤ (2n)!
n!(n−k)!

(
3
2

)n−k
. Hence, taking mod-

ulus in (26), we can write

(n+ 1)(2n+ 1)|Cn+k+1| ≥
(n!)2

(2n)!
· k!

|p(k)
n (ηk)|

≥
[(2n

n

)2(
n

k

)(3

2

)n−k]−1

>
[
42n

(
n

k

)
1k
(3a

2

)n−k
ak−n

]−1

>
[
42n
(

1 +
3a

2

)n
ak−n

]−1

=
[(16

a
+ 24

)n
ak
]−1

.
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Now, if we choose a = 12 +
√

160 < 25, that is, the positive root of the equation
z = 16/z+24, then for any fixed M > 0 we obtain |Cn+k+1| > 1

(n+1)(2n+1)a
−n−k >

M · 25−(n+k+1), provided n is sufficiently large. The assertion for {Cn} is proved.

In order to prove the impossibility of the bounds for {An} in the theorem, let
us assume that for some M > 0, q < 1 and {αn} such that |αn| ≤ 1, the estimates
|An| ≤Mqn, n = 1, 2, . . . hold true. Then for |x| < 1 we have

l(x2) = l(x) + l(−x) =

∞∑
m=1

2A2m−1α2m−1x
2m

1− α2
2m−1x

2
+

2A2mx
2m

1− α2
2mx

2
.

That is, a representation l(u) =

∞∑
n=1

Bnu
b(n+1)/2c

1− βnu
holds true for |u| < 1, where

βn ∈ [0, 1] and |Bn| ≤ 2Mqn. We shall show that this series can be written in the
form (3) with parameters {γi} = {β1, β2, 0, β3, β4, 0, β5, β6, . . .}. This will follow
from the possibility of the representations

um

1− βnu
=

k∑
j=1

aj,nu
j

(1− γ1u) . . . (1− γju)
=:

k∑
j=1

aj,ncj(u), (27)

where m = bn+1
2 c and k = n + m − 1 = b 3n−1

2 c, i.e γk = βn. Note that {γi}k1
contains m− 1 zeros. Then, with v = 1/u we have cj(u) = 1

(v−γ1)...(v−γj) and (for

v 6= 0, γ1, . . . , γk) equality (27) is equivalent to

gn−1(v) := (v − β1) . . . (v − βn−1) =

k−1∑
i=0

ak−i,n(v − γk) . . . (v − γk−i+1),

where the indices of {γj} decrease, so the first product in the sum is assumed
equal to 1. Thus, we have a representation of gn−1(x) by the Newton interpolating
formula at the points γk, . . . , γ1, hence (k ≥ n) the representation exists and aj,n =

gn−1[γk, . . . , γj ], j = 1, . . . , k. As a consequence, ak−i,n =
g
(i)
n−1(ξi)

i! , where ξi ∈ [0, 1]
since {γj} ⊂ [0, 1]. The last equality implies that a1,n = · · · = am−1,n = 0 and

|ak−i,n| =
(
n− 1

i

)
|(ξi − x(i)

1 ) . . . (ξi − x(i)
n−1−i)| ≤

(
n− 1

i

)
, i = 0, . . . , n− 1,

where {x(i)
j } are the zeros of g

(i)
n−1(x). Using these estimates and (27) we obtain

l(u) =

∞∑
n=1

Bnu
m

1− βnu
=

∞∑
n=1

Bn
∑

n
2≤j≤

3n−1
2

aj,ncj(u) =

∞∑
j=1

cj(u)
∑

2j+1
3 ≤n≤2j

Bnaj,n

=:

∞∑
j=1

Cjcj(u).
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Thus we have written l(u) in the form (3) with coefficients that satisfy

|Cj | ≤
∑

2j+1
3 ≤n≤2j

2Mqn
(
n− 1

k − j

)
≤ 2M

∑
2j+1

3 ≤n≤2j

qn
(

2j − 1

b 3n−1
2 c − j

)
.

The numbers ln(j) := b 3n−1
2 c− j, n = d 2j+1

3 e, . . . , 2j belong to {0, . . . , 2j− 1} and
are distinct. So, in view of 3n

2 > b 3n−1
2 c = ln(j) + j,

|Cj | < 2M

2j−1∑
l=0

q
2
3 (l+j)

(
2j − 1

l

)
= 2Mq

2
3 j
[
1 + q2/3

]2j−1
= M1

[
q1/3 + q

]2j
.

Therefore, the assumption q ≤ 1
31 leads to |Cj | < M1

(
1
8

)j
which is a contradiction

to Theorem 2 since γj ∈ [0, 1]. Theorem 3 is proved. �

Now we shall make a comparison between the form (3) and the method of
continued fractions (see e.g. [1, Ch.4] for the used results). The similarity of the
two approaches is obvious – in both cases the n-th partial sum of the Maclaurin
series is recovered. We mean the usual representation of a function by a continued
fraction

f(z) = b0 +
a1z

b1 +

a2z

b2 +

a3z

b3 +
· · · =: b0 + K∞i=1(aiz/bi). (28)

But there are also some essential differences. Only seemingly the form (28) depends
on two sequences {ai} and {bi}. In fact, a nonsingular continued fraction (28), i.e.
with ai, bi 6= 0, i ≥ 1, elementary can be transformed into an equivalent form, say
with ai = 1 or with bi = 1. For example, the fraction

log(1 + z) =
z

1 +

12z

2 +

12z

3 +

22z

4 +

22z

5 +
· · · +

n2z

2n +

n2z

2n+ 1 +
· · · (29)

is transformed (by dividing the numerator and the denominator of the 2n-th and
2n+ 1-th terms to n

√
z) into

log(1 + z) =

√
z

(1/
√
z) +

1

(2/
√
z) +

1

(3/1
√
z) +

2/1

(2/
√
z) +

1

(5/2
√
z) +

· · ·

+
n/(n− 1)

(2/
√
z) +

1

((2n+ 1)/n
√
z) +

· · ·

This form has the advantage to (29) that it is close to a continued fraction F =
K∞i=1(1/bi) (with unit numerators). The convergence of such a fraction is very easy
to realize in view of the Seidel’s theorem which states that when the elements {bi}∞1
are positive, then F is convergent iff the series

∑∞
1 bi is divergent. Moreover, for

”relatively large” elements (say |bi| ≥ 3, i ≥ n0) the fraction converges approxi-
mately like [b1b2 . . . bn]−2. In the case of log(1 + z), and equivalently of l(x), this
rule gives an approximate rate of convergence like [(2/

√
z)n]−2 = (z/4)n (z → 0).
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The above arguments can be done precise using the formulas

K∞i=1(ai/bi) =
a1

b1
+

∞∑
i=2

(−1)i−1

BiBi−1

i∏
j=1

aj ,

where An/Bn = b0 + Kn
i=1(ai/bi) is the n-th convergent of the fraction, and

Ai = biAi−1 + aiAi−2, A0 = b0, A−1 = 1;

Bi = biBi−1 + aiBi−2, B0 = 1, B−1 = 0.

In particular, for a fraction with ai = 1 the remainder is

Rn := K∞i=1(1/bi)−Kn
i=1(1/bi) =

∞∑
i=n+1

(−1)i−1

BiBi−1
.

Then, for ”relatively large” |bi|, the relation Bi = biBi−1 + Bi−2 usually implies
Bi ≈ biBi−1 and Bi → ∞ for i → ∞, which in turn yields the approximate rule
|Rn| ≈ 1/|BnBn+1| ≈ B−2

n . It has to be mentioned however, that there are some
special cases for the data {bi} when the principal asymptotic behaviour of {Bi}
as a solution of the above three term recurrence relation is suppressed and the
magnitude of the sequence is not the usual one. This corresponds to a fraction of
value 1/0 =∞ and, in our case of interest, for l(x) with |x| < 1, such situations do
not appear.

Now, the question is which is the right correspondence for comparing the two
methods for accelerating power series? We argue that the most natural way is to
compare the n-th partial sum of (3) with the n-th convergent of (28). The calcu-
lation of both approximations can be organized in different ways, say backward,
and the formal counting of the the cost of arithmetic operations then gives the
same result (2n). Indeed, the coefficients in the continued fraction for l(x) are
much simpler, but (as we have seen) taking {γi} at the zeros of Tk(x) and grouping
summands we obtain rational parameters in the series, too.

Let us summarize the above comments. Both methods transform a series with
rate of convergence like zn into a series (sequence) converging approximately as
(z/4)n. This accelerating factor (1/4)n appears often in the continued fraction
expansions, for example in

L(z) = arcth(z) =
z

1 −
12z2

3 −
22z2

5 −
· · · − n2z2

2n+ 1 −
· · · .

Thus, in many cases the both methods have approximately the same efficiency.
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6. ACCELERATION OF SERIES FOR OTHER FUNCTIONS

First we consider the function

f = fα(x) :=
1

α
+

x

1 + α
+

x2

2 + α
+

x3

3 + α
+ · · · ,

which contains l(x) and L(
√
x) as particular cases. We describe some transfor-

mations of fα allowing its effective computation. Let us change the variable by
t = x

1−x/2 . An explicit formula for the coefficients in f =
∑∞
n=0 ant

n =: S0(t) can
be written using the Euler transform, but it is not convenient for computation and
estimation of {an}. More important is the recursive rule, which follows from the
differential equation

df

dt
= − 2α

t(2 + t)
f +

1

t(1− t/2)
,

a consequence of f = 1
xα

∫ x
0
zα−1

1−z dz = (1+t/2)α

tα

∫ t
1+t/2

0
zα−1

1−z dz. We have

an+1 =
( 1

2n
− n

2
an

)/
(n+ 1 + α), a0 =

1

α
. (30)

When α > 0, it is easily seen from (30) that an ∈ (0, 21−n), n > 0, hence the
transformation gives an acceleration of fα(x), for x→ 0, like 2−n.

An interesting consequence is obtained when we replace the coefficients in
f =

∑∞
n=0 ant

n from (30), namely(
1 +

t

2

)
fα
( t

1 + t/2

)
+

1

α
= 2fα

( t
2

)
+

1 + α

2tα

∫ t

0

zαfα
( z

1 + z/2

)
dz, α > −1.

By differentiating the identityf̄α(x) =
∑∞
n=1 an(α)tn, where f̄α := fα− 1

α , with
respect to α at α = 0, we obtain another interesting result. Note that f̄0 = l(x) and

the above transformation leads to (5):
{
an(0)

}∞
1

=
{

1
1 , 0,

1
3

(
1
2

)2

, 0, 1
5

(
1
2

)4

, 0, . . .
}

.

Also, by (30) it follows (n + 1)a′n+1(0) + an+1(0) = −na′n(0)/2 and one easily
represents {na′n(0)2n} as certain sums. With z = t/2 = x

2−x , this gives

Li2(x) =
x

12
+
x2

22
+
x3

32
+
x4

42
+ · · ·

= 2
[1

1

(z1

1
− z2

2

)
+
(1

1
+

1

3

)(z3

3
− z4

4

)
+
(1

1
+

1

3
+

1

5

)(z5

5
− z6

6

)
+ · · ·

]
,

and using that arctan2(z) =
(

1
1

)
z2− 1

2

(
1
1 + 1

3

)
z4 + 1

3

(
1
1 + 1

3 + 1
5

)
z6−+ · · · we arrive

at

Li2(x) = 2
[1

1

z1

1
+
(1

1
+

1

3

)z3

3
+
(1

1
+

1

3
+

1

5

)z5

5
+ · · ·

]
− L2(z). (31)

The explicit formula fα(x) =
∑∞
n=0

n!
(α)n+1

(−x)n

(1−x)n+1 =: S1(x), which follows

from the Euler transform and (α)k := α(α + 1) . . . (α + k − 1), is also of certain
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interest. This identity gives an acceleration for f if x < 0 and especially when
x ≈ −1. Note that the larger is α, the smaller are the terms in the series. Therefore,
it makes sense to shift the parameter to the right according to the formula fα(x) :=∑k−1
i=0

xi

i+α + xkfα+k(x).

Similarly to l(x), fα(x) has an analytic continuation in Df = C \ [1,∞). From
now on fα(z) will mean this continuation of the series fα(z). Then, let us justify
the domains where the above identities take place. Note that some series repre-
sentation S(z) of fα(z) coincide with the function in this connected component of
the intersection of the definition domains, which contains z = 0. Since the domain
of convergence of S1(z) is

∣∣ −z
1−z
∣∣ < 1 and a part of the boundary, depending on α,

then S1(z) represents fα(z) in the half-plane Re(z) < 1/2. Similarly, the domain
of convergence of S0( z

1−z/2 ) is included in Df , then this series can be used for cal-

culation of fα(z) in the half-plane Re(z) < 1. The remaining part of Df can be
covered by the following two formulas which are consequences from the relation

αfα(z) = F (1, α; 1 + α; z). (32)

For the properties of the hypergeometric function F (a, b; c; z) see [2] and the
multiple labels below refer to this book. Now, applying the identity 2.1(17) (which
is 2.9(34)) we obtain

fα(z) =
1

z
f1−α(z−1) +

π(−z)−α

sinπα
,

where yβ := eβ log0(y). According to the above note this relation holds for z ∈
C \ [0,∞) and α 6∈ Z. (When α is an integer, then fα(z) reduces to l(z) and its
analytic continuation is clear.) Another easy consequence of this formula is that
when the variable z crosses the segment (1,+∞) at z0 in positive direction, then
the value of fα(z) jumps by 2πiz−α0 .

The next transformation changes the argument to 1− z and is very useful for
z ≈ 1. Notice however that fα belongs to the set of the so-called degenerate cases
of the hypergeometric function and many known identities can not be used directly
but after a limit passage. Thus, from 2.9(33), applied for F (1, α; 1 + α+ ε; z) with
ε→ 0, or directly by 2.3(2) with l = 0, we get

fα(z) =

∞∑
n=1

(1

1
− 1

α
+

1

2
− 1

α+ 1
+ · · ·+ 1

n
− 1

α+ n− 1

) (α)n
n!

(1− z)n

−
(
ψ(α) + C + log(1− z)

) ∞∑
n=0

(α)n
n!

(1− z)n,
(33)

where ψ(α) is the digamma function and C is the Euler-Mascheroni constant. The
relation (33) holds in the domain {|z − 1| < 1} \ [1, 2).

Some other consequences of (32) are:

fα(x) =

∫ 1

0

tα−1

1− xt
dt, Re(α) > 0, x 6∈ [1,∞),
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which follows from the Euler integral 2.1.3;

fα(x) =
1

α −
α2x

α+ 1 −
12x

α+ 2 −
(α+ 1)2x

α+ 3 −
22x

α+ 4 −
(α+ 2)2x

α+ 5 −
· · · ,

see 2.5.4; next, the forth equality at the definition of u1 in 2.9 gives

fα(x) = (1− x)−α
∞∑
n=0

(α)n
n!

yn

α+ n
, y =

−x
1− x

;

and again there, from the second equality, by a limit pass with respect to any
parameter of F (a, b; c;x), it follows

l(x)fα(x) =

∞∑
n=1

(
hn +

1

α
+

1

α+ 1
+ · · ·+ 1

α+ n− 1

) xn

α+ n
.

Another interesting identity is obtained from the relation fν(z)=Φ(z, 1, ν). Namely,
the formula 1.11(9) (which holds for m = 1 as well), in view of 1.10(11), gives

fν(z) = z−ν

{
−
∞∑
n=1

Bn(ν)

n
· (log z)n

n!
+
[
ψ(1)− ψ(ν)− log log

1

z

]}
, (34)

where Bn(ν) are the Bernoulli polynomials and | log z| < 2π.

Finally, we consider the digamma function, because it is closely connected
with fα(z). Indeed, if in place of the divergent series fα(1) =

∑∞
n=0

1
α+n we take

ψ̄(α) :=
∑∞
n=1

(
1
n −

1
α+n

)
, then ψ̄(α) = ψ(α) + C + 1

α . As effective methods for

calculation of ψ(α) (and ψ̄(α)) one can use (33) or (34). Also, the formula 1.7(30):

ψ(a+ z) = ψ(a) +
z

a
− 1

2

z(z − 1)

a(a+ 1)
+

1

3

z(z − 1)(z − 2)

a(a+ 1)(a+ 2)
−+ · · ·

can serve for this purpose. Namely, assume that x = O(1) and the value ψ(x) is
needed with accuracy 27−k. Then, with a = k and z = x + k take 2k summands
of the formula. The terms at that place are approximately (k!)3/(3k)! and decay
as const/3n. So, eventually taking several additional summands we stop when the
last one becomes less than the required accuracy. Also, the shift formulas 1.7(9):

ψ(k) = hk−1 − C and 1.7(10): ψ(x + 2k) = ψ(x) +
∑2k−1
j=0

1
x+j are needed for the

calculation, and they require 3k additional divisions.

We refer to [6] for more recent methods for computation of ψ(z) (and Γ(z)).

Actually, the series ψ(α) easily can be transformed into a series that converges
like 1/n!, but the problem is that there appear infinitely many unknown constants.
For example, such a rearrangement is given by the following formula of type (3)

ψ̄(α) =
c1α

1 + α
+

c2α
2

(1 + α)(2 + α)
+

c3α
3

(1 + α)(2 + α)(3 + α)
+ · · · ,
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where c1 =
∑∞
n=1

1
n2 = π2

6 , c2 = 2
∑∞
n=2

n−1
n3 = 0.8857... , c3 = 3

∑∞
n=3

(n−1)(n−2)
n4 =

0.6102... , c4 = 4
∑∞
n=4

(n−1)(n−2)(n−3)
n5 = 0.4663... , etc. The above series is a

consequence of the more general relation

α

x1(α+ x1)
+

α

x2(α+ x2)
+

α

x3(α+ x3)
+ · · · = c1α

α+ x1
+

c2α
2

(α+ x1)(α+ x2)
+ · · · ,

with c1
x1

=
∑∞
n=1

1
x2
n

, c2
x2

=
∑∞
n=2

xn−x1

x3
n

, c3
x3

=
∑∞
n=3

(xn−x1)(xn−x2)
x4
n

, ..., provided

the series are convergent. If we set xk+1 = xk+2 = · · · = ∞, then the relation
becomes a polynomial identity, which is not difficult to verify.

Other interesting series are obtained by expanding ψ̄(α) on rational terms
containing α(n) := α(α− 1)...(α− n+ 1), for example

ψ̄(α) = 2

{
1

1
· α

α+ 1
+

1

2
· α(α− 1)

(α+ 1)(α+ 2)
+

1

3
· α(α− 1)(α− 2)

(α+ 1)(α+ 2)(α+ 3)
+ · · ·

}
=

∞∑
k=1

α(α2 − 12)...(α2 − (k − 1)2)

(1 + α)2k
· (8k − 3)α+ k(10k − 3)

(2k − 1)(2k)

= α
( 1

α+ 1
+

1

2.1

)
− α(α− 1)

2.3

( 1

α+ 2
+

1

2.2

)
+
α(3)

(3)3

( 1

α+ 3
+

1

2.3

)
− α(4)

(4)4

( 1

α+ 4
+

1

2.4

)
+− · · · .

Note that the last two series converge like a geometrical series with ratio 1
4 .

We shall prove in details only the first identity. We start by proving the formula

α

α+ k
=

k∑
j=1

cj(k)
α(j)

(α+ 1)j
, where cj(k) = 2j

(k − 1)(j−1)

(k + 1)j
, k = 1, 2, 3, . . . (35)

To prove the existence of such a representation with certain coefficients we remove
the denominators and divide by α arriving to an equality between polynomials
of degree k − 1. Now, choosing the coefficients {cj}k1 successively by substituting
α = 1, . . . , k, the equality follows by the uniqueness of the interpolating polynomial.
In order to verify the formula for the coefficients we multiply the identity by (α+1)j
and obtain

α

α+ k
(α+ 1)j = αPj−1(α) + (α+ 1)j

k∑
i=j+1

ci(k)
α(i)

(α+ 1)i
,

where Pj−1(α) is a polynomial of degree j − 1. Rewriting the last equality as

(1 + α)j − (1− k)j
α+ k

+
(1− k)j
α+ k

= Pj−1(α) + (α+ 1)j

k∑
i=j+1

ci(k)
(α− 1)(i−1)

(α+ 1)i
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and noticing that the second term on the right-hand side vanishes for α = 1, . . . , j,
we conclude that Pj−1(α)− (1+α)j−(1−k)j

α+k is the interpolating polynomial for
(1−k)j
α+k .

In particular the leading coefficient equals

c1(k) + · · ·+ cj(k)− 1 =
(1− k)j
α+ k

[
1, 2, . . . , j

]
=

(k − 1)(j)

(k + 1)j
,

which easily implies the formula for cj(k).

Now, we substitute α
α+k from (35) into ψ̄(α) =

∑∞
k=1

α
k(α+k) and rearrange

the summation with respect to the basis
{

α(j)

(α+1)j

}
, which is admissible since the

double sum has positive terms. Then for the coefficients we get

∞∑
k=j

cj(k)

k
= 2j

∞∑
k=j

(k − 1)(j−1)

(k)j+1
=

2j!

(j)j+1
F (j, j; 2j − 1; 1) =

2

j
,

where we used that F (a, b; c; 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) . The first formula for ψ̄(α) is proved.

For the proof of the second relation one can use the identity

α

α+ n
=

dn/2e∑
j=1

(α+ j − 1)(2j−1)

(α+ 1)2j

(
ej(n)α+ dj(n)

)
, n = 1, 2, 3, . . . ,

where ej(1)α+ dj(1) = α+ 1 and

ej(n)α+dj(n) =
n(2j−1)

(n− j)2j+1

(
(4j− 1)(nα− j2)− j(5j− 2)(α−n)

)
, n = 2, 3, . . . ,

while the third one is a consequence of

α

α+ n
=

n−1∑
j=1

(−1)j−1

(n+ 1)j
· α(j) +

(−1)n−1

(n+ 1)n−1
· α

(n)

α+ n
.
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