годишник на софийския университет "св. климент охридски"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Tom 103

 $\begin{array}{c} \text{ANNUAL OF SOFIA UNIVERSITY }, \text{ST. KLIMENT OHRIDSKI}^* \end{array}$

FACULTY OF MATHEMATICS AND INFORMATICS Volume 103

MANIFOLDS ADMITTING A STRUCTURE OF FOUR DIMENTIONAL ALGEBRA OF AFFINORS

ASEN HRISTOV, GEORGI KOSTADINOV

The purpose of this note is to describe some properties of manifolds endowed with an almost tangent structure T, $T^2 = 0$ and an almost complex structure J, $J^2 = -E$, $E = id$.

We consider a linear connection ∇ on N, which is compatible with the algebraic structure, i.e. $\nabla J = 0$, $\nabla T = 0$. The existence of ideals in corresponding algebra implies the existence of autoparallel submanifolds of N.

Keywords: Four dimentional associative algebra, affinely connected manifold, algebra of fiber-preserving operators

2010 Math. Subject Classification: 53C15, 58A30, 53C07

1. ALGEBRAIC PRELIMINARIES

Let us consider a real associative algebra $\mathfrak A$ with the unit element e and two generators i, ε satisfying

$$
i^2 = -e, \quad \varepsilon^2 = 0,
$$

under the requirement $\dim \mathfrak{A} = 4$ [1].

We distinguish three cases described by the relations

$$
i\varepsilon = \varepsilon i \,,\tag{1.1}
$$

$$
i\varepsilon = -\varepsilon i, \tag{1.2}
$$

$$
i\varepsilon + \varepsilon i = e. \tag{1.3}
$$

The corresponding algebras are denoted by $\mathfrak{A}_1, \mathfrak{A}_2, \mathfrak{A}_3$, respectively.

Proposition 1. The algebras \mathfrak{A}_1 and \mathfrak{A}_2 possess nontrivial ideals while \mathfrak{A}_3 is a simple algebra.

Proof. Let us denote $i\varepsilon = \varepsilon i = k$. Then we have the following table of multiplications of \mathfrak{A}_1

Obviously, $\{e, i, \varepsilon, k\}$ is a basis of \mathfrak{A}_1 and $\{\varepsilon, k\}$ is an ideal with zero-multiplication.

Similarly to the previous case, \mathfrak{A}_2 admits an ideal, too.

Now we consider the algebra \mathfrak{A}_3 . The mapping

$$
\varphi: \mathfrak{A}_3 \to M(2)\,,
$$

where $M(2)$ is the algebra of (2×2) real matrices defined by

$$
\varphi(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \varphi(i) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \varphi(\varepsilon) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},
$$

is an isomorphism. It is well-known that the algebra $M(2)$ is simple. That completes the proof. \Box

2. MANIFOLDS OVER ALGEBRAS

Let N be a manifold of class C^{∞} , TN - the tangent bundle of N, $\mathfrak{X}(N)$ - the $F(N)$ - module of global sections of TN, $F(N)$ -the ring the smooth functions on N. Let $A(TN)$ be the algebra of $F(N)$ - linear operators of $\mathfrak{X}(N)$. It can be identified with the algebra of fiber–preserving automorphisms of TN .

Let us consider a real associative algebra $\mathfrak A$ with unit element e. A morphism of algebras $\Phi : \mathfrak{A} \to A(TN)$ such that $\Phi(e) = I$, the identity operator of $A(TN)$ will be called an \mathfrak{A} - *structure* on N. A linear connection ∇ on N is said to be *compatible* with the \mathfrak{A} - *structure* if $\nabla \Phi(a) = 0$, for all $a \in \mathfrak{A}$, i.e. each operator $\Phi(a)$ is parallel with respect to ∇ . An \mathfrak{A} - *structure* is said to be integrable if for each point p exists a neighborhood U, such that the operator $\Phi(a)$ for all $a \in \mathfrak{A}$ have constant components in corresponding coordinate chart.

If $\mathfrak B$ is an ideal of $\mathfrak A$, we define a distribution D in TN as follows:

$$
D_p = \{ \Phi(b)v \in T_pN; \text{ for all } b \in B \text{ and } v \in T_pN \}.
$$

In other words, at each point $p \in N$, D_p is the image of T_pN by the operators corresponding to the elements of \mathfrak{B} . This distribution is invariant with respect to all operators $\Phi(a), a \in \mathfrak{A}.$

Proposition 2. Let \mathfrak{A} is associative unitary R-algebra, N be a manifold with \mathfrak{A} - *structure* and ∇ be a linear connection on N. If $\nabla \Phi(a_i) = 0$ for all basis elements a_i of $\mathfrak A$ then ∇ is compatible with $\mathfrak A$.

Proof. The operator $\nabla : \mathfrak{D}(N) \to \mathfrak{D}(N)$ is a differentiation of the tensor algebra on N. If $\Phi(a_i) = A_i \in \mathfrak{D}_1^1(N)$, $i = 1, 2, 3, 4$, it follows that

$$
\nabla_X(A_i A_j) = \nabla_X(A_i) A_j + A_i \nabla_X(A_j) = 0
$$

 \Box

The following theorem is proved in [2], p. 118.

Theorem 1. Let (M, ∇) be an affinely connected analytical manifold equipped *with an* \mathfrak{A} *- structure compatible with* ∇ *. Then the following properties are satisfied:*

1. The distribution D *is involutive;*

2. If N′ *is a maximal integral submanifold of* D *through any point of* N*, then it is autoparallel submanifold of* N*;*

3. On each N' acts the quotient - algebra $\mathfrak{A}/\mathcal{O}(\mathfrak{B})$, where $\mathcal{O}(\mathfrak{B})$ is the annihi*lator of the ideal* B *in algebra* A*.*

3. ALGEBRAIC STRUCTURES $\mathfrak{A}_1, \mathfrak{A}_2, \mathfrak{A}_3$

The integrability conditions of these structures are given in [1].

According to the previous notations, we set $\Phi(e) = I$, $\Phi(i) = J$ and $\Phi(\varepsilon) = T$, by I we denote the unit matrix and we set $JT = K$. Moreover, we suppose that

$$
Im T = Ker T = \frac{1}{2} dim N.
$$

Theorem 2. *Let* N *be a manifold with an integrable algebraic structure of type* \mathfrak{A}_i , $(i = 1, 2)$ *and* ∇ *be torsion-free connection compatible with the algebraic structure, i.e.* $\nabla J = 0, \nabla T = 0$. Then there exists an \mathfrak{A}_i - invariant foliation N' in N , *i.e.* at any point $p ∈ N' ⊂ N$ the tangent space T_pN' is invariant with respect *to* J *and* T*.*

Proof. Case (1): $J^2 = -I$, $T^2 = 0$, $JT = TJ$ and $Ker T = Im T$. We denote by D the distribution $Ker T = Im T$. It can be easily seen that the following holds: $JD \subseteq D, TD \subseteq D$. This implies that $n \equiv 0 \pmod{4}$, so we can write $n = 4m$.

For any point of N there exist an open neighborhood with a chart (x^1, \ldots, x^{4m}) on it such that with respect to the basis $\partial/\partial x^1, \ldots, \partial/\partial x^{4m}$ the tensors J and T have matrix expression:

$$
\left(\begin{array}{cccc} 0 & -I & 0 & 0 \\ I & 0 & 0 & 0 \\ 0 & 0 & 0 & -I \\ 0 & 0 & I & 0 \end{array}\right) \text{ and } \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \end{array}\right), \quad K = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -I & 0 & 0 \\ I & 0 & 0 & 0 \end{array}\right).
$$

We denote $(x^1, \ldots, x^{4m}) = (x^i, x^{i+m}, x^{i+2m}, x^{i+3m})$, $(i = 1, \ldots, m)$. Every integral submanifold N' of $D = Im T$ has coordinates $(x_0^i, x_0^{i+m}, x^{i+2m}, x^{i+3m})$.

We have $\mathfrak{A} = \{I, J, T, K\}, \mathfrak{B} = \{T, K\}$ - an ideal, the annihilator $O(\mathfrak{B}) = \mathfrak{B}$, $\mathfrak{A}/O(\mathfrak{B}) \approx \{I, J\}.$

The restriction of J on D is the following

$$
\left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -I \\ 0 & 0 & I & 0 \end{array}\right) \left(\begin{array}{c} 0 \\ 0 \\ v^{i+2m} \\ v^{i+3m} \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ -v^{i+3m} \\ v^{i+2m} \end{array}\right).
$$

Here $v = (0, 0, v^{i+2m}, v^{i+3m}) \in D$ and by I we denote the unit $(n \times n)$ - matrix.

Case (2): $JT = -TJ$.

Let M be a manifold provided with a \mathfrak{A}_2 - *structure*. Similarly to the previous case, one may choose an atlas, such that with respect to any chart $U_x \subset N$ the operators J and T have the form

$$
\left(\begin{array}{cccc} 0 & -I & 0 & 0 \\ I & 0 & 0 & 0 \\ 0 & 0 & 0 & -I \\ 0 & 0 & I & 0 \end{array}\right) \text{ and } \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ I & 0 & 0 & 0 \\ 0 & -I & 0 & 0 \end{array}\right).
$$

Theorem 2 is proved.

Now we start considering the last case.

Case (3): N is a manifold provided with a couple J, T of tensor fields of type $(1,1)$, satisfying $J^2 = -I$, $T^2 = 0$ and $JT + TJ = I$. Here it is not necessary to require that $Ker T = Im T$, because it follows from the relation between J and T. Obviously, we can write $n = 2m$.

Proposition 3. An \mathfrak{A}_3 - structure on a smooth manifold N may be given equivalently:

1. By the operators P and Q , such that

 $P^2 = I$, $Q^2 = I$ and $PQ + QP = 0$,

2. By the operators J and P , such that

 $J^2 = -I$, $P^2 = I$ and $JP = -PJ$.

Proof: 1. If we set $P = JT - TJ$ and $Q = J + 2T$, by using the characteristic identity in *Case (3)* we have

$$
P2 = (JT - TJ)(JT - TJ) = JTJT - JTTJ - TJJT + TJTJ
$$

= JT(I - TJ) + TJ(I - JT) = JT + TJ = I,

$$
Q2 = (J + 2T)(J + 2T) = J2 + 2JT + 2TJ = -I + 2I = I.
$$

2. In analogy with the previous case we have

$$
JP = J(JT - TJ) = J^{2}T - JTJ = -T - J(I - JT)
$$

= -T - J - T = -J - 2T,

$$
PJ = (JT - TJ)J = JTJ + T = J(I - JT) + T = J + 2T.
$$

Remark 1. In [1] the structure {J, P} is called a *complex product structure*.

The next theorem is a modification of the result of A. Andrada [3].

Theorem 3. *Let* N *be a manifold with an* A³ *-structure, given by the operators* {J, T}*. Then:*

1. There exists a unique torsion-free connection ∇ *with respect to which* J *and* T *are parallel;*

2. The leaves of the distribution $\mathfrak{D} = Im T$ are flat autoparallel submanifolds *of* N*.*

Proof. The connection ∇ , which preserves the tensor fields J and P is given by

$$
\nabla_x Y = \frac{1}{4} \{ [X, Y] - [PX, PY] + P[X, PY] - P[PX, Y] - J[X, JY] - J[PX, Q] + Q[X, QY] + Q[PX, JY],
$$

where $Q = -JP$.

Since $T=\frac{1}{2}$ $\frac{1}{2}(PJ-J)$, it follows that $\nabla P = \nabla J = 0$. Our assertion follows from Proposition 2.

We may choose an atlas on N, whose Jacobian matrices are local constant. Then the operators J and T have the following form

$$
\left(\begin{array}{cc} 0 & I \\ -I & 0 \end{array}\right) \text{ and } \left(\begin{array}{cc} 0 & 0 \\ I & 0 \end{array}\right),
$$

where I is the unit $(n \times n)$ - matrix. The theorem is proved.

Remark 2. Another proof of the existence and uniqueness of ∇ is given in [1].

Remark 3. In this case the distribution $D = Im T$ is not invariant with respect to the operator J.

Remark 4. As it is shown in [1], [3] the connection ∇ does not need to be flat.

An essential property of the tangent bundle TM is the fact that it bears a *tangent structure*. More precisely, let $\pi : TM \to M$ and $K : TTM \to TM$ be natural projection and connection maps of ∇ , respectively. If X is a vector field on M, we may define vertical lift X^v and horizontal lift X^h on TM by the relations

$$
(d\pi)X^v = 0, \qquad KX^v = X,
$$

$$
(d\pi)X^h = X, \qquad KX^h = 0.
$$

From a basis $\{X_1, \ldots, X_n\}$ of $\mathfrak{X}(M)$ we get the basis of $\mathfrak{X}(TM)$: $\{X_k^h, X_n^v\}$, $k = 1, \ldots, n$. With respect to this basis the tangent structure has the matrix expression mentioned above. We define

 $\tilde{J}: X^h \to X^v, \quad X^v \to -X^h, \quad \tilde{J}^2 = -I.$

By setting $J = -\tilde{J}$, this leads us to the \mathfrak{A}_3 algebra.

Theorem 4. *The manifold* TM *can be endowed with integrable operators* P*,* Q*, subject to the relations*

$$
P^2 = I
$$
, $Q^2 = I$, $PQ = QP = 0$.

Proof. Let us set $P = JT - TJ$ and $Q = J + 2T$. By using the identity in Case (3) of Theorem 2, we can easily verify our statement.

The integrability of J and T implies the integrability of P and Q. \Box

ACKNOWLEDGEMENT. This work is partially supported by Project NI15- FMI-004 of the Scientific Research Fund of Plovdiv University.

4. REFERENCES

- [1] Bures, J., Vanzura, J.: Simultaneous integrability of an almost complex and an almost tangent structure. *Czech Math. J.*, 32, no. 4, 1982, 556–558.
- [2] Vishnevsky, V., Shirokov, A., Shurygin, V.: *Spaces over algebras*, Kazan University, 1985 (in Russian).

[3] Andrada, A: Complex product structures and affine foliations, *Ann. Global Anal. Geom.*, 27, no. 4, 2005, 377–405.

Received on November 1, 2015

Asen Hristov, Georgi Kostadinov

Faculty of Mathematics and Informatics "P. Hilendarski" University of Plovdiv 236, Bulgaria blvd., BG-4000 Plovdiv BULGARIA

e-mails: asehri@uni-plovdiv.bg geokost@uni-plovdiv.bg