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Not only the public press but also the precis of the paedagogues has taught
us to gulp superlatives as daily narcotics. The professor who forgets to class, rate,
and rank his subject as the first and finest something will fail to find it mentioned
in the students’ terminal examinations. The busy modern calls for culture in
predigested quintessence pills, packaged in abridged paperbacks, explained by
folksy prefaces in pellet-paragraphs of sugared baby-talk, lullabies to smugness.
Suggestion to a general audience that historical facts must precede if not replace
historical enthusiasm may expect only oblivion, the palm of dullness.

C. Truesdell: The Mechanics of Leonardo da Vinci

Tleopeu Yobanos, Hean HYobanos. IUHAMUYECKUE AKCHUOMBI HBIOTOHA U
SWJEPA. V. IPEAUCTOPUA MEXAHUUECKUX CBA3EH

DToO eCTh MATAH YacThb CEPUM CTaThbeH, NOCBENieHHALIe OMHAMMYECKUX akcumoMm Hobio-
ToHa K Disepa; OHA €CTECTBEHHOE NPOROJIKEHKE U pa3BUTHe mocneianeih ms mux [17)], B
KoTOopci noaApobHOo OUCKYTHMPOBAHBI GPU3MUECKME MOTHBHPOBKM NMOHATMA O MEXAHMYECKMX
CBfi3aX, HAJIOXKEHHBIX CHCTEM MACOBLIX TOUEK M TBepALIX Tesj. B paborTe npuBesileRH MHO-
FOUYKCJICHHbIC ABTEHTHUYECKUE NaHHBle B CBA3Y C 3AUATHUEM M NPEKIAEBPEMEHHOM POXKICHUM
HOHATHA CBA3M B paHHON McTOpWM pauMoHanbHOM MeXaHMKM, HpuueM ocoboe BHMMaRUE
yaeneso counmnenuit Discorsi e Dimostrazioni Matematiche Intorno ¢ Due Nuove Scienze [a-
aunnen, Philosophiae Naturalis Principia Mathematica Hororona u Traité de Dynamigue a-
namEepa.

Georgs Chobanov, Ivan Chobanov. NEWTONIAN AND EULERIAN DYNAMICAL AXIOMS.
V. PREHISTORY OF MECHANICAL CONSTRAINTS

This is the fifth part of a series of articles dedicated to the Newtonian and Eulerian dynamical
axioms; it is the natural continuation and development of the last of them [17], where the physical
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motivativis of the notion of mechanical constraints imposed on mass-point and rigid body systems
are discussed at length. Numerous authentical data are adduced in conneciion with the conception
and premature birth of the constraint concept in the early history of rational mechanics, special
stress being laid on Galileo's Discors: ¢ Dimostrazioni Matematiche fn‘:;ms da Due Nuove Scienze,
Newton's Philosophice Naturalis Frincipic Mathematica, and D'Alembert's Traité de Dynamigue,

where the gorms of the constraint notion may be traced.

~ This fifth part of a series of articles dedicated to the Newtonian and Eulerian
dynamical axioms is a natural continuation and development of the last of them
[17], where the physical motivations of the notion mechanical constraints imposed
on mass-points and rigid bodies are discussed at length and which is published in
this volume of the Annual; that is why, in order to avoid reiterations, the literature
quoted in this paper and in [17] has a unified numeration.

The motivations of the engineering praxis are as old as human race toc. The
vectis, azis in pertirochio, trochlea seu polispastus, cochlea and cuncus (that is to
say the lever, axis and wheel. pulley, screw, and wedge, respectively) have been
utilized already by the ancient to the fullest extent. In the Auctoris praefacio ad
lectorem of his Principie [7] Newton states:

“Pars haec mechanicae a veteribus in potentiis quinque ad artes manuales
spectantibus exculta fuit, qui gravitatem (cum potentia manialis non sit) vix aliter -
quam in ponderibus per potentis illas movendis considerarunt.”

As Krilov observes in his Russian version [18] of Principia, the term pofeniia
is used here in two ways: the first time as a synonym of machina, and the second
time as a synonym of power. As an illustration he adduces the following excerpt
from Maclaurin’s book [19]:

“It is distinguished by Sir I. Newton into practical and rational mechanics;
the former treats of the mfzchamaal powers viz. the lever, the azts and wheel the
pulley, the wedge and the screw to which the inclined plane is to be added and
of the various combinations together. Rational mechanics comprehends the whole
theory of motion and shews when the powers of forces are given how to determine
the motions that are produced by them ... in tracing the powers that operate in
nature from the phenomena we proceed by analysis and deducing the phenomena
from the powers or causes that produce them we proceed by synthesis.”

The close relations of early mechanicians with engineering experience is reflect-
ed in an excellent manner in Galileo’s Dialoghi delic nuove scienze [20], Giornata
prima of which begins with the following inferences of Salviati and Sagredo:

SAL. Largo campo di filosofare a gl'inteiletti specoluiivi parmi che porga la
frequente pratica del famoso arsenale di voi, Signori Veneziani. ed in particolare in -
quella parte che mecanica si dominanda; atteso che quivi ogni sorte di strumento
e di machina vien continuamente posta in opera da numero grande d’artefici, tra
1 quali, e per l'osservazioni fatte dai loro antecessori, e per quelle che di propria
avvertenza vanno continuamente per se stessi facendo, & forza che ve ne siano de i
pertissimi e di finissimo discorso.

SAGR. V. S. non s’inganna punto: ed io, come per natura curioso, frequento
per mio diporte la visita di questo luogo e la pratica di questi che noi, per certa
preminenza che tengono sopra ’l resto della maestranza, domandiamo proti; la



conferenza de i quali mi ha piu volte aiutato nell’investigazione della ragione di
effetti non solo maravigliosi, ma reconditi ancora e quasi inopinabili. E vero che tal
volta anco mt ha messo in confusione ed in disperazione di poter penetrare comimne
possa seguire quello che, lontano da ogni mio concetto, mi dimostra il senso esser
vero ... [21, II, p. 81].

The question now quite reasonably arises: are there in Galileo’s mechanical
writings solutions of dynamical problems concerning motions of constrained mass-
points or rigid bodies? Before answering this question we may point out that it is by
no means groundless, since motions of mass-points along inclined (to the vertical)
lines or circumferences are par ezcellence constrained motions, and such problems
are abundant in Giornata terza of Discorsi. As a matter of fact, all theorems,
propositions, corollaries, problems, and scholiums of section De motu naturaliter
accelerato of Giornata terza, as well as all concomitant commentaries of Szlviati,
Sagredo, and Simplicio, beginning with Theorema III, Proposttio III, are concerned
with motus naturalis along inclined lines. On that ground, formally at least, one
may expect that germs leastwise of constraint dyrnamics may be found in Galileo’s
works.

Alas, those are blighted hopes, and the reason is a quite simple one. In spite
of all traditional physical folklore there is no dynamics at all in anything Galileo
has written on mechanics. In vain will remain all Lagrange’s efforts to render quae
sunt Caesaris Deo et quae sunt Dei Caesari:

“La Dynamique est la science des forces accélératrices ou retardatrices et des
mouvements variés qu’elles doivent produire. Cette science est due entierement
aux modernes, et Galilée est celui qui en a jeté les premiers fondements. Avant lui
on n’avait considéré les forces qui agissent sur les corps que dans ’état d’équilibre;
et quoiqu’on ne piit attribuer I’accélération des corps pesants et le mouvement
curviligne des projectiles qu’a l’action constante de la gravité, personne n’avait en-
core réussi i déterminer les lois de ces phénomeénes journaliers, d’aprés une cause
si simple. Galilée a fait le premier ce pas important et a cuvert par la une carriere
nouvelle et immense & ’avancement de la Méchanique. Cette découverte est ex-
posée et developpée dans 'Ouvrage intitulé: Discorsi ¢ dimostrazioni matematiche
intorno a due nuove scienze, lequel parut, pour la premiére fois, & Leyde, en 1638.
Elle ne procura pas & Galilée, de son vivant, autant de célébrité que celles qu'il
avait faites dans le ciel; mais elle fait aujourd’hui la partie la plus solide et la plus
reelle de la gloire de ce grand homme™ {11, p. 237].

This brilliant appraisal of Galileo’s mechanical performances has been mul-
~tiplied in the course of two clear centuries in a myriad physical and mechanical
text-books, treatises, monographs, articles, journals, newspapers, etceteras in pre-
cise conformity with the renowned verse of Vergilius Fama mobilitate viget viresque
adquirit eundo. As a result of the loathsome aptitude of human mind to idola-
try the image of Galileo as the founder of non-peripatetic dynamics is rooted in
public spiritedness as tight as the image of Marx as the founder of non-capitalistic
economics. Fortunately, the first case is not this far sinister.

The quoted excerpt from [11] may be written only by someone who has not
read Discorsi; or by someone who has read it carelessly; or by someone who has
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read it attentively and has understood hothing. Otherwise one cannot explain why
the adjective dynamical is ascribed jo purely kinematical investigations.

For the whole of the content of Giornata terza & quarta is kinematics, only
kinematics, and nothing save kinematics. \

This is a point that needs a close attention. In order to make things transparent
and to leave no room for gratuitous and subjective interpretations, let us drink one
sip or two out of the very spring:

“Quae in motu aequabili contingunt accidentia, in praecedenti libro considerata
sunt: modo de motu accelerato pertractandum. '

Et primo, definitionem ei, quo utitur natura, apprime congruentem investigare
atque explicare convenit. Quamvis enim aliquam lationis speciem ex arbitrio con-
fingere, et consequentes eius passiones contemplari, non sit inconveniens . . ., tamen,
quandoquidem quadam accelerationis specie gravium descendentium utitur natura,
eorundem speculari passiones decrevimus, si eam, quam allaturi sumus de nostro
motu accelerato definitionem, cum essentia motus naturaliter accelerati congruere
contigerit” [21, 11, p. 254].

In such a manner, we come to know that Galileo:.

1. Proceeds to study motions with impermanent velocity.

2. Realizes the possibility of an infinite variety of such motions.

3. Is interested in that special kind of accelerated motions Nature makes use
of. *

4. Does not know the definition of the motus naturaliter acceleratus.

How does Galileo solve the last problem? Ipse dizit:

“Postremo, ad investigationem motus naturaliter accelerati nos quasi manu
duxit animadversio consuetudinis atque instituti ipsiusmet naturae in ceteris suis
operibus omnibus, in quibus exercendis uti consuevit mediis primis, simplicissimis,
facillimis. Neminem enim esse arbitror qui credat, natatum aut polatum simpliciori
aut faciliori modo exerceri posse, quam eo ipso, quo piscem et aves instinctu naturali
utuntur” [ibid.].

Ergo, Galileo: |

5. Intends to discover the definition of naturally accelerated motion by observ-
ing (and possibly measuring) natural motions.

6. Proclaims a philosophical principle Nature obeys unquestingly: Simplicity.

What does, however, simplicity mean in the special case of natural motions?
Verba magistri: - : :

“Dum igitur lapidem, ex sublimi a quiete descendentem, nova deinceps veloci-
tatis acquirere incrementa animadverto, cur talia additamenta, simplicissima atque
omnibus magis obvia ratione, fierl non credam? Quod si attente inspiciamus, nul-
lum additamentum, nullum incrementum, magis simplex inveniemus, quam illud,
quod semper eodem modo superaddit ... Et sic a recta ratione absonum nequaquam
esse videtur, si accipiamus, intentionem velocitatis fierl iuxta temporis extensionem;
ex quo definitio motus, de quo acturi sumus, talis accipi potest: Motum aequa-
biliter, seu uniformiter, acceleratum dico illum, qui, a quiete recedens, temporibus
aequalibus aequalia celeritatis momenta sibi superaddit” [ibid., p. 254-255].

In such a manner, following a most natural, logical, and methodical course of
thought, Galileo:
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7. Arrives at the modern definition of uniformly accelerated motion.

8. Declares the latter the law of free fall.

Moreover, the author puts the last two items to the test of experimental control:

“In un regolo, o voglian dir corrente, di legno, lungo circa 12 braccia, e largo per
un verso mezo braccio e per 'altro 3 dita, si era in questa minor larghezza incavato
un canaletto, poco piu largo d’un dito; tiratolo drittissimo, e, per averlo ben pulito
e liscio, incollativi dentro una carta pecora zannata e lustrata al possibile, si faceva
in esso scendere una palla di bronzo durissimo, ben rotondata e pulita; constituito
che si era il detto regolo pendente, elevando sopra il piano orizontale una delle sue
estremita un braccio o due ad arbitrio, si lasciava (come-dico) scendere per il detto
canale la palla, notando, nel modo che appresso diro, il tempo che consumava nello
- scorrerlo tutto, replicando il medesimo atto molte volte per assicurarsi bene della
quantita del tempo, nel quale non si trovava mai differenza né anco della decima
parte d’una battila di polso. Fatta e stabilita precisamente tale operazione, facem-
mo scender la medesima palla solamente per la quarta parte della lunghezza di esso
canale; e misurato il tempo della sua scesa, si trovava sempre puntualissimamente
esser la metd dell’altro: e facendo poi Vesperienze di altre parti, esaminando ora il
tempo di tutta la lunghezza col tempo della met4, o con quello delli duo terzi o de i
3/4, o in conclusione con qualunque altra divisione, per esperienze ben cento volte
replicate sempre s’incontrava, gli spazii passati esser tra di loro come i quadrati de
i tempi, e questo in tutte le inclinazioni del piano, cioé del canale nel quale si faceva
scender la palla; dove osservamo ancora, i tempi delle scese per diverse inclinazioni
mantener esquisitamenre tra di loro quella proporzione che pit a basso troveremo
essergli assegnata e dimostrata dall’Autore. Quanto poi alla misura del tempo, si
teneva una gran secchia piena d’acqua, attaccata in alto, la quale per un sottil can-
nellino, sal da togli nel fondo, versava un sottil filo d’acqua, che s’andava ricevendo
con un piccol, bicchiero per tutto ’l tempo che la palla scendeva nel canale e nelle
sue parti: le particelle poi dell’acqua, in tal guisa raccolte, s’andavano di volta in
volta con esattissima bilancia pesando, dandoci le differenze e proporzioni de i pesi
loro le differenze e proporzioni de i tempi; e questo con tal giustezza, che, come ho
detto, tali operazioni, molte e molte volte replicata, gid mai non differivano d’un
notabil momento” [#bid., p. 274-275]. : ‘

Once the definition of motus naturaliter acceleratus established, all that follows
in Giornata terza & quarta of Movimenti Locali are kinematical exercises of free
fall, sliding along a line inclined towards the horizon, and flying of projectiles. .
At that, the moving objects are points rather than bodies; moreover, those are
geometrical — by no means mechanical — points that are moving on the pages of
Galileo’s Discorsi. The meaning of this statement is that the mass of the moving
point is completely irrelevant to Galileo’s meditations and’ ca;eulations — there 1s
no relationship between moving object and moving cause. As a mere child could
say, the mass concept is void of sense if estranged from forces, and there are no
forces at all in Galileo’s mechanical studies — at least no such ones that would be
found congenial today. -
~ And yet, even only kinematically, no one can justly deny that there are con-
strained motions in Galileo’s Discorsi. There may only be divergences of views on
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the degree of originality of the contributions of this notionalist to the field of rational
mechanics. To Galileo’s worshippers Truesdell’s standpoint may seem blasphemy:

“Historians of letters had meanwhile created the myth of the ‘Renaissance’.
According to this myth, in the Middle Ages man- nibernated beneath a pall of
scholastic repetitions, borrowed from Aristotle and enforced by the Church; the
Renaissance, casting all this aside, opened its eyes and discovered man and the
world by personal sensation ... V

. such historians of science ... found several of Galileo’s ideas, more or
less, in Leonardo’s notes ... published in facsimile in the years 1881 to 1936 ...
Previously historians had believed that Galileo thought these things out of ‘genius’
applied to thin air ... ‘Discovery’ of Leonardo transferred the point of application
of this same theory a century backwards. He, too, had the same material to work
with: ‘genius’ and thin air, and the remaining problem for this group of historians
was only to see how Leonardo’s ideas got to Galileo, thus making the latter a true
grandson, if not son, of the Renaissance” [8, p. 25, 27].

To make matters worse, strange characters emerge from days long gone by:

“...the main kinematical properties of uniformly accelerated motions, still at-
tributed to Galileo by the physics texts, were discovered and proved by scholars of
Merton College — William Heytesbury, Richard Swineshead, and John of Dumble-
ton — between 1328 and 1350. Their work distinguished kinematics, the geometry
of motion, from dynamics, the theory of the causes of motion. Their approach was
mathematical. They succeeded in formulating a fairly clear concept of instanta- -
neous speed, which means that they foreshadowed the concepts of functiion and
derivative, and they proved that the space traversed by a uniformly accelerated
motion in a given time is the same as that traversed by a uniform motion whose
speed is the mean of the greatest and the least speeds in the accelerated motion.
In principle, the qualities of Greek physics were replaced, at least for motions, by
the numerical quantities that have ruled Western science ever since. This work was
quickly diffused into France, Italy, and other parts of Europe. Almost immediate-
ly, Giovanni da Casale and Nicole Oresme found how to represent the results by
geometrical graphs, introducing the connection between geometry and the physical
world that became a second characteristic habit of Western thought — a habit
so deep-seated that it is known to every carpenter a.nd passes unremarked only in
certain highly specialized professions ..

Clagett [22] has cited much evzdence to show that these ideas, which originated
in England and France in the early fourteenth century, were discussed back and
forth in periods of varying activity and inactivity in France, the Empire, and Italy
in the latter half of the same century and were taught in Italian universities in
the next one, at the end of which a flood of printed books opened the subject
to everyone — everyone who could understand Latin and mathematlcs” [1bid., p.
30-31).

In the light of this information Galileo’s pretensions in the introductory words
of De motu locali seem a bit overdone: |

- “De subiecto vetustissimo novissimam promovemus scientiam. Motu nil forte
antiquis in natura, et circa eum volumina nec pauca nec parva a philosophis con-
scripta reperiuntur; symptomatum tamen, quae complura et seitu digna insunt in
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eo, adhuc inobservata, necdum indemounstrata, comperio. Leviora quaedam adno-
tantur, ut, gratia exempli, naturalem motum gravium descendentium continue ac-
celerarl; verum, luxta quam proportionem eius fiat acceleratio, proditum hucusque
non est: nullus enim, quod sciem, demonstravit, spacia a mobili descendente ex qui-
ete peracta in temporibus aequalibus, eam inter se retinere rationem, quam habent
numeri impares ab unitate consequentes” [21, I, p. 247].

The first place in Discorsi, where inclined plane comes into view, is Theorema
II1, Propositio III of De motu naturaliter accelerato in Giornata te?"za namely:

“Si super plano inclinato atque in perpendiculo, quorum eadem sit altitudo,
feratur ex quiete idem mobile, tempora lationum erunt inter se ut plani i zpsms et
perpendiculi longitudines” [zb‘ad p. 282}

Inclined planes are repeatedly used in well-nigh all the following theorems,
propositions, corollaries, problems, scholia, and commentaries of Salviati, Sagredo,
and Simplicio of Giornate terza of Discorsi. As a maiter of fact, the whole content
of this part of Due scienze consists of exercises on theme and variations point
kinematics of uniformy accelerated motions.

It is quite immaterial to us whether Galileo’s statements in the said propo-
sitions are true or false: the cold fact is, there is point kinematics of constrained
motions in his book. This applies especially to an important problem — that of
lationem omnium velocissimam, which later became the starting point of Johann
Bernoulli’s Problemata novum, ad cuius solutionem geomelrici invitantur, as well
as a stimulus for variational calculus. Formulated by Galileo in the form of a
Scholium, it reads: ' ’

“Ex his quae demonstrata sunt, colligi posse videtur, lationem omnium velocis-
simam ex termino ad terminum non per brevissimam lineam, nempe per rectam,
sed per circuli portionem, fieri” [¢hid., p. 333].

In such a way, Galileo:

9. Includes the circumference in the family of geometrical constraints.

10. Formulates a2 minimalization problem concerning constrained motions (for
the first time in the history of mechanics, as far as our knowledge goes).

The importance of the last event is not diminished by the fact that Galileo’s
solution was wrong: another contingency was purely and simply impossible in his
days. As Truesdell says:

“ Now a mathematician has a matchless advantage over general scientists,
historians, and exponents of other professions: He can be wrong. A fortior:, he
can also be right. There are errors in Euclid, and, to within a set certainly of
measure zero on the ordinary human scale, what Euclid proved to be true in ancient
Greece is true even in the colossal, unprecedented, nucleospacial, totally welfared
today. In the advance through the physical, social, historical, and other sciences,
the demarcation between truth and falsehood grows vaguer, until in some areas
truth can be rezoned as falsehood and falsehood enshrined into truth by consensus
of “acknowledged experts and autorities” or even popular vote. One professor
discussing the doctrines of Karl Marx may label thém as grave errors; a second,
equally qualified, may present them as problematic, partly true and partly not so;
while a third, living in a different part of the world, may proclaim them as the
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quintessence of human knowledge. In the mathematical science as taught by the
colleagues of these same three social scientists, there 1 no disagreement as to what 1s
true and what is not. A mistake made by a mathematician, even a great one. is not
a “difference of point of view” or “ancther interpretation of the data” or a “dictaie
of a conflicting ideology”, it 1s a mistake. The greatest of all mathematic: ns, those
who have discovered the greatest quantities of mathematical truths, are aiso those
who have published the greatest number of lacunary proofs, insufficiently qualified
assertions, and flat mistakes.

The mistakes made by a great mathematician are of two kinds: first, trivial
slips that anyone can correct, and second, titanic failures reflecting the scale of
the struggle which the great mathematician waged. Failures of this latter kind are
often as important as successes, for they give rise to major discoveries by other
mathematicians. One error of a great mathematician has often done more for
science than a hundred little theorems proved by lesser men” [8, p. 140].

While Galileo did not have at his disposal the tool for solving dynamical prob-
lems involving constrained mass-points, Newton did. That is why it is interesting
to the utmost degree (at least as far as our topic is concerned) to see what did he
actually accomplish by its aid.

To this end it is sufficient to take a lock at Newton’s mechamca} archives,
his Principia [7]. The realization of the fact that this book is a treatise on point
dynamics, not in the least on rigid dynamics, is as old as Euler:

“... while Newton had used the word ‘body’ vaguely and in at least
three different meanings, Euler realized that the stateinents of Newton are generally
correct only when applied to masses concentrated at isclated points ”
(8, p. 107]. - ‘ ,

Therefore, we must discover how far Newton has penetrated into the field of
constrained mass-point dynamics. Already a mere glance at the contents of Prin-
cipia at once displays that the only place of the work, where constrained motions
may be treated, is Sect. X: De Motu Corporum in Superficiebus datis, deq; Fu-
nipendulorum Moty reciproco of Liber Primus, De Motu Corporum. It begins with
Prop. XLVI. Prob. XXXII, namely: “

~ “Posita cujuscunq; generis vi centripeta, datoq; tum virium centro tum plano
quocung; in quo corpus revolvitur, et concessis Figurarum curvilinearum quadra-
turis: requiritur motus corporis de loco dato data cum velocitate secundum Rectam
in Plano illo datum egressi” [7, p. 145].

This is a constrained mass-point dynamical problem par ezcellence: it proposes
to find the motion of a mass-point constrained to remain on a given plane and
subjected to the action of an arbitrary central force, the pole of which is lying
outside the plane.

Newton’s Problem XXXII is extraordinary interesting with a view to our topic,
namely the nascency of the idea of a mechanical constraint imposed on a mass-point
or arigid body. We shall therefore follow the train of thoughts of Principia’s author
exposed in his solution of this problem. At that, with an eye to a greater clearness,
we shall quote the English version of the work in Motte’s translation rather than
the original Latin text:
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- “Let S be the centre of force, SC the least distance of that centre from the
given plane, P a body issuing from the place P in the direction of the right line PZ,
@ the same body revolving in its curve, and PQR the curve itself which is required
to be found, described in that given plane. Join CQ, @S, and if in @S we take SV
proportional to the centripetal force with which the body is attracted towards the
centre S, and draw V7T parallel to CQ, and meeting SC in T; then will the force
SV be resolved into two (by Cor. II of the Laws of Motion), the force ST, and the
force TV; of which ST attracting the body in the direction of a line perpendicular
to the plane, does not at all change its motion in that plane. But the action of the
other force TV, coinciding with the position of the plane itself, attracts the body
directly towards the given point C in that plane; and therefore causes the body
to move in the plane in the same manner as if the force ST were taken away, and
the body were to revolve in free space about.the centre C by means of the force
TV alone. But there being given the centripetal force TV with which the body
@ revolves in free space about the given centre C, there is given (by Prop. XLII)
the curve PQR which the body describes; the place @, in which the body will be
found at any given time; and, lastly, the velocity of the body in that place . And
conversely, Q. E. L.” [23, vol. T, p. 148-149].

In this solution two places of the book are quoted in the capacity of arguments:
Corollary II of the introductory Aziomatia sive Leges Motus and Proposition XLII.
Problem XXIX. The corresponding texts of [23] read as follows:

“And hence is explained the composition of any one direct force AD, out of
any two oblique forces AC and C'D; and, on the contrary, the resolution of any
one direct force AD into two oblique forces AC and CD: which composition and
resolution are abundantly confirmed from mechanics” (p. 15).

“The law of centripetal force being given, it is required to find the motion of
a body setting out from a given place, with a given velocity, in the direction of a
given right line” (p. 133).

As it is immediately clear, Newton reduces his Problem XXXII to Problem
XXIX. The fact itself 1s irrelevant to our concern, since we are interested in Newton’s.
idea of a constraint imposed on a mass-point rather than in particular dynamical
problems whichever concerning such constraints. That is why we shall present
Newton’s arguments in a modern form that will help us to expose the roots of the
matter. ,

Using Newtcn’s notations, let by definition » = §@, n = SC, where it is
supposed m # 0, so that the unit vector n® = %n exists. Under these notations,
the equation of the plane 7 (that is to say CPQ is)

(1) , T =v

with an appropriate v. On the other hand, the motion of the mass-point ¢ is
governed by the equation

(2) mr = F + R,
dots denoting, as traditionally in analytical dynamics, derivatives with respect to
the time £, m — the mass of @, ¥ = V' § — the “centripetal force”, acting on @,
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and R — the reaction of the plane 7 on Q. Beéides, let by definition g = CQ,
whence r = n + p, and, since 7 is constent (ergo n =: o),

(3) - F=p

Now (2), (3) imply

(4) mp=F + R.

Moreover, since obviously |

(5) v nl=v :

(the point C lying in the plane 7), the relations (1), (5) imply
(6)  m=o.

In such a manner, the problem of the constrained motion of the mass-point Qis
reduced to that of the motion of the free mass-point Q under the action of the
forces F + R. :

As regards F', Newton’s decomposition F = VT + T'S implies
(7) " F=Fp°+ Nn®, |
p° denoting the unit vector of 5, and F and N — the projections of F on p° and
n®, respectively. In such a manner, the relations (4), (7) imply
(8) mp=Fp®+ Nn®+ R.
Now, reducing Problem XXXII to Problem XXIX, Newton presupposes
9 Nn®+R=0. :

Why?

As regards the reaction R we know nothing save that it is acting on the mass-
point @, and this condition is satisfied by writing equation (4). Now Newton
assumes on the sly that the plane = is smooth, in other words, that

(10) R = Rn®
with an appropriate R. Then (9), (10) imply
(11) N+ R=0.

As regards the equation of motion of @ as a free mass-point under the action of
the central force F°, namely

(12) mp = Fp°,

which is a corollary from (8) and (9), we shall not discuss the problem to what
extend Newton could attack it by the aid of the mathematical artillery he had at
his disposal in those times. (In the history of mechanics the solution of (12) is
connected with the name of Binet, 1786-1856). As Truesdell says, “it is not the
function of the historian to guess what Newton might have done of could have done”
8, p. 92]. The cold fact is that under the hypothesis (10) for a smooth plane 7 the
condition (11) is necessary and sufficient for the plane motion of the mass-point. Q.

We shall systematize our observations in connection with Newton’s Problem
XXXII in the form of several scholia.
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Scholmm 1. Newton s treatment does not make use of any system of reference.

Scholium 2. The reasons of the antecedent inference are rooted already in
‘the formulation of Lez II, namely: - :

. “Mutationem motus proportlonalem esse vi motrici 1mpressae, et fieri secun-
dum lineam rectam qua vis illa imprimitur ” 7, p. 12}, where not a word is said
about a system of reference with respect to which mutationem motus is calculated.

Scholium 3. This is a most regrettable circumstance since the validity of
Lez II is not unconditional: Lez II holds only for the so-called inertial systems of
reference.

Scholium 4. Newton makes no mention of any force acting on Q save V S; in
particular he does not even allude to the reaction R.

Scholium 5. Therefore he does not reqmre explicitly (10) expmssmg the
- smoothness of .

‘Scholium 6. In the case of a non-smooth constraint = the whole of Newton’s
construction collapses.

Scholium 7. Newton'’s supposition “of which ST attracting the body in the
direction of a line perpendicular to that plane, does not at all change its motion
in that plane” may be physically well-founded, but mathematically it is entirely
groundless: a mathematical conclusion about ferces and motions is legitimate if,
and only if, it is derived from the equations ef metien.

Scholium 8. Newton does not at all submit fer discussion the question for the
possibility of the geometrical constraint mpmd on the mass-peint Q: he considers
this question apriorily settled.

Scholium 9. The foregoing conclusien stands in 2 causal connectmn with the
ezistence problem in rational mechanics.

Scholium 10. All preceding ascertainments are by ne means repnmands Im-
possibilium nulla est obligatio. Juxtapesed with his epech, Newten’s performances
seem superhuman. History in gemeral, hewever, histery of science, in particular,
accepts no condolences. Our aim is te ascertain hew the netion of mechanical’
constraint is conceived, born, and bred; and this geal cannet be achieved without
the works of classics of mechamcs with all thexr merits and demerits. Quad erat
ezplicandum. ,

It is pointless to expese the remammg proposxtxons of section X of Principia.
All of them concern particular metiens of mass-peints aleng given curve lines or
surfaces; the treatment of any of them is imbued with the spirit of the age. It
is true that the ratie of the mechanical content of Principia te its mythical fame
is negligibly small. As Truesdell emphasizes, “except fer certain simple if
important special preblems, Newten gives ne evidence of being able to set up differ-
ential equations of metien for mechanical systems . .. in Newten’s Principia occur
no equations of motion for systems of mere than twe free mass-peints or more than
one constrained mass-point” [8, p. 92-93]. At the same time, qued sciamus, this is
the first mechamcal work where constrained motions are con31dered in an almost
modern way — in any case, by the aid of the momentum axiom.

Our goal has by no means been to propose ‘a systematic historical mvestxgatx.on
on the mechanical constraint notion. It is a hard nut to crack for a historian of
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rational mechanics who has made it his set purpose to track out the shady affair
of development of dynamics of constrained systems. The hardships are due not
only to the fact, properly explained in [17], that almost all motions Leonardo,
Galileo, Tartaglia, and their successors had the chance to observe and, although
extremely rarely, to measure, have been “impure” — that is to say, attended with
the afteref?ects of reactions now here of constraints and now there of resisting media;
" moreover, embarrassments come into being owing to the propensity of authors of
mechanical writings to explain in fluent phrases, readily, ardently, and rather life-
like to their readers somethings obscure to the authors in questlon themselves.
Aggraviating the situation, the atmosphere becomes electrified by the fact that the
mechanical constraint concept is, mathematically speaking, as yet in its historical
phase; one-cannot — as one can in other fields of mathematics — put one’s finger
on a certain line of a certain page in a certain book and pronounce the sacramental
abracadabra: this is a mechanical constraint imposed on a rigid body.

Qur occupations with related literary sources have confronted us with a non-
incurious phenomenon. If one is apt to have faith in Truesdell's assessments of

-complicated mechanical situations — as we readily aknowledge we are — then one
may find congenial the following opinion of this eminent author apropos of the early
story of constrained mechanical systems:

. “D’Alembert was the first to give a general rule for obtaining equations of
motion of constrained systems. After decomposing the motion into two parts, one
being ‘natural’ and the other due to the presence of the constraints, he asserts that
the forces corresponding to the accelerations due to the constraints form a system
in static equilibrium. Thus his principle is a development of one of the ideas of
James Bernoulli’s great paper of 1703; it is still closer to the principle stated even
more obscurely by Daniel Bernoulli in his treatment of the hanging cord in 1732~
1733 (published 1740). Like the older assertions of Descartes and Leibniz, it is a
statement about the system as a whole, not about its parts, and it is insufficient to
solve the general problems of dynamics; D’Alembert tacitly invoked other principles
as well, but he got results; moreover, he was the first to derive a partial differential
equation as the statement of a law of motion, the particular case being that of a
heavy hanging cord” [8, p. 113].

Malum nullum est sine aliguo bono. When we for the first time were faced
with these acknowledgements of D’Alembert’s mechanical performances, we flat and
plain could not co-ordinate them with the scientific image his mechanical writings
have shaped in our consciousness. Using vera rerum vocabula, one -cannot set at
naught the fact that — more than half a century after Principia — D’Alembert
dec}ares in everyone’s hearing in his Traité [9):

. J’al, pour ainsi dire, détourné la vie de dessus les causes molrices, pour
n env1sa.ger uniquement que le Mouvement qu’elles produisent; que j’aie entiérement
proscrit les forces inhérentes au Corps en Mouvement, étres obscurs & Méta-
physiques, qui ne sont capables que de répandre les tenebres sur une Science claire
par elle-méme” (p. XVI).

Moreover, as Truesdell ibidem makes out, “while Euler was soon to become
‘the champion of Newton’s approach to mechanics, D’Alembert started a new and
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opposed way of thinking. If the motion is known, he observed, then what we call
forces are merely manifestations which may be calculated from it” (p. 113):

“Pourquoi donc aurions-nous recours a ce Principe dont tout le monde fait
usage aujourd’hui, que la force accélératrice ou retardatrice est proportionelle &
I’Elément de la vitesse; principe appuyé sur cet unique axiéme vague & obscur, que
Peffet est proportionnel & sa cause. Nous n’examinerons point si ce Principe est
de verité nécessaire; nous avouerons seulement que les prouves qu’on en a données
jusqu’ici, ne nous paroissent pas fort convaincantes: nous ne ’adopterons pas non
plus, avec quelques Geométres, comme de verité purement contingente, ce qui ru-
ineroit la certitude de la Méchanique, & la réduiroit & n’étre plus qu’une Science
expérimentale: nous nous contenterons d’observer, que vrai ou doutreux, claire ou
obscure, il est inutile 4 la Méchanique, & que per conséquent il doit en étre banni
[9, p. XI-XII}.

Amicus Socrates, amicus Plato, sed magis amica veritas. In spite of our peerless
veneration to Truesdell’s erudition, independence of thought, and uprightness of
judgements, let us penetrate the roots of matter of the problem of constrained
systems of mass-points, in order to acquire an uninfluenced opinion on D’Alembert’s
dynamical performances. To this end, let us first see how the land lies as regards
some indispensable definitions.

From here further let Ozyz denote an inertial orthonormal right-hand orien-
tated Cartesian system of reference with unit vectors 4, j, k of the axes Oz, Oy,
Oz, respectively, and let all derivatives of vector functlons be taken with respect to
Ozyz.

A mass-point P is said to be free if it may, according to the conditions of the
- particular dynamical problem under consideration, take any position in space and
move with any velocity. If P is free, »r = OP, and

(13) r =2t + yJ + zk,
then » and _ |
(14) v = &i+yj + ik

may accept any conceivable values. |

A mass-point P is said to be non-free, if it is not free. Instead of “non-free”
the adjective constrained is often used. According to both definitions of free and
non free mass-points, P is non-free if some restrictions on the admissible values of -
r or v are imposed by the conditions of the particular dynamical problem under
consideration.

There are two, and two only, mod: opemndz, sanctioned by the age-old me-
chanical tradition, to make a mass-point P constrained, and both are described
immediately below.

The first one consists in the hypothesis that P is compelled, by the very con-
~ ditions of the particular dynamical problem under consideration, to remain on a
given surface

(15) fz,y,2,t) =0
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“given” meaning “completely determined” by the said conditions of the problem. |
At that, it is supposed that the relation v

(16) | gradf# o0

holds provided by definition

of

| _9of. of . of
(17) grad f = 3$z+~é;3+-§;k.

The second one consists in the hypothesis that P is compelled, by the very
conditions of the particular dynamical problem under consideration, to remain on
a given curve line .
| (18) fv(z,y,2,t) =0 | (v=1,2), ‘

“given” meaning “completely determined” by the said conditions of the problem.
At that, it is supposed that the relation

(19) grad fi x grad fo # o

holds provided by definition

(20) gradfyzifi-f-‘%::’j-f-aafk v=1,2).

Both the surface (15) and the line (18) are called geometrical constraints im-
posed on the mass-point. If a geometrical constraint is independent of the time t,
it is called scleronomic; otherwise it is called rheonomic.

According to a dynamical axiom, any geometrical constraint, imposed on a
mass-point P, generates a force R acting on P. It is called the reaction of the
geometrical constraint and, along with other forces acting on P, it predestinates
the mechanical behaviour of P. ;

The meaning of the last statement is as follows. Let F be the resultant of all
active forces acting on P. This means that F is the sum of all forces acting on
P in accordance with the conditions of the particular dynamical problem under
consideration. In other words, F is a vector quantity, wholly determined by the |
said conditions for any position r of P, for any velocity v of P, and for any moment
t. This implies that F' belongs to the data of the dynamical problem concerned,
being a completely determined function o

(21) o F=F(rvt)

~of 7, v and ¢. In such a manner, the term active forces is a synonym of the terms

given, or known, or determined by the conditions of the dynamical problem. On

the contrary, nothing is known about the reactions R of the geometrical constraints

imposed on the mass-point P save that they are acting on P, the meaning of the

last term being specified immeédiately. Therefore, in contrast to the term active

forces, the reactions of the constraints are called also passive forces. |
Acting means that the motion of P is governed by the equation

(22) | %mm=r+n,
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m denoting the mass of P and mv being by definition the momentum of P with
respect to Ozyz. In such a manher, (22) is a mathematically formalized expression
of Newton’s Lez II already quoted above. Now there is much to be said about the
quasi-differential equation (22).

Let us turn back to our constraints (15) and (18). Under certain hypotheses
concerning the analytic nature of the left-hand sides of (15) and (18), let us suppose
that:

1. If (15), then there exist certain functions

(23) z=z(g1,92,t), ¥=y(q1,91), z=2(q1,41)
of certain arguments g1, g2, satisfying (15) identically, i.e.
(24) f(z(q1,92,t), ¥(q1,92,1), 2(q1,92,1), 1) =0

for any values of g; and g2 in their definitional domain. Therefore, no restrictions
are imposed on the “velocities” of ¢; and ¢, i.e. on their derivatives ¢; and ¢2 with
respect to the time ¢,

2. If (18), then there exist certain functions

- (25) “ z=2(qgt), y=ylgt), z=z(g1)
of a certain argument g, satisfying (18) identically, i.e.
(26) ' fo(z(g,t), ¥(g, 1), 2(g,t), 1) =0 (v=1,2)

for any value of ¢ in its definitional domain. Therefore, no restrictions are imposed
on the “velocity” of ¢, i.e. on its derivative ¢ with respect to the time 2. ,
In both cases (15) and (18) there exists a number [ (1 £ 1 £ 2) and ! quantities

27y ga (A=1,...,0),
mutually independent, together with their velocities
(28) ar (p=1,...,1,

such that any position of the mass-point P consistent with the geometrical con-
straints imposed on P is uniquely determined by (27). Under these notations the
number [ is called the amount of the degrees of freedom (or simply degrees of free-
dom) of P, and (27) are called the independent parameters (or simply parameters)
of P; sometimes (27) are called the generalized co-ordinates, and (28) — the gen-
eralized velocities of P. |

Introducing the acceleration w = ¥ = 7 and supposing the mass m of P
invariable in the course of the time ¢, one may write down (22) in the form

(29) - mw=F+R.
The definition of w and (13), (14) imply

(30) | w = &i + §jj + zk.
Let by definition ' :
(31) . F=Fi+Fj+Fk,
(32) R = R,i + Ryj + R:k.
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Now (30)—(32) imply that the equation (29) is equivalent with the system of equa-
- tions
(33) mi=F,+R;, my=F,+R;, mi=F,+R,.

With a view to generality, the efficiency of which will become clear later, let us
work with [ instead of 2 in the case (23) and of 1 in the case (25). In other words,
let us compute the left-hand sides of (33) at an arbitrary I. Then we obviously
obtain

!
(34) ' z Fos B +

2 ' 2$
o B Za N

H o5z ! i
(35) ;é:;gm ?:Zl

provided
(36) &z _ Oz Oz _ &z
0920q,  0qu.0qx’ OqaOt  Btdqn
(A, p=1,..., 0, and two similar expressions for ¥ and Z. Let us lay a spe-

cial emphasis upon the fact that all coefficients of the quantities §x, dagu, g (A,
2

ot
functions of the parameters (27) of the mass-point, since by hypothesis the functions
(23), as well as (25) of (27) are wholly certain.
~ On the other hand, as already underlined, the active forces (21) are entirely
determined functions of r, v, and t. Now, with a view to (13), (14), (23), (25), (34)
(and similar for y and ), one arrives at the conclusion that (21) may be written in
the form
(37) CF=F(q,...,q;q1,---,0:1),
where the right-hand side is a completely determined function of the parameters
(27), of the velocities (28), and possibly of the time ¢. Considering the decomposi-
tion (31), one may now quite lawfully state that the same holds for the projections
Fy, Fy, F; of F on the axes Oz, Oy, Oz, respectively. :
Summing up, we may now state that the mechanical behaviour of the non-free
mass-point ‘P subjected to the geometrical constraint (15) or (18) is governed by
the following system of differential-algebraic relations, qualified above as “quasi-
dlfferenmal equations”:

p=1,..., 1), as well as the free member f in (35) are completely determined

(38) mexmx, Y Yair=Y+R, Y Zipr=Z+R,,
A=l h=1 A=l

where by definition

Oz Oy Oz
39 Xo=5—, YYo=, Z),=-— A=1,...,0D,
(39) T T e T dn ( )
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As it is immediately seen from (39), (40} and (37), (31), the equations (38) of
motion of P involve unknown quantities of two entirely different kinds:

1. Infinttesimal unknowns, that is to say the parameters (27) of P together
with their first and second der;vatwes with respect to the time ¢ (the latters bemg
present linearly).

2. Finitesimal unknowns, that is to say the projections of the reaction R of
the constraint acting on P (the latters also being present linearly).

This circumstance is the reason calling the equations (38) differenticl-algebraic
and gquasi-differential.

The equations (38) represent the most adequate formal-mathematical expres-
sion of the dynamical problem under consideration. Therefore they deserve a special
attention.

As any mathematical problem, the system of equations (38) engenders two
challenges:

1. Existence?

2. Uniqueness? .

It stands to reason, it would be an extravagant luxury to answer the second
question before the first one is answered in the affirmative: it could be compared
to taking down finger-prints of a ghost. And yet, the course of the solutions of
mathematical problems is traditionally topsyturvied. Habitually first and fore-
most, disregarding the existence-problem, a provisional solution is sought by the
problem solver, and only afterwards it is proved, commonly by means of an im-
mediate check-up, that this potential solution is an actual one. At that, as a rule,
the existence-problem is mathematically incomparably harder to solve than the
uniqueness-problem. :

Horribile visu, horribile dictu, horribile auditi — horresco referens: in rational
mechanics, in general, and in rigid dynamics, in particular, the existence problem
does not exist at all. Or, more correctly, it exists like the ozone-hole: everybody
knows and nobody cares. Evidence? — Any treatise on analytical mechanics you
like: the choice is yours. To express this statement in concrete form by indicating
one particular from among countless amount of dynamical textbooks, books of
problems, treatises, monographs, and articles would mean to do unjustice to the
author of the selected work, converting him into a scapegoat for a widespread sin.
And yet, under this reservation, we shall quote a practical example — solely in order
not to be upbraided with groundless idle talk. As regards the pitiable absence
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of mind of ancient and modern mechanicians in connection with the existence-
problem, it is in a full agreement with Seneca’s observation Quae fuerant vitia,
mores sunt.

The scapegoat in question is the Treatise [16] on rigid dynamics, published
comparatively recently. Turning over its pages at random, we arrive at the problems
of motion of a rod in a rotating plane (p. 119), rolling penny (p. 120-122), sleeping
top (p. 152-156), sphere on turntable (p. 207-209), sphere on a rotating inclined
plane (p. 209-211), sphere rolling on a fixed surface (p. 211-213), and so on, and so
forth, etcetera. (As regards examples from other literary sources, nomen illis legio.)
Are in the solutions of all those problems in [16] answers of the existence-question?
Not one jot! Not a whit! By no means! There is even not the least hint for such
a thing. Incredible? — Incredible. Fact? — Fact. If somebody dares contest this
statement, then there is a sole possible answer: Hic Rhodus, hic salta. That is to
say, hic Pars’ Treatise, hic points a finger at an existence proof.

~ Saeculi vitia, non hominis. The cause for this state of affairs in analytical dy-
namics is rooted in its dual nationality: down to the present day it is simultaneously
a citizen both of United Kingdom’s Mathematics and of United States’ Physics. At
least such is the mental disposition of most who work in this domain, in spite of the
danger to fall between two stools. Indeed, mechanics is occupied studing motions,
and motion is something that exists — isn’t it? Then why worrying about such a
nonsense as existence-problem?

Maybe. Maybe not. Do you remember the nursery rhymes:

"“For the want of a nail the shoe was lost,
For the want of a shoe the horse was lost,
For the want of a horse the rider was lost,
For the want of a rider the battle was lost,

For the want of a battle the kingdom was lost —
And all for the want of a horseshoe nail.”

Let us now make an en gros assessment of the situation. Qur dynamical prob-
lem of the mechanical behaviour of the mass-point P, submitted to the geometrical
constraint (15) or (18) and to the action of active forces with resultant (21), con-
sists, first, in determining (if such exist) the parameters (27) of P as functions

(41) a=al) @A=1..,10 |
of the time ¢, P starting from a fixed though wholly arbitrary initial position
- (42) o ‘QAO =qa0) (=1, ...,
| with a fixed though completely arbitrary initial velocity
(43) =400 (A=1,...,0;

and, second, in determining (if such exists) the reaction R of the corresponding
geometrical constraint, that is to say, the projections

(44) : sz Py: P,

of Ron the axes Oz, Oy, Oz of Ozyz, respectively, according to (32). Consequently,
the unknown quantities of the mathematical problem under consideration are 5 in
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number in the case of constraint (15) (since then I = 2) and 4 in number in the case
of constraint (18) (since then ! = 1). Since the number of the equations (38) with
(39), (40) we have at our disposal for the determination of those [+ 3 > 3 unknown
quantities (41), (42) is exactly 3, our dynamical problem is, in the genera.l case at
least, mathematxcally indeterminate.

This conclusion is as two-faced as Ianus. Its favourable face is that one may
hope that the existence-problem might be answered in the affirmative; its un-
favourable face is that the answer might be as arbitrary as to seem mea.nmgless
Both expectations are vindicated by reality.

There is one, and one only, way to make a constrained mass-pomt dynarmcal
problem completely determined mathematically, and it consists in the hypothesis
that the corresponding geometrical constraint is smooth. Physically the concept
of smoothness is reduced to the idea that the corresponding surface or the corre-
sponding curve line is polished like a mirror. The same physical idea suggests that
the constraint generates no friction. Mathematically smoothness means that the
reaction of the constraint is normal to the latter, i.e. |

(45) Rxgradf=0
in the case (15) and
(46) R.grad fi x grad fo = 0

in the case {18).
Indeed, (45) and (16) imply that there exists a scalar 4 with

(47) R=ypgradf.
Now (47), (17), and (32) imply that the equations (38) take the form
r 1
. 8F
; X=X +p5-,
!
o of
(8 | < ZYAQA—Y+F6y:
A= 4
i
- af
Y =Z+p5-
v A=l ' 0z
Similarly, (46) and (19) unply that there exist scala.rs 11 and U2 with
(49) = pigrad fi + pagrad fo.
Now (49) (20), and (32) unply that the equations (38) take the form
2
: 0 8
‘ ZXA§A-X+P1 LR
. Oz oz’
, A=1
' - 0
(50) # ZYAQA=Y+#1—f-1-+#2 L
. A_ / Oy oy’
8f . 8fs
ZZAQ,\-Z-}-}I;, 37 +p 23.2

\ A=1
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In both cases (48) and (50) the number of the unknown quantities equals the nurnber
of the equations available for their determination, namely 3: in the case (15) the
unknowns are g1, 92 and g, and in the case (18) they are ¢, 3 and ps. Q. E. D.

Naturally, in both cases a horseshoe 1s still wa,ntmg the solution of the
existence-problem.

The situation around a single mass-point being, in such a manner, settled on
principle, let us now turn back to D’Alembert’s “Principe général pour trouver le
Mouvement de plusieurs Corps qui agissent les uns sur les autres, d’une maniére
quelconque”. Let us carry ourselves mentally in the age when he wrote his Traité.
Truesdell might be helpful again:

“... a large part of the literature of mechanics for sixty years following the
Principia searches various principles with a view to finding the equations of motion
for the systems Newton had studied and for other systems nowadays thought of as
governed by the ‘Newtonian’ equations” [8, p. 92-93].

Now all mathematicians of many decades after Principia passionately strove
for disclosing the mysteries mystifying the motions of the most enigmatic of all
mechanical systems called rigid bodies. Most of them, D’Alembert in the first
place, chose the most natural, most obvious, and most wrong way: the idea that a
rigid body is an aggregate of mass-points, constrained in such a manner that their
mutual distances remain invariable. The rise and fall of this idea is reflected in the
Traite de Dynamigue and Méchanique Analitigue. But let us not go so far. Let us
first formulate the basic notions of a system of constrained mass-points.

Let X be such a system, 1.e. a set of n mass-points P, with masses m, and
radius-vectors r, = OP, (v = 1, ..., n). Some of the points of ¥ may be free,

‘some may be constrained to remain on certain surfaces, and some may be compelled
to slide on certain curve lines. If one applies to any of these points the arguments
used in the case of a single mass-point adduced above, one sees at once that for any

_of them there exists a number, at least 1 and at most 3, of mutually independent

‘parameters determining its admissible by the corresponding geometrical constraints
positions in space; let (27) be those parameters for all the points of ¥ arranged in
a definite order, say according to the increasing number v of the point P,.

Besides, let ¥, and R, be the resultants respectively of the active forces and
the reaction of the constraint imposed on the v-th point of ¥, and let w, = #,

(v =1, ..., n) be its acceleration with respect to Ozyz. Then, obviously, according
to Newton s Lex II, the motion of P, will be governed by ‘nhe equation
(51) muw,=F,+R,  (v=1,...,n).

The dynamical problem we are faced with in such a manner, concerning the
mechanical behaviour of X, consists in solving the system of equations (51) under
-entirely arbitrary, though fixed, initial conditions (42), (43), i.e. in discovering such
functions (41) and such linear unknown quantities

(52) Ryz, Ry, Ry:  (v=1,...,n)
provided | A
(53) R;,- = Rysé ’+’ Ryyj + szk (1/ = 1; ey n);
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that satisfy (51) identically, taking (42), (43) into account.

Does D’Alembert solve this problem in [9]7 Is he “the first to give a general rule
for obtaining equations of motion of constrained systems” as Truesdell generously
states? Do we find in [9] the system (51) or at least some semblance, some similarity,
some likeness of it?

Certainly not. Nothing of the kind. Never a whit. Traité de Dynamique is as
far from {51) as Stahl from Lavoisier.

Let us lay special emphasis on the fact of extraordinary importance on prin-
ciple that to describe mathematically the mechanical behaviour of the system T
means to determine the dynamical demeanour of any mass-point entering into the
composition of . This means to know the functions

(54) r, = 7,(1) (v=1, ..., n)

if the initial conditions

(55) ryo = 7,(0), v,0 = v,(0) (v=1,...,n)

are prescribed provided v, = 7,, as well as R, for any v = 1, ..‘,‘ n. Now in

D’Alembert’s Traité there is not the slightest trace of a solution of this problem
even in its most elementary case n = 2.

Extending our analysis in connection with the system (51), let us note that,
in contrast to the case of a single mass-point P, when the active force F acting
on P may, according to (21), depend only on the position 7 and the velocity v
of P itself, in the case of a system X of mass-points the active force F, acting
on P, may depend on the positions 7, and the velocities v, of all the points P,
(0 =1, ..., n) of £. In other words, in the general case it is supposed that the
active forces F', are completely determined functions

(56) F,=F,(ry,...,T5; v1,...94; 1)

ofallr,, v, (v =1, ..., n) and possibly of the time ¢. In such a manner, although
the solution of the system (51) requires the determination of (54) provided (55),
and of (52) provided (53) for any particular v = 1, ..., n, the integration of the
~system (51) of quasi-differential equations cannot be accomplished separately for
any particular v, since (51) represents a system of interdependent relations.

We proceed now to one of the greatest mistifications in all the history of rational
mechanics. Chapitre Premier. Ezposition du Principe of Second Partie. Principe
général pour trouver le Mouvement de plusieurs Corps qui agissent les uns sur les
autres d’une maniére quelconque, avec plusieurs applications de ce Principe of [9]
begins with the following declaration:

“Les Corps n’agissent les uns sur les autres que de trol maniéres différentes qui
nous soient connus: ou par impulsion immédiate, comme dans le choc ordinaire, ou
par le moyen de quelque Corps interposé entr’eux, & auquel ils sont attachés, ou
enfin, par une vertu d’attraction réciproque, comme sont dans le systéme Newtonien
le Soleil & les Planetes. Les effets de cette derniére espece d’action ayant été
suffisamment examinés, je me bornerat a traiter icit du Mouvement des Corps qui
se choquent d’une maniére quelconque, ou de ceux qui se tirent par des fils ou des
verges inflexibles. Je m’arréterai d’autant plus volontiers sur ce sujet, que les plus
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grands Géométres ne nous ont donné jusqu’a présent qu’un trés petit nombre de

Problémes de ce genre, & que j’espere, par la Méthode générale qui je vais donner,

- mettre tous ceux qui sont au fait du calcul & des Principes de la Mécanique, en.
état de résoudre les plus difficiles Problémes de cette espece” (p. 49-50). |

A Définition follows:

“J’appelerai dans la suite Mouvement d’un Corps, la mtesse de ce méme Corps
considerée en ayant égard a sa direction, & par gquantité de Mouvement, j’entendrai
a P’ordinaire le produit de la masse par la vitesse” (p. 50)

The formulation of Probléme general reads:

“Sot donné un systéme de Corps disposés les uns par mpport auz autres d’une
maniére quelconque; et supposons qu’on imprime & chacun de ces Corps un Mouve-
ment particulier, qu’il ne puisse suivre & cause de laction des autres Corps, trouver
le Mouvement que chaque Corps doit prendre” (ibid.). :

Before proceeding to D’Alembert’s “Solution” let us fix our eyes on the for-
mulation of Probléme general. First of all, it sticks out a mile that D’Alembert’s
Corps are, as it is, purely and simply mass-points and no bodies at all: the for-
mulation of Probléme general attaches Mouvement to chaque Corps, that is to say
vitesse according to D’Alembert’s “Définition”, and velocity is a mechanical entity
that becomes wholly meaningless when attached to rigid bodies — it is meaningful
only when localized to points. The second circumstance that cannot slip anybody’s
attention is that D’Alembert’s Probléme general is, when all is said and done, a
purely kinematical proposition with not an atom of dynamics. Now one is at g
loss how could D’Alembert, on the basis of a purely kinematical Principe general,
redeem his promise made with such an aplomb in the title of the Seconde Partie
of the work, namely to “trouver le Mouvemens de plusieurs Corps qui agissent les
uns sur les autres d’une maniére quelconque”? Be that as it may, let us proceed,
after these remarks, to D’Alembert’s Solution: :

~ “Soient A, B, C, & c. les Corps qui composent le systéme, & supposons qu’on
leur ait imprimé les Mouvemens a, b, ¢, & c. qu’ils soient forces, a cause de leurs
action mutuelle, de changer dans les Mouvemens a, b, ¢, & c. Il est clair qu’un peut
regarder le Mouvement @ imprimé au Corps A comme composé du Mouvement a
qu’il a pris, & d’un autre Mouvement «; qu’on peut de méme regarder les Mouve-
mens b, ¢, & c. comme composés des Mouvemens b, 3; ¢, x; & c. d’ou il s’ensuit que.
le Mouvement des Corps A, B, C, & c. entr’eux auroit été le méme, si au lieu de
leur donner les impulsions a, b, ¢, on leur éut donné 4 la fois les doubles impulsions
a, a; b, §; ¢, », etc. Or par la supposition, les Corps A, B, C, & c. ont pris d’eux-
mémes les Mouvemens a, b, ¢; etc. Donc les Mouvemens a, 3, x & c. doivent étre
‘tels qu’ils ne dérangent rien dans les Mouvemens a, b, ¢, etc. c’est-a-dire, que si les
Corps n’avoient requ que les Mouvemens o, 3, » & c. ces Mouvemens auroient di
se détruire mutuellement, & le systéme demeurer en repos.

Dela résulte le Principe suivant, pour trouver le Mouvement de plusxeurs Corps
qui agissent les unes sur les autres. Décomposés les Mouvemens a, b, c & c. imprimés
a chaque Corps, chacun en deux autres a, a; b, f; ¢, »; & c. qui sotent tels, que
si l'on n’eidt imprimé auz Corps que les Mouvemens a, b, ¢, & c. ils eussent pd
conserver ces Mouvemens sans se nuire réciproqguement; et que st on ne leur edt

94



imprimé que les Mouvemens a, 3, x, & c. le systéme fut demeuré en repos; il est
clair que a, b, ¢ seront les Mouvemens que ces Corps prendront en vertu de leur
action. Ce Q. F. Trouver” (ibid., p. 50-51).

This “Solution” of D’Alembert’s provides the occasion for quite a lot of com-
mentaries, all of them curious, instructive, and beneficial. We shall, however, spare

them for the time being, postponing a detailed discussion of the preceding text for

immediate future. For the time being we shall restrict our attention on'the sequels
this Principe général of D’Alembert has had in the subsequent development of rigid
dynamics. ‘ ,

Disregarding the Eigenwerte D’Alembert himself placed on his principle in
the Préface of [9] and in its application to various problems of mechanics in this
very work, let us first note that some decades later the same principle has been
rediscovered and brought back to life by Lagrange, D’Alembert’s true spiritual
son. Meanwhile, let us read the commentary of the Russian translator of [9], made
immediately after the prmc:ple is announced in the book:

“B nacrosmeMm n° HanambepoM ¢opMyIMpyeTcA TO HpaBMIIO, Komopoe
HEIHe Ha3EkBaeTcA ,npuHimnoM Ilanambepa“. Kak Buaxo, eToT , mpusHIpm “
BRIMJIAAAT y €ro aBTOPa COBCEM He TaK, KaK OH M3/araeTcA HulHe B y4ebum-
kax. ®opma, 6nM3KaA K coBpeMeHHO#M, npuaada Ouna npummmy Jlanrambepa
JlarpamxeM B ero , AHaJIATAYECKOH MeXaHMKe “. \

Janambep Jan U3N0KEHAE CBOEro , IpUMHIMNA® U B ,, DHIMKIOIEMM “,
c'rambe ,Dynamique“ ([Innamuxa). [IpuBenem 3neck 310 U3oxKeHNE 6yx1~3a:m~
HO [24 c. 333-334].

The author of this quite equitable finding takes into consideration several some-
things, the first of which is the singing praise to the skies of D’Alembert’s Principe
général in Section Premiére. Sur les différents principes de la dynamigque of Sec-
ond Partie, La Dynamigue of [10] by Lagrange, who has been 7 years old when
D’Alembert published his Principe and, as regards the penetrating into the roots
“of matter, did not fledge much since. |

For the time being at least we shall wind up our exposition by a mathematical
coup de grice, in arenam cum aequalibus descends. : :

Let us rewrite (51) in the form

(57) mywp-‘Fy““Ry::O (Vzl,..;, n),

and let regard the formal expressions

or ,
(58) . AA — Z(mywy Fy .Rp) z (A = 1, sy I)
and
(59) SA=_ Arbaa,
A A=1 ‘
ogx denoting arbitrary infinitesimal variations of g (A=1,...,1), resﬁectively, not

necessarily co-ordinated witl;_the dynamical equations (51), the r, (v =1 ey n)
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in (58) being subordinated to the geometrical constraints imposed cn the system
Y of mass-points. The following computations are traditional. The identities

(60) vymzam ' 67';, (v=1,...,n)
imply
v, Or,
1 = A=1, ..., Lv=1,...
(6 ) 6q‘)" 6Q'A ( ¥ 3 ¥ 4 b 3 n)
and
(62) Z Oy 2
3‘1#5@\ a%at
(=1, .., Lv=1,..., n) Now (62) and
(©3) d ory _n Ory o O

+
dt 8qy £t Oardqy DT Bidq,

(p=1,...,v=1,...,n) imply
d Or, Ov,

(64:) c—{gaq“-g“;’: (ﬂ=1,,I,U=I,‘.,ﬂ)
provided

(65) &r,  Or, v, _ O%r,
' 64)\6?;; B 59;:8‘1A ’ Otdq, 3‘1;:&
(Ap=1,...,,v=1,..., n). If by definition

- or or

66 {a) _ F, —~, () _ R, Y

(‘ ) Q)\ ; an Q Zl an
(A=1,..., 1) and

(67 O T= Y mal

r=1
then (58), (61) (64), (66), (67) imply
(68) A‘xzi_(?.z_.a__j_’_ ga) gp) (/\:1,...,!).

If the constraints imposed on the system X of mass-points are smooth, then the
- second definition (66) implies

(69) . QP =0 (=1,..,1
and (68), (69), (58) imply B
= d 8T 8T _(a)
7 v v i rly- -yt
(70) ;(m wem Fy = By )3% dt 9gx  Oga 9
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(A=1,..., 1), whence it is immediately seen that Newton’s Lez IT (57) applied on
Y, automatically leads to Lagrange’s dynamical equations

(71) i."’l"._.ﬁ‘..‘Z_an>-_.o A=1,...,0.

As a matter of fact, the fundamental ideniities of Lagrangean formalism (70) at
once display that the left-hand sides of Lagrange’s dynamical equations (71) are,
purely and simply, linear combinations of the projections of the left-hand sides of
Newton’s Lez II (57) on axes, defined by the directions

Or,
- 0qx

co-ordinated with the geometrical constraints impgsed on X.
If by definition ,

(72) (A=1,...,L,v=1 ..., n)

H

(73) b, = }é ‘;Z S¢x (v=1,...,n),
then (58), (59) imply
(74) §A = }E(mmu ~F, - R,),
=1 .
and the relation 64 = 0, i.e. ”
(75) Zn:(mywy - F, - Ry)ér, =0,
v=1 :

is usally accepted in the traditional dynamical literature as a modern mathemat-
ical expression of D’Alembert’s original Principe général. For the time being at
least we shall refrain from commentaries as to the degree of adequacy of such an
interpretation, in accordance with Davus sum, non QOedipus of Terentius.

As far as our experience goes, the composing of the true history of the theory
of mechanical constraints is as yet postponed ad Calendas Graecas. As already
emphasized and as maybe it becomes transparent from our exposition, this is a
back-breaking task. Neither shall we dare penetrate imprudently the vast white
fields of this terra incognita. One thing is certain: before one sets one’s foot in its
Arcadia, one must cross the rocky mountains of Lagrangean formalism.
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