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LEAST FIXED POINTS IN MONOIDAL CATEGORIES
WITH CARTESIAN STRUCTURE ON OBJECTS

JORDAN ZASHEV

Hopdan 3auwes. HAUMEHBIIINE HEMNOJABUKHBIE TOUKN B MOHOUIAJIBHBIX
KATETOPUAX C IEKAPTOBOM CTPYKTYPE HA OB'BEKTAX

B pabore npeanomxeno oBobileHre TEOPUU PEKYPCHMM B MTEDATHBHHEIX ONEPATUBHHX
npocTpaicTBax VMBanosa. O6061menne cocTOMT B 3aMeHBbl WACTHUHOrO NOPANKA Ha CTpesn-
Kax B Kareropusx. Jina eToit nenu sseneno nosatue DM-kareropun. Cuoucan npumep DM-
KaTEeropUM, B KOTODOM TPETHPYIQTCH HEKOTODHE MACAIMN30BARHBIE HENETEPMUHUCTHUECKHAE
RPOrPaMMH C IOKA3ATETLCTBAMYM KOPPEKTHOCTH #X paboT. Pa3BuTa TeOpua HENOABHIKHEIX
TOYeK onpeleNMMHEX PynkTopoB B DM-gaTeropmax, koTopas COAEPMMT KaTeFODHHX AHa~
KOroB BCEX OCHOBHBIX Pe3y/nbTaToB abcTpakTHOM TeopHMM PexyPCHMM B MTEDATUBHBIX OIe-
PATHMBELIX HPOCTPAHCTBaX.

Jordan Zashev. LEAST FIXED POINTS IN MONOIDAL CATEGORIES WITH CARTESIAN
STRUCTURE ON OBJECTS

The paper contains a generalization of the recursion theory in iterative operative spaces.
The generalization consists in replacing the partial order in an operative space with arrows in a
category. For that purpose the notion of a DM-category is introduced. An example of a DM-
category is described which deals with some kind of idealized nondeterministic programs together
with proofs of the correctness of their work. A theory of fixed points of definable functors in DM-
categories is developed which contains categorial analogues of all principal results of the abstract
recursion theory in iterative operative spaces.

We present a generalization of the recursion theory in iterative operative spaces'
in the sense of Ivanov [1]. The generalization consists in replacing the partial order
in operative spaces by arrows in a suitable category. The structures obtained in
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this way are called DM-categories. The method we use is based on an unpublished
proof of the first recursion theorem in iterative operative spaces and is essentially
a proper generalization of the usual method of coding in the ordmary recursmn
theory

1. DEFINITIONS

1.1, DM-CATEGORIES

A DM-category will be a category F with two bifunctors M : F? - F and
D : 52 — 7, three objects I, L, R, and six natural isomorphisms a, A, p, I, r,
i, satisfying (DM1)-(DM8) below. We shall call M “multiplication” and we shall
Write zy for M(z, y), where = and y are objects or arrows in F. Similarly, we shall
call D “cartesian functor”, and we shall write (z,y) for D(z,y). Composition of
arrows f, g in F will be denoted by fog. Conditions defining a DM-category are
the foﬂowmg ones:
(DM1) a is an isomorphism a(yp, w, x) : (p¥)x = o(¥x), natural in , ¥, x;
(DM2) A is an isomorphism A(yp) : Iy = @, natural in ; .
(DM3) p is an isomorphism p(p) : ¢I = ¢, natural in ¢;
(DM4)  is an isomorphism I(p, ¥} : (¢, ¥)L = ¢, natural in ¢, ¥;
(DMS5) » is an isomorphism 7(p, ¥) : (¢, ¥)R = ¥, natural in @, ¥;
(DMS) i is an isomorphism i(p, ¥, ) : (¥, X) = (), ¢x), natural in p, ¥, x;
(DM7) a(p, ¥, x9) 0 a(pd, x,9) = (1pa(¥, X, 9)) o alp, ¥x, 9) o (a(p, ¥, x)19);
(DM8) i(py, x, 9) o alp, b, (0, )

C=(@lp, ¥, x), a@lp, ¥, 9)) o i, ¥x, ) o (1,3(¥, x, 9)),

where ¢, ¥, x, ¥ range over objects of F and @ is a~

Note that condition (DMT7) is something less then the usual coherence axioms
for monoidal categories (cf. [2] ch. VII). It is rather unexpected that full coherence
properties of the functors M and ID are not necessary for the main Theorem 2.1
below. But since (DM7) seems to be the most essential among the coherence axioms
for monoidal categories, we preferred to keep the term “monoidal category” in the
title of the paper.

For posets F the notion of DM-category coincides with that of operative space
[1]. A properly categorial example of a DM-category is described below in 1.3.

1.2. SOME NOTATIONAL CONVENTIONS

By F we shall denote usually a DM-category; ¢, ¥, x, &, n etc. will be objects,
and f, g, h, z, y etc. — arrows in F. In expressions involving arrows we shall
usually write ¢ for 1, so if f : ¢ — 9, then fo = f = ¥ f, and since M is a functor
we have ,

ny (¢'9) o (F¥) = fg = (F¢') o (wg)

for all f € F(p,¢’) and g € F(¢,¢'). We shall often omit brackets in expressions
like (1), so in this sense the multiplication is treated as “faster” then the composition
- “0”. An expression, constructed by means of D, M and objects of F, defines
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a functor for both objects and arrows uniformly, the object constants ¢ being
interpreted as 1,, s> in the sequel we shall write such definitions for objects only.
We shall write @, A, 5, I, 7, 1 for a~1, A7, p=1, 17} #=1 71 respectively and
we shall usually omit expressions in brackets after a, A etc., ;0 th= conditions
(DM1)-(DMS8) can be written shortly as follows:

(2) ao(fg)h = f(gh) o a;

(3) AOIf:fOA;

(4) pofI = fop;

(B)lo{f,g)L = fol,

(6) ro{f,g)R=gor;

(7) i 0 flg,h) = (fg, fh) o13;

(8) aca = pa o ao ad;

(9) toa@= (@, @) otopi;

where f € F(p,¢'), g € F(¥,¢'), h € F(x,x'). Define

\ (Xo,...» Xn-1) = (Xo, (X, .. .(X,,_;,Xn-i) )

~ where Xo,...,X,~1 are objects in F or arrows as well, and for n = 0 let (Xo,..., -
Xn-1) = I (respectively (Xg,..., Xn—1) =17),and for n = 1 let (Xp,..., Xp-1) =
Xo. '

1.3. EXAMPLE

Define types inductively as follows

1) 0 is a type;

2) If a and b are types, then a — ¢ and a x b are types;

3) If ap, a4, ..., is an infinite sequence of types, then ag x a; x as . .. (or shortly
IT:i.a:) is a type. o

Let M be a set with two disjoint subsets My and M; and three mappings
do,dv,d M — M, s.t. di(z) € M; and d(di(z)) = z forallz € M and i < 2.
Denote by IF, the set of all hereditary partial functionals of type a over M, i.e.
define F, by induction on a as follows: Fo is M; Fs_p — the set of all partlal
' functions from F, $o F; Faxs is Fq X Fp; ]Fn i.a; — the product HOIFa

= :

Let F be the set of all relations ¢ C F, x M X M for all types a; ¢ € F will
be called to be of type a iff p CF, x M x M. An arrow from ¢ € F of type a to
¥ € F of type b will be called a functional f € Fo(0—(0—b))), 8-t. fuzy is defined
iff p(u, z,y) (we are writing fuzy for f(u)(z)(y) etc.), and

Vu,z, y(p(u, z,y) = ¥(fuzy,z,y)).

Composition g o f of arrows f from ¢ to ¥ and g from ¢ tg x is defined by
(9 o fluzy = g(fuzy)zy, and for every p € F let 1,uzy = u if p{u,z,y) and let
1,uzy be not defined otherwise. Then F is a category w.r.t. the sets of objects and
arrows as described, and define functors M and D as follows:

(ph)(w, 2,y) = 32,u,v(w = (2, (u, v)) &p(u, 2, Y& (v, 2, 2)),
so the type of 1y is 0 x (a x b) if a and b are the types of ¢ and ¢ respectwely,

C (fa)lz, (w,v))zy = (2, (fuzy, gvzz)),
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where f € F(p,¢'), g € F(1,%') and (py)({z, {u,v)),2,) and (fg)(z, (u,v))=Y 18

undefined otherwise;

(p, ¥)(w, z,y) = Fu,v(w = (u,v)&((z € Mokv = o
Lp(u,d(z), y)) V (z € Mi&u = 0a&yp(v, d(z),9)))),

where ¢ and 9 are objects of types a and b respectively, o, € F. is any fixed
functional for each type c; the type of {p,¢) is a x b

_ [ (fud(z)y,05) ifz €M &v = op&p(u, d(z),y)
o g)(u,v)zy N { (04,9vd(z)y) ifze€ M{l}&u = o!;&tﬁ(v d(z), 3;)

and (f, g)(u, v)zy is undefined otherwise. Let I be the object of type 0 defined by
I(u,z,y) & u=oodz =y, and let L(u,z,y) & I(u,do(z),y) and R(u,z,y) <
I(u, dl(m)) y). Then it is straightforward to see that F is a DM-category w.r.t. M,
D, I, L, R and properly defined a, A, p, I, r, 3.

Informally, this example arises at an attempt to give a more detailed description
of some examples of operative spaces, the elements of which represent some idealized
programs working on inputs from M and giving for each input a set of outputs
from M, by taking account for the correctness of the work of the program. In the
notations above, while the input—output relation for such a program ¢ is represented
by Jup(u, z,y), the relation p(u, z, y) is to be conceived as “u is a proof that given
the input = to ¢,y will be given as an output”. '

1.4. LEAST FIXED POINTS -

Let € be a category and let ' : € — € be an endofunctor. By (F = €) we shall
denote the category of pairs (X;2) s.t. X € € and z € C(F(X), X); morphisms
f:(X;z)— (Y;y) in (F = C) are the arrows f : X — Y in Cs.t. foz = yo F(f).
Then a least fized point or a “minimal fixed point” (m.[.p.) of F is by definition
an initial object (M;m) of (F = €). Some elementary properties of m.f.p. will be
used below without special reference. They partially appear in Lambek {3], let us
list them: |

(1) Suppose an endofunctor F' = F(A) in € depends on a parameter A € C, 1.e.
F is a functor from €* to €, and (M(A);m(A)) is a m.f.p. of F(A) for all A € C.
Then M is a functor from € to €, where M(a) fora: A — B is determined uniquely
by

M(a)om(4) = m(B) o F(a, M(a)),

since (M(B); m(B) o F(a, M(B))) € (F(A) = €). The same holds for several
parameters instead one.

(i) If (M;m) and (N;n) are two m.f£.p. of F : @ — €, then there is an isomor-
phism (M;m) = (N;n), natural in parameters.

(iii) If (M(A); m(A)) is a m.f.p. of an endofunctor F(A) in € depending on a
parameter A, then m(A) : F(A, M(A)) = M(A) is an isomorphism natural in A,
and mmﬂarly for several parameters.
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1.5. ITERATIVELY CLOSED DM-CATEGORIES

Let F be a DM-category, and consider the power category FV . where N is the
set of all natural numbers. A normal functor will be called a functor H : F — FV
of the form H(§) = Ai.p(€v;), where v; € Fp for all i € N and Fy is the set of all
objects of F, produced from {L, R} by means of multiplicationi. Then the category’
F will be called an tteratively closed DM-category, iff:

(it1) every normal functor H : ¥ — ¥V has right adjoint; and
\ (ic2) every functor I' : F — F of the form I'(§) = (I,£)p has a m.f.p. (I{y);7,,)

in F. , ' :
Condition (icl) will be used below in the following form:

(ic3) for all ¢ € F and all sequences of objects ¥; € F and v; € Fy (i € N)
there is £ € F and a sequence of arrows z; : p(£1;) — i, which is universal in the
sense that for every 5 € F and all sequences of arrows y; : p(nr;) — ¥; there is
unique arrow h:np — £ in Fs.t. y; = z; 0p(hy;) foralli € N. :

Note that condition (ic1) follows easily from next two ones:

(ic4) all functors M,, ML and M® of the form M, (€) = &, ML(€) = €L and
ME(£) = €R have right adjoints;

(ich) all products [] ¢; exist in F.

‘ ‘ iEN

The category F from 1.3 is an iteratively closed DM-category. Conditions (ic4)
and (ic5) can be shown to hold for this category in more or less a straightforward
way. A m.f.p. in it for a functor I' of the form of (ic2) can be constructed directly
by a proper generalization of the usual method of constructing of iteration, as, for

instance, in [4].

1.6. TERMS AND VALUES

Let cg,...,c;—1 be a list of symbols called parameter symbols, and let we have
an infinite list of variables denoted usually by x, y, 2z etc. The symbols I, L, R
will be called basic constants, and parameter symbols and basic constants together
will be called constants. Define terms inductively as follows:

a) all constants and variables are terms; they are called simple terms;

b) if t and s are terms, then (¢s) and (¢, s) are terms.

If X is a set of variables, then by Term(X) we shall denote the set of all terms
whose variables belong to X, and Term will be the set of all terms.

Let F be a DM-category and suppose we have an interpretation assigning to
each parameter symbol ¢; an object (called a parameter) v; € F. This interpretation
will be fixed throughout the paper. Let T = x¢,...,2,-1 be a list of distinct
variables. Then each term t € Term{{Z}) defines a functor [AZ.f] : F* — F called
value of ¢t in an obvious way, namely: :

1) if ¢ is a variable z;, i < n, then [AZ.t](€) = &;

2) if t is a parameter symbol ¢;, i < I, then [AZ.t}(€) = ;-

3)iftis I, L or R then [\Z.£](€) is I, L or R, respectively;

4) if t = (sr), then [AZ.t)(€) = [AZ.5](€)[Az.7](€);

5) if t = (s, ), then [AZ.{](€) = ([AZ.s](£), [XZ.r](€)),
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where £ is an arbitrary object of 37, and the definition of the functor [MZ.t] for
arrows is the same when replacing &, vi, I, L, R with 1¢,, 1,,, 15, 1, 1R, respec-
tively. ' '

Sometimes we shall write tof; ...2, for (... (tot1) .. .ta—1)tn, where tg,..-,tn
are terms.

1.7. REDUCTIONS AND B-NORMAL TERMS

A formal expression of one of the forms

(a) t(or) — (t5)r

(i) t{s,r) — {ts,tr),
where ¢, 5, r are terms, will be called a basic contraction. As usual the notion
of basic contraction gives rise to a reduction notion: we shall write t — s for
“s is obtained by replacing an occurrence in ¢ on the left hand side of a basic
contraction with the corresponding occurrence on the right hand side of the same
basic contraction” and the symbol “«" for the reflexive transitive closure of the
relation “-”. A term t will be called b-normal (or simply normal), if { « s is
impossible for any s; s will be called b-normal form of ¢ iff ¢ = 5 and s is normal.
Lemma 1. For every term t there is unique b-normal form t of t. ‘
Indeed, let Ih(t) be the length of the term ¢, and let lh ’(t) be the numbe
Ih(so) +--- + Ih(8s—1), where t = (...(p50)-..8n_2)5n—1 and p is a term which
is not of the form pop; for some terms po and p;. Define u(t) = Ih(t)w + th '(2).
Then using induction on the ordinal u#(f) we may see that the following equalities
define uniquely a total operation on terms denoted by t* for a term £
(1) t* =, if t is a simple term;
(2) t* = pbs, if t = ps and s is simple;
(3) t* = ((ps)r)?, if t = p(sr);
(4) t* = {(pa)}, (or)"), if £ = pla,7);
(5) t* = (83, 83), if £ = (o, t1). -
Again, we have for all terms ¢ and s:
(6) t* is b-normal;
(7) t v 25 :
(8) if t — s, then t® = &;
which can be seen straightforwardly by induction on u(t). = ;
Now we shall define for every term ¢ € Term({zo, ..., Zs-1}) an isomorphis

(9) B:(€) : Pz.4)(€) = Az.£)(2),
natural in £, where £ = (§,...,6n-1) and T=(2o,...,Zn-1).

Writing for short b(t) for b,(£) and t* for [AZ.t](£) for any ¢ € Term({zo, ..., Zn-1}),
define b;(£) as follows: |

(b1) b(t) = ¢* if t is normal;

(b2) b(ts) = b(t)s* if s is simple and ¢-is not normal;

(b3) b(ts) = b(tp)g* 0@ if s = pq is normal;

(b4) bts) = (b(tse), b(ts1)) o, if 8 = (s0,5,) is normal;

(b5) b(ts) = b(ts®) o t*b(s) if & is not normal;

or
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(b6) b((to,t1)) = (b(to), b(t1)) if (to,%1) is not normal.
Note that (b2), (bS) and (b6) hold for any terms t, tg, ¢;. In (b3) and (b4) @ is
a(t*,p*,q") and % is #(t*, 57, 57).

Lemma 2. For all termst, r and every normal s we have:

(10) | b(ts) = b(t’s) o b(t)s",
and
(11) ' b(t(rs)) = b((tr)s) o @.

Proof. Inductlon on s for both (10) and (11). If s is simple, then
b(tbs) o b(t)s* = (t°)"s* o b(t)s* = b(ts).

If s = pq, then g is simple since s is normal, and by (b3), 1.2.(2) and the mductlon
hypothesis for p we get:

b(ts) o b(t)s* = b(t*p)g" 0 @o b(t)(p*a") = b(f'P)q" o b(t)p*¢" 0T
” = b{tp)g* 0@ = bts).
If s = (s0,51) then similarly
b(t*s) o b(t)s™ = (b{t’so), b(t’s1)) 0 i 0 b(¢)(s5, 1)
= (B(t"s0) o b(t)sh, b(z®s1) o b(t)s}) o'
= (b(tso), b{ts1)) o i = b(ts). S

. This proves (10). If rs is normal, then (11) is received immediately from (b2) and
(b3). Suppose rs is not normal. Then by (b5) we have

(12) o b(i(rs)) = b{t(rs)®) o t*b(rs).
Consider cases for s. If s is simple, then )
b(t(rs)) = b(t(rs)®) o t*(b(r)s*) = b(t(r's)) o t*(b(r)s*)
= b(tr!)s* o @ot* (b{r)s*) = b(tr’)s" o (t*b(r))s* 0@ = b(tr)s* 0@
= b((tr)s) o @.

If s = pq, then g is simple and using (12), the mductlon hypothesis for p, and
1.2.(8), we have:

b(t(rs)) = b{t((rp)'q)) o t"(b(rp)g*) o "G
= B(t(rp) )" 0 Tot" (b)) 0 T = KK(rp))a" o (Eb(rp))g” 0 Tot'a
= b(t(rp))q" 0@ o t*@ = b((tr)p)g* o @g* 0o @o t*d = b((tr}p)q cGoa
= b((tr)s)oa. -

Finally, if § = (sg,s1), then sy and s; are normal, and using (12), the induction
hypothesis for sy and s;, and 1.2.(9), we have:

b(t(rs)) = b(t{(rso)?, (rs1)?)) o t*(b(rso), b(rsy)) o t*s
= (b(t(rso)), b(t(rs1)®)) 0 i 0 t* (b(rsp), b(rs1)) o t*s
= (b(t(rse)), b(t(rs1))) ot ot i = (b((tr)sp) o @, b((tr)s1) o @) ot o ™4
= (b((tr)so), b((tr)s1)) o (@, @) o ot™i = (b((tr)so), b((tr)s;))oioa = b((tr)s)oa. =
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" 1.8. TERM SYSTEMS AND CODINGS

A term system in JF is a pair (3;T), where T = z¢,...,2,_; is a list of variables
and § = 8g,...;50-1 Is a list of terms s; from Term({Z}). Each term system
S = (3;5:’) defines a functor S : F* — F" by S(€) = (So(§), ey Sn-1(£)), where
S;'= [AZ.5;] for all i < n, and € is an arbitrary object or arrow in ¥ as well. A
term system S = (5;%) will be called normal iff all terms sq,...,s,_; are normal.

Let Term2(X) be the set of all sequences ¢y, ..., tn-1 of terms ¢; € Term(X)
with length n £ 2. For every term system S = (5;Z) we shall define a mapping
S# : Term({z}) — Term2({Z}) (called S-reduction function) as follows:

(#1) if t is a constant, then S#(t) is the empty sequence Aj

(#2) if t = pe, t is normal and c is a constant, thén S#(t) is (the one membered
sequence) p;

(#3) if t = (to,t1) and ¢ is normal, then S#(t) is to, t1;

(#4) if t = z;, then S#(t) is s;, i < n;

(#5) if t = px; and ¢ is normal, then S#(t) is (ps;)’.

A set T C Term({Z}) will be called closed w.r.t. S¥ iff forany t € T all members
of S#(t) belong to 7". If f is a mapping f : Term({Z}) — Term({Z}), then we
shall write f(S#(t)) for the term (f(to),- .., f(tn—1)), where S#(t) is to,...,tn-1.

Definition. A coding for a term system S in F (w.r.t. a given interpretation
of the parameters) is a quadruple {K, k,k, p), s.t..: K C Term({Z}), K is closed
wr.t. S# and r; € K for all i < n; k : K — Fg is a mapping (Jp is defined in 1.5);
p € F; k is a mapping assigning to each ¢t € K an isomorphism in ¥, namely:

(9 k(t) : pk(t) = Fi(k(S* (1)),

where F} is an endofunctor in F defined for each term ¢t as follows:

(F1) Fy(€) = Ly, if t is a constant with value 7;

(F2) Fi(¢) = R(&y), if t = pe, where c is a constant with value v and ¢ is normal;
(F3) Fy(€) = R£ in all other cases. |

f

. 9. RECURSION THEORY IN DM-CATEGORIES

2.1. Theorem. Let F be an iieratively closed DM-category and S = (5;%)
be a normal terny system in F, where T = (2o, ...,Zn—1). Suppose (K, k k,p) is
a coding for S in F and (w;m) is a m.fp. of the endofunctor U3 deﬁned by
U(€) = (I1,€)p. Then there is an arrow W in F* s.t. (wk(zo),...,wk(zn_1); W) is
a m.f.p. of S in F".

This is the main result of the paper and a detailed sketch of a proof of Theorem
2.1 will be given in section 3 below. In the present section we shall see how it can
be used to extend principal results of recursion theory in iterative operative spaces
in the sense of Ivanov [1] for DM-categories. Up to the end of the section we shall
suppose that F is an iteratively closed DM-category.
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2.2. REPRESENTATION OF NATURAL NUMBERS AND TRANSLA’I‘ION FUNCTORS

Define for every natural number n an object nt € F inductively as follows:
0% = L; (n+1)* = Rnt . Then by (DM4) and (DM5) we have

(a0, -+ 0n-1)iT =2 a; forall i<n,

where oy, ..., n_1 are objects or arrows in F. :
Definition. A functor T: F — JF is called a translation (this term is adopted
by Ivanov [1]) iff for every object ¢ € F and for each natural n

T(p)n* Zntep

and the last isomorphism is natural in ®.

Example. If for all functors ¥(€) of the form ¥(¢) = (Ltp, RE) there is
m.f.p. (T{p); t(p)) in F, then T is a translation in F. Indeed, by 1.4.(iii) we have a
natural isomorphism (ch; RT(p)) = T(p), whence by induction on n we see that
T(p)n* = nte.

Every translation T gives rise to a bifunctor 7"(p,¥) = [T(¥)]T(¢) (cf. Ivanov
[1]), called a primitive recursion (or better a T-primitive recursion). Objects p € F,
produced from constants L, R, I (respectively L, R, I, 70, ..., 71-1) by means of
the functors 77, M and ID are called T—pnmltlve recursive (respectwely T-primitive
recursive in {7o,...,7-1})-

Proposition 1. If T is a translation in F, then for every primitive recursive
function f there is a T-primitive recursive ¢ € F, s.1. pnt = (f(n))*‘ for all
natural n. :

This proposition is a corollary to corresponding results in [1] or [5]. =

2.3. FINITE CODINGS

Theorem 2.1 reduces the problem of expressing m.f.p. to that of constructing
a suitable coding. The last construction is easy when the domain K of the coding
can by chosen finite. Let us COI}SIdeI' this case first, it will give us a description of
m£.p. functors, produced by mean$ of the functors M, D and the iteration functor
I defined in 1.5.(ic2).

Definition. A coding (K, k, k, p) for a system of terms S = (5; %) is finite, iff
K is a finite set. A system (5; :c) is called finitary, iff there is a finite coding for it.
An object a € F is called finitely recursive (in {7y, ...,7-1}), iff there is a finitary
system (5,Z) = (s0,...,54-1;Z) and a m.f.p. (€;%) = (¢, .. .;F) of the functor 5,
s.t. fg = a. ‘

Remark. It is clear by the definition of coding in 1.8 that a system

(3;%) = (50,801 20y -+, En—1)

is finitary iff the set K of terms, produced in an obvious sense from {zg, ..., 2,1}
by means of the mapping S#, is finite. Indeed, if that is the case and K =
{to,...,tm}, where n < m and t; = z; for all i < n, then define k(t;) = it
for all ' < m and ‘

1y p={Poys---sPm)
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where:

[ Ly fti=c

R(jt7y) if t; = tjc

pi = ¢ R(j*',k"') if t; = (t;,8)

Rjt ifi<nands =¢

Rj* if ¢; = pzi and t; = (psi)® for some k < n,

\

for all i £ m. Then (K, k,k, p) is a coding for a suitable k. So by Theorem 2.1 we
have ' .

Corollary 1. Ifp € F is finilely recursive in {7e,--,71-1} then thereisp € F
s.t. ¢ = ¥(p)L, and p is of the form

(2) P = (I:ngﬂﬁ)”'sn?“—_lﬂl’ml)a;

where ng,...,np_, are natural numbers, B; € {yo0,...,M-1} for alli <V, and a
’bel‘ongs to the sel, produced from Fy by means of D. \

Indeed, (2) can be obtained from (1) by some easy transformations using
(DM4), (DM5) and (DM6). m

Note that the isomorphism ¢ 2 I(p)L is natural in parameters.

Lemma 1. If ¢ and ¢ are finilely recursive then <p1[), {p,¥) and I(p) are
finitely recursive.

Proof. Suppose @ and Y are defined through systems S = (5;F) and S’ =
(F; 9) respectively, i.e. there are m.f.p. (f;77) and (¥;7) of the functors S and §
respectively, s.t. ¢ = po and ¢ = vy, where & = pg,... and ¥ = vg,... We may
suppose that all variables in Z, § are distinct and let Z = zg,... and ¥ = o, ...
Then (povo, i, 7; govo, M, ) is a mLp. of S}, where S| = (zop0,3,7; 2,7, 7), and
z is a variable not occurring in Z, §. But the last system is finitary, provided S
and S' are. Indeed, if there are finite codings (K,...) and (K',...) for S and S’
respectively, then the set ‘

K" = KUK U{(zot)* [t € K'}U{z}

is finite and closed under S# and {Z,9,2} C K". Therefore by the Remark above
the last system is finitary and o = povg is finitely recursive. We can see in
a similar way that the systems ({zo,¥0),5,7;2,%,%) and ({I, 2)%0,5;2,%,) define
(¢, ¥) and I(yp) respectively and are finitary, provided (3;%) and (7;7) are. m

Corollary 2. (i) An object ¢ € F is finitely recursive iff ¢ is isomorphic to @
member of the set, produced from the constants o, ..., 71-1, {, L, R by means of
" the functors M, D and L ‘

(ii) Any functor defined explicitly by means of the constanis and functors in (i)
is naturally isomorphic to a functor T' of the form

D) = 1L, g, ... ,n}_ €))L,
where ng, ..., ng1 are natural numbers and « belongs to the set produced from
the constants by means of M and D. m
‘ For operative spaces the item (ii) in the last corollary is essentially a result of
Georgieva [6].
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2.4. UNIVERSAL CODINGS AND THE RECURSION THEOREM

Definition. (i) An object a € F is called recursive (in the parameters
Y6, .y Yi-1), iff there is a system of terms S = (3;F)(s0,...,5n~1;F) and a m.f.p.
(E,E) = (€o, - ..; T) of the functor S, s.t. & = a.

(i1) Writing Syst for the set of all normal systems of terms, an universal coding
is a triple {k, k, p}, s.t. k : Syst x Term — JF; is a function, k is a function assigning
to each pair (S,t) € Syst x Term an isomorphic arrow in JF, and for every S € Syst
the quadruple (Nterm, At.k(S,t), At.k(S,1t), p) is a coding for S, where Nterm is
the set of all normal terms.

Lemma 2. Suppose T is a translation funclor in F aud S € Syst. Then there
is an universal coding (k,k, p), s.t. k(S,z0) = L, where S = (5;z¢,...), and

p =L, T(y0),---, T(y1-1))e,

for a T-primiitve recursive object o« € .

The proof of Lemma 2 is more or less a standard one, using a Gadel numbermg
of Syst x Term and Proposition 1. Formally, it is a corollary to the special case
for operative spaces instead of DM-categories JF, and the last one is a special case
of Proposition 3 in [5]. = :

By Lemma 2 and Theorem 2.1 we have 1mmed1ately

Corollary 3. Suppose that each functor W) = (Lo, RE) has a m.fip. in F
and T is a least fized point functor T(p) = (pr, RT(p)) in the sense of the Example
in 2.2. Then: '

(i) Every object p € F, recursive in {70, oy M1}, 18 naturally (in yo,...,7i-1)
isomorphic to an object, which can be expressed ezplicitly by means of yo, ..., yi-1,
I,L,RM,D,IT.

(u) Any functor, defined explicitly by means of the constants and the funclors
in (i) 1s naturally isomorphic to a funcior T' of the form

L) = K({I,T(€)e) L, .
where o is a T-primitive recursive in {7q,.. ,7;..1} object of F.
(iii) There is an object w € F, recursive in {yo,..., Yi-1}, which ts universal
among all objects recursive in {o,...,M-1}, t.e.

(a) for every recursive in {yo,...,7i-1} object ¢ € F there ts a natural
number n such that ¢ 2 wnt and

(b) there is a primilive recursive function s(n,m), s.i. w(s(n,m))*
wntm?* for all natural n, m

".2'

3. PROOF OF THE MAIN THEOREM

Assume the suppositions of Theorem 2.1. Up to the end of the proof ¢ will
denote an arbitrary constant and vy will be the value of ¢ in F; the letters 1, s, p, o
etc. will be used to denote terms. We shall write ¢# for S#(¢) and we shall suppose
that all terms in K are normal. This is not a loss of generality, since otherwise we
may take the set {¢t € K :t is normal} instead of K. We shall adopt some rules
for omitting brackets in long expressions, e.g. ¥ x¥d will be a short notation for
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((¢¥)p)Y. This rule of “association to the left” will apply to objects, arrows and
terms as well, as mentioned before in 1.6.

3.1. DEFINITION OF THE ARROWS m

For every term t € K define an endofunctor G, in F as follows:

¥ ift=c
Gy Gi(&) = {ﬁk(p)'y if ¢ =pcand?is normal
A Ek(t#) otherwise.
Lemma 1. For each t € K there is an isomorphism
(n) ni(€) : U(E)R(E) = Gu(8),

natural 1n §.
" Indeed, by 1.1.(DM1) and 1.8.(c):

(1) U(€)k(t) = ({1,€)p)k(t) = (I,€)(pk(t)) = {1,&) Fu(k(t#)).
Consider cases for t € K:
1) ¢ = c; then by (1), 1.8.(F1), 1.1.(DM1), 1.1.(DM4) and 1.1. (DMQ)

U(©)k() = (1E)(Ly) = ((1,E)L)y = I = v = Gu(8);
- 2) t = pc and ¢ is normal; then by (1), 1.1.(DM1) and 1.1.(DM5)
U©k(t) = (L O((RE(p))y) = (L O(RE(P))y = (1, ) R)k(P))y
= (Ek(p)r = Gulé);
3) all other cases; by (1), 1.1.(DM1), 1.1.(DM5) we have

U(©k() = (LE(RK()) = (1, RE(t*) = £k(t%) = G(6) m
We shall write 7,(£) fot n;'(€). Since (w;m) is a m.fp. of U, the arrow m :
U(w) — w is an isomorphism. Therefore by (n) we have an isomorphism

(m) |  m(t) = mk(t) oy (w) : Gi(w) = wk(t),
and we shall write 7i(t) for m ~1(¢). ‘

3.2. CONSTRUCTION OF THE ARROWS M

‘We shall define for all t,s € K, s.t. (t5)® € K, an arrow
(M) O M(t,s) s wk(t)(wk(s)) — wk((ts)).
Fix t € K. Since 7 is iteratively closed, (ic3) in 1.5 holds. Therefore there is an
object ¥ € F and a family of arrows - ‘

(X) | X(t,5) : wk(t)(Ik(s)) — wk((ts)?) (s, (ts)® € K),
which is universal 1n the sense of (ic3). Then for all s € I& s.t. (t5)® € K, define:
(' m(ts) o wk(t)n,(dJ), : s=c¢
m((ts)®) o X(¢,p)y o @owk(t)ny(v), s = pc
X'(t,s) =< m((ts)*) oz 0 (X(t,po), X(t,p1)) 0% 0o wk(t)i o wk(t)nny(V), s = (po, p1)
| m(is) o X(t,s;) o wk(t)n,(v), Cos=azy,i<n
L m((ts)?) o X (¢, (ps:i)?) o wk(t)n,(9), \ s = pz;, i < n.
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Using (n), (G), (m), (X), 1.1.(DM1), 1.1.(DM6) and Lemma I in 1.7, we may see
that X'(t,s) is an arrow

X'(t,5) : wk(t)(U(9)k(s)) — wk((ts)"),

whence by the universal property (ic3) of the family (X) it follows that there is
unique arrow g : U(J) — 9, s.t.

(9) X'(t,s) = X(t,5) 0 wk(t)(gk(S))

for all s € K, s.t. (ts)® € K. Since (w; m) is a m.f.p. of the functor U, we have:
(ug) there is unique uy 1w — ¥, s.t. ugom = goU(yy).

Finally, defining

(dM) - M(t,s5) = X(8, 5) owk(t)(ugk(s)),

we obtain (M)
Lemma 2. For allt,s € K, s.i. (ts)® € K, we have:
(1) M(t,s) o wk(t)(mk(s)) = m(ts) owk(t)ns(w) if s=g¢
(2) M(t,s) o wk(t)(mk(s)) = m((ts)*) o M(¢,p)yo@o wk(i)ns (w), if s = pe;
(3) M(¢,s) owk(t)(mk(s)) , )
= m((ts)®) ot o (M({,po), M(t, p1)) 0% o wk(t)i o wk(t)n,(w), zfs = (Po,Pl)
(4) M(t,s) owk(t)(mk(s)) = m(ts) o M(L,si) owk(t)n,(w), tf s =1z, i <m;
(5) M(t, s)owk(t)(mk(s)) = m((ts)’)oM(¢, (psi)?) owk(t)n,(w), if s = pzq, i < n.
Proof. A direct calculation, using (dM), (ug), (g), the naturality of n,
(Lemma 1), the definition of X’ and (G). m

3.3. DEFINITION OF THE ARROWS w

In the sequel we shall write wk(Z) for the object (wk(zo),...,wk(zn—1)) of F*,

and ¢*(&) for [AZ.t)(€) for any £ € 3" and ¢t € Term. Define by mductmn onte K
an arrow

w(t) : " (wk(T)) — wk(t),

as follows:
r m(t) ift =c
m(t) o w(p)y if t = pe
w(t) = ¢ m(t)oio (w(tg), w(t1)) ift= (to,t1)
: wk(t) = 1wk(t) ift=2;, i<n

\ M(p, z;) o w(p)(wk(z;)) ift=pzx; i<m
and define for all 1 < n:
w; = m(x;) o w(s;).
Then by (m) we have that w; is an arrow
w; : 8; (Wk(T)) — wk(zi),

ie. @: S(wk(F)) — wk(Z) in F", where B = (wp, ..., wn_;). We shall show that
(wk(Z); W) is a m.f.p. of the functor S. :
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3.4. CONSTRUCTION OF THE ARROWS v

Let (f ;T) be an arbitrary object of the category (S = F") (defined in 1. 4), i.e.

= (&o,...,én~1) € F", and T is a tuple (2o, ..., 2,_1) of arrows z; : s}(£) — &
m F. We shall define for every t € K an arrow

(v) v (& T) : wk(t) — t*(€).
By 1.5.(ic3) there is an object n € F and a family of arrows
Y) Y((&:32),t) :nk(t) > t°(€), teK,

which is universal in the sense of 1.5.(ic3), i.e. for every other family of arrows
v : 7'k(t) — t*(€) there is unique f : p' — 7, s.t. ¥ =_}’(('«E-;'§),t) o fk(t) for all
t € K. We shall write Y (¢) for Y((§;%),t); the object (§;Z) will be usually fixed
below.

Define for all t € K:

([ 74(7) ift=c
Y (p)y o ni(n) - ift=rpec
Yf(t) = 4 (Y(to),Y(tl)) oto ng(z)) ift = (tg,t1>
z; 0 Y(s;) o ne(n) ift=12z;,i<n
xp*(f):cg ) E(ps;) o Y((psi)l’) on(n) ift=pzi<n,

where b is b~! and b is defined in 1.7. We leave to the reader to show that
Y/(t) : U(n)k(t) — t*(€) for all ¢ € K. Hence by the universal property of the
family (V') there is unique h : U(n) — 9, s.t.

(h) . Y'(t)=Y(t)o hk(t) forall t€ K.

Since (w;m) is m.f.p. of U, we have:

(uh) there is unique wup, :w — 7, s.t. usom = hoU(up).

Then we may define '

(dv) v (& F) = Y(t) o unk(?).

We shall write v(t) for v,(€;%).
Lemma 3. For allt € K we have
(1) v(t) omk(t) = ny(w) if t =¢;
(2) v(t) o mk(t) = v(p)y o ne(w) if t = pe;
(3) v(t) o mk(t) = (v(to), v(t1)) ot omy(w) if t = (to,t1);
(4) v(t) omk(t) = ziov(si) omu(w) f =24, i< m

(5) v(t) o mk(t) = p* (€)z: o B(pss) 0 v((ps:)?) 0 me(w) if L = e i < m.
Proof. A direct calculation similar to the proof of Lemma 2, using (dv),
(uh), (h), the naturality of n, (Lemma 1), the definition of Y’ and (G) [

3.5. Lemma 4. For allt,s € K we have
v((ts)®) o M(t, s) = b(ts) o v(t)v(s).
Proof. Fixte K. By 1.5.(ic3) there is { € F and a family of arrows
Z(t, s) : wk()(Ck(s)) — (ts)**(¢), seK,
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which is universal in the sense of 1.5.(ic3). Define :

oty o wk(tnl(C), | s=c
Z(t,pyyoa@owk(t)n,((), s = pc
Z'(s) = { (Z(,p0).Z(t,p1)) 03 o wk(t)i o wk(t)n,((), s = {po, p1)
t*(&)xi o b(tsi) o Z(t, s;) o wk(t)n,((), s=zi,i<n

L 1) @2 o B((19)'5:) © 28, (p:)?) 0 wk(Ona(C), s = psy i < .
It is left to the reader to show that “ '
Z'(s) : wk(t)(U(Q)k(s)) — (t5)™*(£).

Then by the universal property of the family Z(¢, s) there is unique z : U({) — (,
s.t. ' '

(2) 2'(s) = Z(t, s) owk(t)(zk(s)) for all s € K,
and since (w;m) is a m.f.p. of U, we have:
" (u2) there is unique u, 1w — (, s.t. y,om = z0o U(u,).

We shall prove Lemma 4 by showing that

(1) Z(t, s) owk(t)(uzk(s)) = b(ts) o v(t)v(s)
and - ‘

(2) Z(t,s) owk(t)(u  k(s)) = v((ts)b) o M(t,s)
foralls€ K. ’

3.6. PROOF OF 3.5.(1)

By the I;niversal property of the family Z(Z, s) there is unique y : w — (, s.t.
(1) Z(t,s) owk(t)(yk(s)) = b(ts) o v(t)v(s) forall s € K.

Therefore it is enough to show that y = u,. By (uz) the last will follow from
yom=zolU(y) or y =y, where ¥ = zoU(y) om~!. Since y is the unique arrow
satisfying (1), it is enough to show that

Z(t, ) owk(t)(y' k(s)) = bts) o v(t)v(s) forall s € K.
By the definition of y the last equality is equivalent to
Z(i s) o wk(t)(zk(s)) o wk(t)(U(y)k(s)) b(ts) o v(t)v(s) o wk(t)(mk(s)),
but by (z) and Lemma 1
- Z(t,5) o wk(t)(2k(5)) o wk(2)(U(y)k(s)) =
where
U = Z'(s) o wk(t)m;(€) o wk(t)Gs(y) o wk(t)n,(w).
We shall prove that
¥ = b(ts) o v(t)u(s) o wk(t)(mk(s)).

Consider cases for s as follows:
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Case 1. s = c¢. Then |
¥ = v(t)y o wk(t)y o wk(t)ny(w) (by definition of Z'(s) and (G))
= v(t)y owk(t)(v(s) omk(t))  (by Lemma 3, (1))
= v(t)v(s)owk(t)(mk(t)) = b(ts)ov(t)v(s)owk(t)(mk(t)) (by 1.2. (1) and 1.7.(b1)).
Case 2. s = pe. Then similarly
W= Z(t,p)yo@owk(t)(yk(p)y) owk(t)n, (w) (by definition of Z'(s) and (G))
= (Z(t,p) o wk(t)(yk(p)))y 0 @owk(t)ns(w) (by 1.2.(2))
= b(tp)y o v(t)u(p)y e @owk(t)ns(w) -~ (by (1))
| = b{tp)y 0 @o o(t)(v(p)7) o wk(tmu(w)  (by 1.22)
= b(ts) o v(t)(v(p)y o ns(w)) = b(ts) o v(t)(v(s) o mk(s)) (by Lemma 3,(2))
= b(ts) o v(t)v(s) o wk(t)(mk(s)).
Case 3. s = {po, p1). Similarly ‘
= (Z(t, po),Z(t,?)l)) otowk(t)io wk(t)(y{k(ég), k(p1))) owk(t)n,(w)
= (b(tpo) o o(t)o(po), bltr) 0 v(t)o(p1)) o § 0 wk(t)i 0 wk(U)m, ()
= (b(tpo), b{tp1)) 01 0 o(t){w(po), v(p1)) 0 wk(D)i 0 wk(tnu(w)
= b(ts) o v(t)({v(po), v(p1)) 0 1 0 ns(w)) = b(ts) o v(t)(v(s) o mk(s))
= B(ts) o v(t)v(s) o wk(t) mk(s)).
Case 4. s-x,,z(‘n
' = t*(€)z; o bts;) o Z(t, 5;) o wk(t)(wk(s;)) o wh(t)n,(w)
= t*(£)z; o b(tsi) o b(ls;) o v(t)v(s;) o whk(t)n,(w)
= v(t)(z1 0 (s1) 0 mu(w)) = v(2)o(s) o wk(O(mk()
| = b(ts) o v(t)v(s) o wk(t)(mk(s)).
Case 5. s = pzx;, i < n. As before |
¥ = (1) B)zs o B((t0)1si) 0 Z(t, (p5:)) 0 wk(t)(yh((psi)})) 0 wh(tms(w)
= (tp)"" (€)zi o b((tp)"s:) 0 b(t(ps:)") 0 v(t)v((psi)*) o wh(t)ms(w).

(tp)** B)zi o B((tp)"s:) o b(t(ps:)’)
= (tp)"* @)z o b(tp)s; () o Bltps;) o b(t(ps:)?)  (by 1.7.(10))
= (tp)** €)a: 0 b(tp)s} ) 0 @0 B(t(psi)) o B)i(psi)®) (by L7(11))
= b(tp)ti o (tp)" @)zi o To *(DB(pss)  (by 1.2.(1) and 1.7.(65))
= b(tp)ts o @o " ()" @)zi) o 1" @)B(psi)  (by 1.2.(2))
= b(ts) o " @)(p" E)x:) o " @B(ps:)  (by 1.7.(63)).

But

Therefore ,
¥ = b(ts) o * E)(p* E)zi) o 1" (B)B(ps:) 0 v(t)v((ps:)?) 0 wh(t)n, (w)
= b(ts) 0 v(t)(p" (B)z 0 B(ps:) o v((psi)*) 0 ma(w))
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= b(ts) o v(t){v(s) o mk(s)) (by Lemma 3, (5))
| = b(ts) o v(t)v(s) o wk(t)(mk(s)).
This finishes the proof of 3.5.(1).

3.7. PROOF OF 3.5.(2)

This proof is similar but simpler then that in 3.6. We replace b(ts) o v(¢)v(s)
by v((ts)"’ ) o M(t, s) and use Lemma 2. The properties of the zsomorph:sms b are
not used in this proof. We leave it to the reader.

This finishes the proof of Lemma 4. As a corollary we have:

If tz; € K, where ¢ < n, then

(1) v{tz;) o M(t, z;) = v(t)v(zi).
We shall write v(Z) for the arrow (v(zq), ..., v(zn_1)) : wk(Z) — € in F".

3.8. Corollary 1. For allt € K we have v(t) o w(t) = t*(v(Z)).
Proof. Induction on ¢. Consider cases for ¢t as in the definition of w(t). All
of them are easy to be ‘proved but in the last one { = pz; and Lemma 4 is used:

v(t) o w(t) = v(px;) o M(p, z;) o w(p)(wk(z:)) (by the definition of w(t) )
= v(p)v(zi) o w(p)(wk(z;))  (by 3.7.(1))
= (v(p) o w(p))v(z:) = p*(v(Z))v(x;)  (by the induction hypothesis)
=t*"(v(T)).
_ Corollary 2. u(T) is an arrow v(T) : (wk(a:) W) — (&%) in the category
(S =73, ie

(1) v(z;)ow; = zjo0s;(v(T)) foralli<n.
Indeed, by the definition of w;, Lemma 3, 3.1.(m) and Corollary 1:
v(zi)ow; = zyou(s;Jon,(w)om™ Tk(t)om(z;)ow(s;) = ziov(s; Jow(s;) = zios] (v(T)).

It remains to show that v(Z) is the unique arrow (wk(Z); w) — (6;%)in (S =
F"). For that suppose that 7 : (wk(Z); @) — (; %) is an arbxtrary arrow in the last
category, l.e. 7 = (vg, . <y ¥p-1) and

(2) viow; = z;05;(v) foralli<n.
We shall write v,(t) for v;(wk(T); W) (for definition see 3.4).

3.9. Lemma 5. For allt € K we have v(t) = t*(V) o v, (t).
Proof. By 1.5.(ic3) there is unique y : w — 7 s.t.

(1) t*(iz') ov,{t)=Y(t)oyk(t) forallte K.

Let ¥ = hoU(y) om™1. We shall show that y = ¢/, whence by 3.4.(uh) it will
follow that y = u, and by 3.4.(dv) the lemma will be proved. Since the arrow y
satisfying (1) is unique, it is enough to show that |

'@ ov,(t) =Y(t)oy'k(t) forallteK.
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The last equality is equivalent to
t*(7) 0 vu (1) o mk(t) = Y (£) o hk(2) o U(y)k(2)
By 3.4.(h) and Lemma 1
Y(t)o hic(t) o U(y)k(t) = Y'(t) o Tir(n) 0 Ge(y) o ny(w).

Denote the last expressxon by x and consider cases for ¢ to show that y = t*(v) o
Vu (t)omk(t) We shall treat only the case, in which the supposition 3.8.(2) is used.
- This is the case when ¢t = pz;, i < n. Then by the definition of Y’ and (G)

x = p"(€)z;i 0 b(psi) o Y ((psi)’) o yk((ps;)') o ma(w)
= p*(€)zi o b(psi) o (psi)*(T) o vu((psi)’) ome(w)  (by (1))
= p*(€)zi o (psi)* (7) o b(ps;) o v, ((psi)®) o ny(w) (by the naturality of b)
= p* (@) (i 0 57 (7)) 0 bpsi) o vu ((ps5i)°*) 0 me(w)
o= p*(B)(vi o w;) o B{ps;) 0 v, ((psi)?) o ny(w) (by 3.8.(2))
= p*(B)vi 0 p*(WE(T))w; © b(ps;) 0 vu ((psi)’) 0 mu(w)
= t*(7) o v, (1) o mk(t) (by Lemma 3,(5)). m

'3.10. Lemma 6. For allt,s,7 € K, s.t. (ts)® € K and {(sr)* € K we have
M(t (sr)”) owk(t)M(s,r)oa = M((ts)b r)o M(t, s)(wk(r)).

This is the most complicated lemma in the proof but quite similar to Lemma
4: using 1.5.(1c3) we construct a family of arrows

M'(t,s, r) : wk(t)(wk(s))(wk(r)) — wk((tsr)?)

and prove sep!a.rately that M(t, (s7)®) owk(t)M(s,7)0oa = M'(t,s,7), M((ts)*, 7)o
M(t, s)(wk(r)) = M'(t,s,r). We leave this to the reader.
We shall write b, (t) for b;(wk(Z)) (see the definition of b,(¢) in 1.7) and b, (t)

for b3 (1).

3.11. Lemma 7. For allt,s € K, s.t. (ts)* € K we have
M(t, s) o w(t)w(s) = w((ts)®) o b, (ts).
Proof. Induction on s. Consider cases for s as in the definition of w(s). We

shall treat only two of the cases: s = pc and s = pa;.
Let s = pc. Then by Lemma 2 and the definition of w(s)

M(t,5) 0 w(thu(s) = m((t5)°) o M(t, p)y 0@ o wk(t)(s) o w(t)(m(s) o w(p)y)
= m((ts)") o M(t, p)y o @o wit)(w(p)y) = m((ts)") o M(L, p)y 0 w(t)w(p)yo @
= m((ts)?) o w((tp)®)y o bu(tp)yo@ (by the induction hypothesis)
= w((ts)’) o b,(ts)  (by the definition of w((¢s)®) and 1.7.(b3)).

Let s = z;, i < n. Then by the definition of w(s)

M(t,5) o w(tyw(s) = M(t,5) o w(t)(M(p, 2:) o w(p)(wk(x:)))
= M(t, ) o wk()M(p, 2:) o wk(t)(w(p)(wk(z:))) o w(t)s* (wk(Z)) (by 1.2.(1))
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= M((tp)", 2:) o M(t, p)(wk(x:)) 0 T o wk(t)(w(p)(wk(x:))) o w(t)s* (wk(Z))
' (by Lemma 6)
= M((tp)*, 2:) o M(t, p)(wk(2:)) o w(t)w(p)(wh(z:)) 0 @
= M((tp)",2) o w((tp))(wk(z:)) o bu (ts) (wh(z:)) o @
(by the hypothesis of the induction)
= w((ts)b) ob,(ts). =

3.12. Lemma 8. For allt € K we have w(t) o v,(t) = wk(t) = lui)-

Proof. Similar to that of Lemma 4. By 1.5.(ic3) and 1.1.(DM2) there is
€ € F and a family of arrows E(t) : ¢k(t) — wk(t), t € K, which is universal in an
obvious sense. Define for ¢ € K:

( m(t) o nye) ift=¢c
m(t) o E(p)yone(e) ift = pe
E'(t) = 1 m(t)oio (E(tp), E(t1)) ot omy(e) ift = (to,t1)
m(t) o E(s;) o ny{e) ft==zii<n
L m(t) 0. E((psi)?) o nu(e) if t = pzi, i < n.

By the universal property of the family E(¢) therc is unique e : U(e) — ¢, s.t.
E'(t) = E(t) oek(t) for all t € K. Since (w;m) is a m.f.p. of the functor U, there
is unique u, : w — ¢, s.t. ’

ueom = e o U(u,).

We shall prove the lemma by showing that
(1) w(t) o v,(t) = E(t) o uck(t) -
and A
wk(t) = E(t) o uk(t)
for allt € K. By the universal property of the family E(t) there is unique y : w — ¢,
s.t.

w(t).o vu(t) = E(t)oyk(t) forallte K.
To prove (1) it is enough to show that
Cw(t)ou,(t) = E(t)oyk(t) forallte K,

where ¥ = eoU(y)o m=1. For that consider cases for ¢ as in the definition of E’ (t).
We shall treat only the last one of the cases in order to show how Lemma 7 is used.
Let ¢t = pz;, it < n. Then , A
E(t) o y'k(t) = E(t) o ek(t) o U(y)k(t) o m™1k(t)
= E'(t) o () 0 Ge(y) omy(w) om™'k(t)  (using 3.1.(n))
= m(t) o E((ps:)®) o yk((ps:)?) oTa(t) (definition of E',3.1.(m), (G))
| = m(t) o w((ps:)®) o v ((ps:)}) o mi(t) (definition of y)
= m(t) o M(p, 5;) o w(p)w(s;) o bu(psi) o vu((psi)’) oT(t)  (Lemma 7)
= M(p, ;) owk(p)m(z;) o w(p)w(si) o b, (ps;) ov,{(psi)®) oi(t) (Lemma 2,(4))
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= M(p, z:) o w(p)w; 0 by (psi) o v, ((ps:)?) o T(t) (definition of w;)
= M(p,:) o w(phok(z:) o p* (Wk(Z))ws o bu(pss) o va((psi)) o ma(t) (1.2.(1))
= w(t)ov,(t)  (definition of w(t) and Lemma 3, (5)).
The rest of the proof of Lemma 8 is left to the reader.

3.13. FINAL OF THE PROOF OF THE THEOREM

By Lemma 8 wk(zi) = w(x;) o vu(zi) = wk(zi) o vy (z:) = v (i), Whence by

Lemma 5 v(z;) = viov, (i) = v;. =

A e

-
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