ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Книга 1 — Математика Том 86, 1992

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE Livre 1 — Mathématiques Tome 86, 1992

FACTORIZATIONS OF THE GROUPS $PSp_6(q)$ *

TSANKO GENTCHEV, ELENKA GENTCHEVA

Цанко Генчев, Еленка Генчева. ФАКТОРИЗАЦИИ ГРУПП PSpe(q)

Доказан следующий результат:

Пусть $G = PSp_{\theta}(q)$ и G = AB, где A, B — собственные неабелевые простые подгруппы G. Тогда имеет место одно из следующих:

- (1) $q = 2 \text{ m } A \cong U_3(3), B \cong U_4(2);$
- (2) $q = 4 \times A \cong J_2, B \cong U_4(4);$
- (3) $q = 2^n \text{ in } A \cong L_2(q^3), B \cong L_4(q) \text{ или } U_4(q);$
- (4) $q = 2^n > 2 \times A \cong G_2(q), B \cong PSp_4(q), L_4(q) \text{ или } U_4(q).$

Teanko Gentchev, Elenka Gentcheva. FACTORIZATIONS OF THE GROUPS PSp6(q)

The following result is proved.

Let $G = PSp_6(q)$ and G = AB, where A, B are proper non-Abelian simple subgroups of G. Then one of the following holds:

- (1) q = 2 and $A \cong U_3(3)$, $B \cong U_4(2)$;
- (2) q=4 and $A\cong J_2$, $B\cong U_4(4)$;
- (3) $q = 2^n$ and $A \cong L_2(q^3)$, $B \cong L_4(q)$ or $U_4(q)$;
- (4) $q = 2^n > 2$ and $A \cong G_2(q)$, $B \cong PSp_4(q)$, $L_4(q)$ or $U_4(q)$.

INTRODUCTION

In [5, 6] we determined all the factorizations with two proper simple subgroups of some groups of Lie type of Lie rank 3. In the present work we extend this

^{*} Research partially supported by the MSE Grant No 29/91.

investigation to the simple groups $PSp_6(q)$ of Lie type (C_3) over the finite field GF(q). We prove the following

Theorem. Let $G = PSp_6(q)$ and G = AB, where A, B are proper non-Abelian simple subgroups of G. Then one of the following holds:

- (1) q = 2 and $A \cong U_3(3)$, $B \cong U_4(2)$;
- (2) q = 4 and $A \cong J_2$, $B \cong U_4(4)$;
- (3) $q = 2^n$ and $A \cong L_2(q^3)$, $B \cong L_4(q)$ or $U_4(q)$;
- (4) $q = 2^n > 2$ and $A \cong G_2(q)$, $B \cong PSp_4(q)$, $L_4(q)$ or $U_4(q)$.

The factorizations of $PSp_6(q)$ into the product of two maximal subgroups have been determined in [8]. We make use of this result here.

Our notation is standard. Basic information on the known simple groups can be found in [2, 3].

In the proof below we shall freely use the following directly verified properties of the group $G = PSp_6(q)$, $q = 2^n$. Using the symplectic realization

$$G = \{X \in GL_6(q) \mid X^{t}TX = T\}, \text{ where } T = \begin{pmatrix} O & E \\ E & O \end{pmatrix}$$

(E is the indentity matrix), G has four conjugacy classes of involutions denoted here (2_1) , (2_2) , (2_3) , (2_4) with representatives

$$i_1 = \begin{pmatrix} E & P \\ O & E \end{pmatrix}, \quad i_2 = \begin{pmatrix} E & Q \\ O & E \end{pmatrix}, \quad i_3 = \begin{pmatrix} E & E \\ O & E \end{pmatrix}, \quad i_4 = \begin{pmatrix} E & R \\ O & E \end{pmatrix},$$

respectively, where

$$P = \operatorname{diag}(1,0,0), \quad Q = \operatorname{diag}(1,1,0), \quad R = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The only involutions of G which are squares (of elements of order 4) are those in the classes (2_2) and (2_4) . Further, $|C_G(i_2)| = q^9(q^2-1)$ and $|C_G(i_4)| = q^9(q^2-1)^2$. Lastly, G has no elementary Abelian subgroup of order q^4 all of whose involutions are in the class (2_4) .

PROOF OF THE THEOREM

Let $G = PSp_6(q)$ and G = AB, where A, B are proper non-Abelian simple subgroups of G. The factorizations of $PSp_6(2)$ and $PSp_6(3)$ are determined in [1, 7]; this gives (1) and (3) (with n = 1) of the theorem. Thus we can assume that $q \ge 4$. The list of maximal factorizations of G is given in [8]. This leads, by order considerations, to the following possibilities, where $q = 2^n$:

- 1) $A \cong L_4(q)$, $B \cong U_3(q)$;
- 2) $A \cong U_4(q)$, $B \cong L_3(q)$;
- 3) $A \cong U_4(q)$, $B \cong G_2(\sqrt{q})$, n even > 2;
- 4) $A \cong L_2(q^3)$, $B \cong L_4(q)$ or $U_4(q)$;
- 5) $A \cong G_2(q), B \cong PSp_4(q), L_4(q) \text{ or } U_4(q);$
- 6) $A \cong J_2$, $B \cong U_4(4)$, n = 2.

Note that $PSp_6(2^n)$ contains subgroups isomorphic to $U_3(2^n)$ or $L_3(2^n)$ if and only if n is even or odd, respectively.

We consider these possibilities case by case.

Cases 1), 2), 3). Here $|A \cap B| = q^2 - 1$, $q^2 - 1$, and q - 1, respectively. Each of the groups $U_3(q)$, $L_3(q)$, and $G_2(\sqrt{q})$ has elements of order 4 and hence B contains involutions from at least one of the classes (2_2) and (2_4) of G. Let $L_4^{\varepsilon}(q)$ denote $L_4(q)$ if $\varepsilon = +$ and $U_4(q)$ if $\varepsilon = -$. Then any subgroup $A \cong L_4^{\varepsilon}(q)$ of G contains involutions from each of the classes (2_2) and (2_4) . Indeed, A has two conjugacy classes of involutions, central and noncentral, which are squares and so they belong to (2_2) or (2_4) . The central involutions in A have centralizers of order divisible by $(q-\varepsilon 1)^2$, whence they are from the class (2_4) . But $L_4^{\varepsilon}(q)$ has an elementary Abelian subgroup of order q^4 . As G has no elementary Abelian subgroup of order q^4 with involutions only from (2_4) , it follows that A contains involutions also from (2_2) . Thus A and B necessarily have a common involution, which implies $2 |A \cap B|$, a contradiction.

Now we prove the existence of the factorizations in the remaining three cases 4), 5), 6).

Case 4). Here we use the following symplectic realization of the group $L_2(q^3)$ in $PSp_6(q)$, $q=2^n$. Let K be a field extension of k=GF(q) of degree 3. There is an element ω of K such that 1, ω , ω^2 form a basis of K over k, and set $\omega^3 = p_0 + p_1\omega + p_2\omega^2$, where $p_i \in k$ (i=0,1,2). Further, let

$$S = \begin{pmatrix} a_0 + a_1\omega + a_2\omega^2 & b_0 + b_1\omega + b_2\omega^2 \\ c_0 + c_1\omega + c_2\omega^2 & d_0 + d_1\omega + d_2\omega^2 \end{pmatrix}, \quad a_i, b_i, c_i, d_i \in k \quad (i = 0, 1, 2)$$

be any matrix with det S = 1. Then the following matrices form a subgroup A of G isomorphic to $L_2(q^3)$:

$$W = \begin{pmatrix} a_0 & p_0a_2 & w_{13} & \overline{b_0} & b_1 & b_2 \\ a_1 & a_0 + p_1a_2 & w_{23} & b_1 & b_2 + p_0^{-1}(p_2b_0 + p_1b_1) & p_0^{-1}(b_0 + p_1b_2) \\ a_2 - a_1 + p_2a_2 & w_{33} & b_2 & p_0^{-1}(b_0 + p_1b_2) & p_0^{-1}(b_1 + p_2b_2) \\ c_0 & p_0c_2 & w_{61} & d_0 & d_1 & d_2 \\ p_0c_2 & w_{61} & w_{62} & p_0d_2 & d_0 + p_1d_2 & d_1 + p_2d_2 \\ w_{61} & w_{62} & w_{63} & p_0d_1 + p_0p_2d_2 & w_{65} & w_{66} \end{pmatrix},$$

where

$$w_{13} = p_0 a_1 + p_0 p_2 a_2, \quad w_{23} = p_1 a_1 + (p_1 p_2 + p_0) a_2, \quad w_{33} = a_0 + p_2 a_1 + (p_2^2 + p_1) a_2,$$
 $w_{61} = p_0 c_1 + p_0 p_2 c_2, \quad w_{62} = p_0 c_0 + p_0 p_2 c_1 + p_0 c_2 (p_2^2 + p_1),$
 $w_{63} = p_0 p_2 c_0 + p_0 c_1 (p_2^2 + p_1) + p_0 c_2 (p_2^3 + p_0), \quad w_{65} = p_1 d_1 + d_2 (p_0 + p_1 p_2),$
 $w_{66} = d_0 + p_2 d_1 + d_2 (p_2^2 + p_1).$

The isomorphism is given by the map $S \mapsto W$.

Now let $B \cong L_4^{\epsilon}(q)$ be a subgroup of G. Then $|A \cap B| \geq q^3 - \varepsilon 1$ and, using the subgroup list of A, we see that $|A \cap B| \leq 2(q^3 - \varepsilon 1)$. The above realization of A shows that the involutions in A are from the class (2_3) of G. However (as shown

above), any $L_4^{\epsilon}(q)$ subgroup of G contains involutions only from the classes (2_2) and (2_4) . Thus $2 \nmid |A \cap B|$ and then $|A \cap B| = q^3 - \varepsilon 1$, which implies G = AB. This is (3) of the theorem.

Case 5). We use the following two realizations of the group $G = PSp_6(q)$, $q = 2^n$:

$$q = 2^{-1}$$
;
(i) $PSp_6(q) = \{X \in GL_6(q) \mid X^t H X = H\},$

where $H = \operatorname{diag}(J, J, J), J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$

(ii)
$$PSp_6(q) = \{Y \in GL_6(q) \mid Y^tIY = I\},$$

where
$$I = \begin{pmatrix} & & & 1 \\ & & 1 \\ & & 1 \end{pmatrix}$$

Let $X, Y \in GL_6(q)$ and $Y = T_0^{-1}XT_0$, where

Then $Y^tIY = I$ if and only if $X^tHX = H$.

Now, with respect to (i), we have

$$\left\{ \left(\begin{array}{c|c} * & 0 \\ \hline 0 & 1 \\ \hline 0 & 1 \end{array} \right) \in PSp_{6}(q) \right\} \cong PSp_{4}(q).$$

On the other hand (see [4]), with respect to (ii), a $G_2(q)$ subgroup of $PSp_6(q)$ is generated by the matrices $X_{\pm r}(t)$, $r \in \{a, b, a+b, 2a+b, 3a+b, 3a+2b\}$, $t \in GF(q)$, where

$$X_{a}(t) = \begin{pmatrix} 1 & t & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & t & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad X_{b}(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & t & 0 & 0 & 0 \\ 0 & 0 & 1 & t & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad X_{b}(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & t & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & t \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad X_{2a+b}(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & t \\ 0 & 1 & 0 & t & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & t \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$X_{3a+b}(t) = \begin{pmatrix} 1 & 0 & 0 & t & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & t \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad X_{3a+2b}(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & t & 0 \\ 0 & 1 & 0 & 0 & 0 & t \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

and the matrix $X_{-r}(t)$ is the transpose of $X_r(t)$. Now a direct computation shows that the common elements of the above $PSp_4(q)$ and $G_2(q)$ subgroups are exactly as follows:

$$T_{0}\begin{pmatrix} w & 0 & 0 & u^{2} + vw & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & w & 0 & 0 & u + vw \\ u^{-1} & 0 & 0 & u^{-1}v & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & u^{-2} & 0 & 0 & u^{-2}v \end{pmatrix} T_{0} \quad (u \in GF(q)^{*}, \ v, w \in GF(q)),$$

$$T_{0}\begin{pmatrix} u^{2} & 0 & 0 & v & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & u & 0 & 0 & v \\ 0 & 0 & 0 & u^{-1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & u^{-2} \end{pmatrix} T_{0} \quad (u \in GF(q)^{*}, \ v \in GF(q)).$$

Hence $|PSp_4(q) \cap G_2(q)| = q(q^2 - 1)$ (in fact,

$$PSp_4(q) \cap G_2(q) = T_0 \left\langle X_{3a+b}(t), X_{-(3a+b)}(t) \right\rangle T_0 \cong L_2(q).$$

Now order consideration imply

$$PSp_6(q) = G_2(q).PSp_4(q).$$

This is the first factorization in (4) of the theorem.

Now let $A \cong G_2(q)$ be the subgroup of G described in the above paragraph, and $B_1 \cong O_6^{\varepsilon}(q) \cong L_4^{\varepsilon}(q).2$ be a subgroup of G. Then $G = AB_1$ and $A \cap B_1 \cong SL_3^{\varepsilon}(q).2$ (see [8]). Let B be the $L_4^{\varepsilon}(q)$ subgroup in B_1 . Now A has two conjugacy classes of involutions — central and non-central. It is not difficult to see that these involutions are from the classes (2_4) and (2_3) of G, respectively. Further, A has a single class of $SL_3^{\varepsilon}(q).2$ subgroups (cf. [4]) and every such subgroup contains non-central involutions. Consequently, every $SL_3^{\varepsilon}(q).2$ subgroup of A contains involutions from (2_3) . But (as we have seen) B has no involutions from (2_3) . Thus $A \cap B$ is a proper subgroup of $SL_3^{\varepsilon}(q).2$. Then (by order considerations) G = AB; in particular, $A \cap B \cong SL_3^{\varepsilon}(q)$. This gives the remaining two factorizations in (4) of the theorem.

Case 6). Now q=4. In case 5) we proved that G=AB, where $A\cong G_2(4)$, $B\cong U_4(4)$, and $D=A\cap B\cong U_3(4)$. Take a subgroup $C\cong J_2$ of A. Then (as shown in [9]) A=CD. It follows that $|B\cap C|=|D\cap C|=150$. This implies G=BC, the factorization in (2) of the theorem.

This completes the proof of the theorem.

REFERENCES

- Alnader, N., K. Tchakerian. Factorizations of finite simple groups. Ann. Univ. Sofia, 79, 1985, 357-364.
- 2. Carter, R. W. Simple groups of Lie type. London, 1972.
- 3. Conway, J., R. Curtis, S. Norton, R. Parker, R. Wilson. Atlas of finite groups. Oxford, 1985.
- 4. Cooperstein, B. Maximal subgroups of $G_2(2^n)$. J. Algebra, 70, 1981, 23-36.
- 5. Gentchev, Ts., E. Gentcheva. Factorizations of some groups of Lie type of Lie rank
 3. Ann. Univ., Appl. Math., 1990, (to appear).
- 6. Gentchev, Ts., E. Gentcheva. Factorizations of the groups $PSU_6(q)$. Ann. Univ. Sofia, 86, 1992, 79-85.
- 7. Gentchev, Ts., K. Tchakerian. Factorizations of the groups of Lie type of Lie rank three over fields of 2 or 3 elements. Ann. Univ. Sofia, 85, 1991, 83-88.
- 8. Liebeck, M., C. Praeger, J. Saxl. The maximal factorizations of the finite simple groups and their automorphism groups. Memoirs AMS, 86, 1990, 1-151.
- 9. Tchakerian, K., Ts. Gentchev. Factorizations of the groups $G_2(q)$. Arch. Math., 44, 1985, 230-232.

Received 30.06.1993