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Thcfollﬁwmgmultupmvei 5
- Let G = PSpe(q) and G = AB,whc:eA Bmpmperm&bdmnmplewbgrmzpsaf@i
,Thmonedthefoﬂmnsholdn ‘ ' A .
(1) g=2and A 2 Us(3), B & U;(Z), ‘
‘ (2)5-—4&!1‘1113.’2,3&0}(4), , S o .
(3)g=13" and A& L5(¢®), B2 Ly(g) ox Us(g); T g
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- INTRODUCTiON‘ »

. {5 ﬁ} we determined all the factonzatmns mth two proper sxmple subgroups
of some groupa of Lxe type of L1e rank 3 ‘In the present work we extend thls
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‘investigation to the simple groups P.S'ps(q) of Lie type (Ca) over the finite field
GF(q). We prove the following

Theorem. Let G = PSpg(q) and G = AB, where A, B are proper non-AbeI:an
stmple subgroups of G. Then one of the follawmg Izolds «

(1) ¢ =2 and A = Us(3), B = Uy(2);

(2) g=4and A= J,, B = Us(4);

-~ (3) g=2" and A= Ly(q®), B = Ly(q) or Ua(q);

(4) ¢ =2" > 2 and A = Gy(g), B = PSpa(q), La(g) or Ua(q)-
 The factorizations of PSps (¢) into the product of two maximal subgroups have

been determined in [8]. We make use of this result here. B
- Our notation is standard. Basic information on the known snnple gmupa can

be found in [2, 3].

- In the proof below we shall freely use the followmg directly verified properties
. of the group G = PSpe(q), ¢ = 2". Usmg the sympiectxc rea.hzatlon

G = {X € GLs(g) | X'TX = T}, whete T = 9 g)

(E is the mdentxty matrix), G has four comugacy classes of involutions denoted
here (21), (22), (23), (24) with representatives

v (55 o=(59). w=(5 5) «=(5 ).

respectively, where

- » o /01 0)
P = diag(1,0,0), Q»’“—? diag(1,1,0), R= (1 0 0)
‘, 0 00
The only involutions of G whlch are squares (of elements of order 4) are those in
the classes (2;) and (24). Further, |Cq(is)] = ¢°(¢? - 1) and [Ce(is)l = ®(g®>-1)%.
Lastly, G has no elementary Abelian subgroup of order ¢* all of whose involutions -
~ are in the class (24) | |
' PROOF OF THE THEOREM
\ Let G PSps(q) and G = = AB, where A, B are proper non-Abelian sunple, ,
subgroups of G. The factorizations of PSps (2) and PSps(3) are determined in
[1, 7); this gives (1) and (3) (with n = 1) of the theorem, Thus we can assume that
g 2 4. The list of maximal factorizations of G is given in [8]. This leads, by order
cons1derat10na, to the following possibilities, where qg= 2”
1) A= Ls(q), B2 Us(q);
2) A= U4lq), B = Ls(q);
- 3) A2 Us(g), B = Ga(1/9), n even > 2
4) A= Ly(¢®), B = Ly(g) or U‘i(q)a '

- 5) A= Ga(q), B = PSpa(q), La(g) or U4(9), | = o
6)AQ‘J23B~U4(4):"“ - : , o .
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Note that PSpg(2”) contains subgroups tsomorphlc to U3(2") or L3(2") if and
only if n is even or odd, respectively.
We consider these possibilities case by case.

Cases 1), 2), 3). Hére |ANB| = ¢*~1, ¢*~1, and q—1, respectively. Each of

the groups Us(q), Ls(g), and G2(,/¢) has elements of order 4 and hence B contains
involutions from at least one of the classes (22) and (24) of G. Let L§(g) denote

- L4(q) if € = + and U4(q) if € = —. Then any subgroup A = L§(g) of G contains

involutions from each of the classes (2;) and (24). Indéed, A has two conjugacy
‘classes of involutions, central and noncentral, which are squares and so they belong -
“to (22) or (24). The central involutions in"A have centralizers of order divisible by °
(g—¢1)?, whence they are from the class (24). But L§(g) has an élementary Abellan
subgroup of order ¢*. As G has no elementary Abelian subgroup of order ¢* with
involutions only from (24), it follows that A contains involutions also from (23).
Thus A and B necessarily have a common involution, which implies 2 llAnB|, a

" contradiction. -~

Now we prove the existence of the factonzatlons in the rema.mmg three cases

Case 4)'; Here we use the following symplectic realizatxon of the group L2(q®) -
in PSps(q), = 2", Let K be a field extension of k = GF(q) of degree 3.
| There is an element w of K such that 1, w, w? form a basis of K over k, and set
= po + p1w +paw?, where p; € k (i =0, .1, 2). Further, let

e {80+ a1 + agw? bo+61w+b2u) o
S“(CO"'C]_Q"F&Q&? do+d1w+d2w3 ) a,,b,,c; diEk(l—Olz)

be any matrix with det S = 1. Then the following matrices form a subgroup A of
G isomorphic to Lg(qs) | ,

( a0 poaz  wis 36" S by - by
61 ag+pi62 w3 b1 §2+p§1€mbo +pb1) pg(bo +p1b2)
W=| 62- aa+paa wss b priotmb) g+ maba) |
| o' P2 wer . do . dr A ’
Poc2 wer  wes podz do + p1da di + pads }

\ ver  wez W pods + pop2ds - wss | wes
where - . o - :
wxs = poa1 +Popadz, was = p1oy+(pipz +Po)az, was = do+paai+ (3 +p1)a2,
w&l = Ppoc1 + popac2, Wez = PoCo + pbpzﬁ + pof':g(p§ + p1),
Wes = Popaco + Poc1(p} + p1) + poca(ph + Po),-  wes = p1dy + da(po + p1p2),

wee = do + pady + dz(pg +p1).

The momox:phlsm is given by the map S — W. |

Now let B = L§(g) be a subgroup of G. Then |AN B| 2 ¢* - 3 and using
the subgroup list of A, we see that IA N B| s 2(¢3 - el). The above realization of
A shows that the involutions in A are from the class (23) of G. However (as shown

%

i

75



 bov ' ‘ G contains i i nly from thefclasaeéf 22y

bove), any L4(g) subgroup of G contains involutions only from the s (3)
:nd (%4) s'i‘hu&s(?‘[‘ |A N B and then [ADN B| = ¢° — €1, which implies G = AB. |
This is (3) of the theorem. o | |

~ Case 5). We use the following two realizations of the group G = PSpe(9),
0  PSp(a) = {X €GLo(g) | X'HX = H},
where H:diag(],.?,]}, Jz(l 0){ o .
(i)  PSp()={Y €CL(@) V'Y =1},

where I=]1 ¢ | |
» 1 | A | S

5

cooO~O

* ‘ 0 -
— {1 | ePSpsla)

e it respect to (ii), & Galg) subgroup of PSps(g) is
1 ther hand (see [4]), with respect to (ii), a Galg) su
| g:netrm bey the ma(trices X2, (), r € {a,b, aﬁ+b, 2a+b,3q+b,(3a+26}, t€ GF(q),

~ where o
o o (1 0\
L x=]g o wo=
. \ o | ‘1} .
Xalt) = 0 i) 3{2«4»(3) =

& P5pdq)-

~
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100 ¢t 0 0\ 1000 ¢t 0
| 010000 . ,géagﬁt
. 00100 t] | 01000

Xaans(t) = 000100] Xun®=|g0501 90
- tooo0ooe010) 10060010
000001 N6 0O0OO 1

" and the matrix X...“,.(t) is the transpose of X,(t) Now a direct computation shows
that the common elements of the above P.S'p.;(q) and Gg(q) subgroups are exa.ctly
as follows: | )

w +~vw 0 0
1 0 0 ~Q'ﬁ— ~ N o o 4
- To uo-‘l ~ 91 | g %u '% w To (MYGGF (), vweGF (9)), ,
0 0 0

1T (ue QF(‘q’)"', vE GF(é))-

cotiooe
—oooo
laoeoé

ocoor oo
@

0 u?

- Hence IPSm(st)ﬂGs(Q)! = ¢(¢? — 1) (in fact,
PSpa(g)N Ga(g) =To <X8a+b(t): -(s«-;-p)(t)) To = La(q)).
. Now order consxderatmn imply

PSps(q) = Gz(q) P3p4(q)

* 'This is the ﬁrst factorisation in’ ' (4) of the theorem. ‘ |
- Nowlet A 2 G(q) be the subgroup of G described in the above para.graph md

* B; = 0%(g) = L§(g)-2 be a subgroup of G. Then G = AB; and AN B, & SL§(g).2
(see [8]). Let B be the L§(q) subgroup in B;. Now A has two conjugacy classes of

M
cocool,
oo

involutions — central and non-central. It is not difficult to see that these xnvolut:ons -

‘are from the classes (2) and (23) of G, respectively. Further, A has a single
class of SL§(g).2 subgroups (cf. [4]) and every such subgroup contains non-central
involutions. Consequently, every SL§(g).2 subgroup of A contains involutions from
(2s). But (as we have seen) B has no involutions from (23). Thus AN B is a proper

~ subgroup of SL§(g).2. Then (by order considerations) G = AB; in particular,

ANB = 5L%(q). This gwes the ) remammg two factorizations in (4) of the theorem.

‘Case 6). Now ¢ = 4. In case 5) we proved that G = AB, where A & G,(4),
. B U4(4), snd D= AN B ™ Uy(4).. Tdke a subgroup C & J; of A. Then (as
. shownin [8]) A=CD. It follows that |[BNC| = DﬂC! = 150 This 1mphes

 G= BC, the factorization in (2) of the theorem.

 This completes the proof of the theorem. .
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