годишник на софийския университет "св. климент охридски"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 1 — Математика

та 1 — Математ Том 87, 1993

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE Livre 1 — Mathématiques Tome 87, 1993

MAPPING THEOREMS FOR COHOMOLOGICALLY TRIVIAL MAPS

SIMEON STEFANOV

Симсон Стефанов. ТЕОРЕМЫ О СОВПАДЕНИИ ДЛЯ КОГОМОЛОГИЧЕСКИ ТРИВИАЛЬНЫХ ОТОБРАЖЕНИЙ

Получены некоторые теоремы о совпадении для отображений n-сферы S^n . Следствием показано, что каждое когомологически тривиальное отображение $f: S^n \xrightarrow{\text{на}} Y$ сферы S^n на некоторое Y склеивает пару точек $x_1, x_2 \in S^n$, расстояние между которыми не меньше диаметра правильного (n+1)-симплекса вписанного в S^n :

$$f(x_1) = f(x_2), \quad ||x_1 - x_2|| \ge \sqrt{\frac{2(n+2)}{n+1}}.$$

Дальше доказано, что для каждого разложения S^n на n замкнутые подмножества, некоторое из них содержит континуум K с $\operatorname{diam} K \geq \sqrt{\frac{2(n+2)}{n+1}}$. Показано также, что каждое понижающее размерность отображение $f: S^n \to Y$ постоянно на континуум K с $\operatorname{diam} K \geq \sqrt{\frac{2(n+2)}{n+1}}$. Наконец получена теорема о совпадении для отображений S^n в k-мерные стягиваемые полиэдры (для k < n).

Simeon Stefanov. MAPPING THEOREMS FOR COHOMOLOGICALLY TRIVIAL MAPS

Some mapping theorems for maps of the *n*-sphere S^n are obtained. As a corollary, it is shown that every cohomologically trivial map $f: S^n \xrightarrow{\text{on}} Y$ of S^n onto some Y identifies a pair of points $x_1, x_2 \in S^n$ such that the distance between them is not less than the diameter of

the regular (n+1)-simplex inscribed in S^n :

$$f(x_1) = f(x_2), \quad ||x_1 - x_2|| \ge \sqrt{\frac{2(n+2)}{n+1}}.$$

Furthermore, it is proved that for any decomposition of S^n into n closed subsets some of them contains a continuum K with diam $K \ge \sqrt{\frac{2(n+2)}{n+1}}$. Also it is shown that every lowering dimension map $f: S^n \to Y$ is constant on a continuum K with diam $K \ge \sqrt{\frac{2(n+2)}{n+1}}$. Finally, a mapping theorem for maps of S^n into k-dimensional contractible polyhedra is obtained (for

The Borsuk-Ulam theorem states that every map of the n-dimensional unit sphere S^n into \mathbb{R}^n identifies a pair of antipodal points. This theorem ceases to be true if we replace \mathbb{R}^n by an arbitrary n-dimensional contractible polyhedron P_n . However, it is easy to see that there exists a positive α such that any map of S^n into some P_n identifies a pair of points $x_1, x_2 \in S^n$ with $||x_1 - x_2|| \ge \alpha$. We shall find the greatest α with this property and we shall prove the corresponding mapping theorem in a more general situation (Theorem 1). The fact is that the greatest α with the above-mentioned property is the diameter of the regular (n+1)-simplex inscibed in S^n . Corollary 1 of Theorem 1 gives a generalization of a theorem due to J. Väisälä [1]. Furthermore, we obtain a theorem for decomposition of S^n into n closed subsets (Theorem 2), a mapping theorem for lowering dimension maps of S^n (Theorem 3), and finally a mapping theorem for maps of S^n into lower dimensional contractible polyhedra (Theorem 4).

Lemma 1. Let $e_1, e_2, \ldots, e_{n+1}$ be unit vectors in \mathbb{R}^n such that $\sum_{i=1}^{n+1} \lambda_i e_i = O$ for some $\lambda_i \geq 0$ with $\sum_{i=1}^{n+1} \lambda_i = 1$.

Then $(e_i, e_j) \leq -\frac{1}{n}$ for some i, j.

Proof. Suppose the contrary $-(e_i, e_j) > -\frac{1}{n}$ for every i, j. Then

$$1 = \left(\sum_{1}^{n+1} \lambda_i\right)^2 = \sum_{1}^{n+1} \lambda_i^2 + 2\sum_{i < j} \lambda_i \lambda_j$$

and

$$0 = \left(\sum_{1}^{n+1} \lambda_i e_i, \sum_{1}^{n+1} \lambda_i e_i\right) = \sum_{1}^{n+1} \lambda_i^2 + 2 \sum_{i < j} \lambda_i \lambda_j (e_i, e_j) > \sum_{1}^{n+1} \lambda_i^2 - \frac{2}{n} \sum_{i < j} \lambda_i \lambda_j,$$

hence

$$0 > \sum_{1}^{n+1} \lambda_i^2 - \frac{1}{n} \left(1 - \sum_{1}^{n+1} \lambda_i^2 \right),$$

i. e. $\sum_{i=1}^{n+1} \lambda_i^2 < \frac{1}{n+1}$. On the other hand, a well-known inequality gives

$$\sum_{i=1}^{n+1} \lambda_i^2 \ge \frac{\left(\sum_{i=1}^{n+1} \lambda_i\right)^2}{n+1} = \frac{1}{n+1},$$

which is a contradiction.

Lemma 2. Let F be a closed subset of S^n with diam $F < \sqrt{\frac{2(n+2)}{n+1}}$. Then F is contained in some open semisphere of S^n .

Proof. Denote by co F the convex hull of F in \mathbb{R}^{n+1} and suppose that co F does not contain the origin O. Then there is a hyperplane T in \mathbb{R}^{n+1} such that $O \in T$ and $F \cap T = \emptyset$, hence one of the components of $S^n \setminus T$ is an open semisphere containing F.

Suppose now that $O \in \operatorname{co} F$, then, according to the theorem of Caratheodory, O is a convex linear combination of n+2 points of $F:O=\sum_{i=1}^{n+2}\lambda_i x_i$, where $\lambda_i \geq 0$, $\sum_{i=1}^{n+2}\lambda_i = 1$ and $x_1, \ldots, x_{n+2} \in F$. Consider the unit vectors $e_i = \overrightarrow{Ox_i}$. According to Lemma 1, we have $(e_i, e_j) \leq -\frac{1}{n+1}$ for some i, j. Let φ denote the angle between e_i and e_j , then $\cos \varphi = (e_i, e_j) \leq -\frac{1}{n+1}$ and we have $||x_i - x_j|| = 2\sin\frac{\varphi}{2} = 2\sqrt{\frac{1-\cos\varphi}{2}} \geq 2\sqrt{\frac{1}{2}\left(1+\frac{1}{n+1}\right)} = \sqrt{\frac{2(n+2)}{n+1}}$, which contradicts the condition diam $F < \sqrt{\frac{2(n+2)}{n+1}}$.

Note that the number $\sqrt{\frac{2(n+2)}{n+1}}$ is exactly the diameter of the regular (n+1)-simplex inscribed in S^n .

All cohomologies in this note are Čech cohomologies with integral coefficients.

Lemma 3. Let ω be a finite open covering of the compact space X and $\pi: X \to N_{\omega}$ be the canonical projection of X into the nerve of ω . Suppose $f: X \xrightarrow{\text{on}} Y$ is a map of X on Y and there exists $\xi \in H^n(X)$ such that $\xi \in \text{Im } \pi^* \setminus \text{Im } f^*$. Then for some $y_0 \in Y$ the set $f^{-1}(y_0)$ is not contained in any element of ω .

This proposition is proved by the author in [4, Lemma 2].

Given a map $f: X \to Y$ we shall say that f is trivial in dimension n if $f^*(H^n(Y)) = 0$.

Theorem 1. Let X be a compact metric space and $\varphi: X \to S^n$ be a map, which is non-trivial in dimension n. Suppose $f: X \xrightarrow{\text{on}} Y$ is a map of X on Y and there is $\xi \in H^n(X)$ such that $\xi \in \text{Im } \varphi^* \setminus \text{Im } f^*$. Then there exist $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$ and $\|\varphi(x_1) - \varphi(x_2)\| \ge \sqrt{\frac{2(n+2)}{n+1}}$.

Proof. It is enough to prove that there exists $y_0 \in Y$ such that the set $\varphi(f^{-1}(y_0))$ is not contained in any open semisphere of S^n . Really, in this case Lemma 2 implies diam $\varphi(f^{-1}(y_0)) \ge \sqrt{\frac{2(n+2)}{n+1}}$ and the theorem is proved.

Suppose that for any $y \in Y$ the set $\varphi(f^{-1}(y))$ is contained in some open semisphere O_y . Choose an open $V_y \ni y$ with the property $\varphi(f^{-1}(V_y)) \subset O_y$. The covering $\{V_y \mid y \in Y\}$ has a finite subcovering $\{V_{y_i} \mid i=1, 2, \ldots, k\}$. Put $\omega = \{O_{y_i} \mid i=1, 2, \ldots, k\}$. Since $\varphi(X) = S^n$, ω is a finite open covering of S^n such that for any $y \in Y$ the set $\varphi(f^{-1}(y))$ is contained in some element of ω . Consider the diagram

$$\begin{array}{ccc}
X & \xrightarrow{\varphi} & S^n \\
\pi \downarrow & & \downarrow \pi_0 \\
N_{\varphi^{-1}(\omega)} & \approx & N_{\omega}
\end{array}$$

where π and π_0 are the canonical projections and ρ is the natural simplicial isomorphism. By the same reasoning as in Lemma 3 the diagram

is commutative. Note that π_0^* is an isomorphism, since the elements of ω are open semispheres and the intersection of each finite system of semispheres is cohomologically trivial. Then $\xi \in \operatorname{Im} \varphi^*$ implies $\xi \in \operatorname{Im} \pi^*$, so that $\xi \in \operatorname{Im} \pi^* \setminus \operatorname{Im} f^*$. Hence, by Lemma 3, there exists $y_0 \in Y$ such that $f^{-1}(y_0)$ is not contained in any element of $\varphi^{-1}(\omega)$. It means that $\varphi f^{-1}(y_0)$ is not contained in any element of ω , but $y_0 \in V_{y_i}$ for some i, thus $\varphi f^{-1}(y_0) \subset \varphi f^{-1}(V_{y_i}) \subset O_{y_i} \in \omega$, which is a contradiction.

The theorem is proved.

Note that in the case $\varphi^* \not\equiv 0$, $f^* \equiv 0$ the existence of $\xi \in \operatorname{Im} \varphi^* \setminus \operatorname{Im} f^*$ is guaranteed and the theorem is valid.

Let X and A be disjoint closed subsets of \mathbb{R}^N . We say that X is n-linked with A in \mathbb{R}^N if the inclusion map $i: X \to \mathbb{R}^N \setminus A$ is non-trivial in dimension n.

Assume for convenience that $\mathbb{R}^k \subset \mathbb{R}^n$ for k < n.

Corollary 1. Let the compact space X be n-linked with \mathbb{R}^k in \mathbb{R}^{n+k+1} and $\pi: \mathbb{R}^{n+k+1} \to \mathbb{R}^{n+1}$ be the projection of \mathbb{R}^{n+k+1} on the orthogonal complement

of \mathbb{R}^k ($\mathbb{R}^{n+1} \cap \mathbb{R}^k = \{O\}$). Put $\alpha_0 = \inf_{x \in X} ||\pi(x)||$. Then for any map $f: X \xrightarrow{\text{on}} Y$ trivial in dimension n there exist $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$ and $||x_1 - x_2|| \ge \alpha_0 \sqrt{\frac{2(n+2)}{n+1}}$.

Proof. Put $\varphi = \frac{\alpha_0 \pi}{||\pi||} i$, where $i: X \to \mathbb{R}^{n+k+1} \setminus \mathbb{R}^k$ is the inclusion map. Then $\frac{\alpha_0 \pi}{||\pi||}: \mathbb{R}^{n+k+1} \setminus \mathbb{R}^k \to S_0^n$, where $S_0^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = \alpha_0\}$. We have $\varphi^* = i^* \left(\frac{\alpha_0 \pi}{||\pi||}\right)^*$, therefore φ is non-trivial in dimension n, since $\left(\frac{\alpha_0 \pi}{||\pi||}\right)^*$ is an isomorphism and i is non-trivial in dimension n. Then the conditions of Theorem 1 are fulfilled, hence there exist $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$ and $||\varphi(x_1) - \varphi(x_2)|| \ge \alpha_0 \sqrt{\frac{2(n+2)}{n+1}}$ (φ maps X into S_0^n). Finally, we have

$$||x_1 - x_2|| \ge ||\pi(x_1) - \pi(x_2)|| \ge \left\| \alpha_0 \frac{\pi(x_1)}{||\pi(x_1)||} - \alpha_0 \frac{\pi(x_2)}{||\pi(x_2)||} \right\|$$
$$= ||\varphi(x_1) - \varphi(x_2)|| \ge \alpha_0 \sqrt{\frac{2(n+2)}{n+1}}.$$

The first inequality is obvious, the second one holds by the definition of α_0 . In his paper [1] J. Väisälä has proved that if X is a partition in \mathbb{R}^{n+1} between O and ∞ , then for any map $f: X \xrightarrow{\text{on}} Y$ trivial in dimension n there exists $y_0 \in Y$ such that the set $f^{-1}(y_0)$ is not contained in any open halfspace W with $\partial W \ni O$. Clearly, this theorem may be obtained by the non-metrical variant of Theorem 1 and Corollary 1 — we only have to replace the condition "there exist

$$x_1, x_2 \in X \text{ such that } f(x_1) = f(x_2) \text{ and } ||\varphi(x_1) - \varphi(x_2)|| \ge \sqrt{\frac{2(n+2)}{n+1}}$$
" by "there

exists $y_0 \in Y$ such that $\varphi f^{-1}(y_0)$ is not contained in any open semisphere". To obtain now the theorem of Väisälä, it is enough to take Corollary 1 in the case k = 0; really, a compact space X is n-linked with O in \mathbb{R}^{n+1} iff X is a partition between O and ∞ .

Corollary 2. For any map $f: S^n \xrightarrow{\text{on}} Y$ trivial in dimension n there exist $x_1, x_2 \in S^n$ such that $f(x_1) = f(x_2)$ and $||x_1 - x_2|| \ge \sqrt{\frac{2(n+2)}{n+1}}$.

This corollary may be immediately obtained by the theorem of Väisälä and Lemma 2.

We may ask whether f identifies a pair of points $x_1, x_2 \in S^n$ with $||x_1 - x_2|| = \sqrt{\frac{2(n+2)}{n+1}}$. It is not difficult to show that the answer is "no" — there exists a

map $f: S^1 \xrightarrow{\text{on}} T$ from S^1 onto the letter T such that $||x_1 - x_2|| = \sqrt{3}$ implies $f(x_1) \neq f(x_2)$.

Another question is whether $\sqrt{\frac{2(n+2)}{n+1}}$ is the greatest number with this property. The answer is "yes" and the corresponding example may be constructed as follows:

Let P be the regular (n+1)-simplex inscribed in S^n and $P^{(n-1)}$ be its (n-1)-dimensional squeleton. Put $Y = C P^{(n-1)}$, where $C P^{(n-1)}$ is the cone over $P^{(n-1)}$ with a vertex O. The obvious deformation $f: S^n \to Y$ has the property $\operatorname{diam} f^{-1}(y) \leq \sqrt{\frac{2(n+2)}{n+1}}$ for any $y \in Y$. Moreover, $\operatorname{diam} f^{-1}(y) = \sqrt{\frac{2(n+2)}{n+1}}$ iff y = O.

Theorem 2. Let S^n be the union of n closed subsets $S^n = \bigcup_{i=1}^n F_i$. Then some F_i contains a continuum K with diam $K \ge \sqrt{\frac{2(n+2)}{n+1}}$.

Proof. Suppose the contrary — then there exist $\varepsilon > 0$ such that none of the sets $\overline{O_\varepsilon F_i}$ contains such a continuum. Let ω_i be the finite family of all components of $\overline{O_\varepsilon F_i}$. Set $\omega = \bigcup_{i=1}^n \omega_i$. Then ω is a covering of S^n with ord $\omega \leq n$, since every ω_i is a disjoint family. Thus, the nerve N_ω is an (n-1)-dimensional polyhedron and the cone C N_ω is an n-dimensional contractible one. Consider the map $f = i\pi$, where $\pi: S^n \to N_\omega$ is the canonical projection and $i: N_\omega \to C$ N_ω is the inclusion map. Then $f: S^n \to C$ N_ω is trivial in each dimension and according to Corollary 2. there exist $x_1, x_2 \in S^n$ such that $f(x_1) = f(x_2)$ and $||x_1 - x_2|| \geq \sqrt{\frac{2(n+2)}{n+1}}$. But $f(x_1) = f(x_2)$ implies $\pi(x_1) = \pi(x_2)$, i. e. x_1 and x_2 belong to one and the same element K of ω , therefore diam $K \geq \sqrt{\frac{2(n+2)}{n+1}}$, which contradicts the assumption.

Evidently, n is the greatest number with this property. In the case n=2 we may even prove that for arbitrary decomposition $S^2=F_1\cup F_2$ some F_i contains a continuum K with diam K=2 (i. e. containing a pair of antipodal points). Really, if we suppose the contrary, we find as above a map $\pi:S^2\to N_\omega$, where N_ω is an 1-dimensional polyhedron such that $\pi(x)\neq\pi(-x)$ for any $x\in S^2$, which contradicts a theorem of E. V. Schepin [3]. For $n\geq 3$ this is not true. Väisälä [1] has constructed a map $f:S^n\to P_k$ of S^n into a k-dimensional polyhedron, where $k=\left\lfloor\frac{n+1}{2}\right\rfloor$, such that $f(x)\neq f(-x)$ for any $x\in S^n$. Let $P_k=\bigcup_{i=1}^{k+1}F_i$ be the representation of P_k from Lemma 4, where $\varepsilon=\frac{1}{2}\min_{x\in S^n}\|f(x)-f(-x)\|$.

Then $S^n = \bigcup_{i=1}^{k+1} f^{-1}(F_i)$ and none of the $f^{-1}(F_i)$ contains a continuum K with diam K = 2. Nevertheless, we do not know whether $\sqrt{\frac{2(n+2)}{n+1}}$ is the greatest number with this property.

Lemma 4. Given $\varepsilon > 0$, every n-dimensional polyhedron P_n may be represented as the union $P_n = \bigcup_{i=1}^{n+1} F_i$ of n+1 closed subsets such that the components of each F_i have a diameter $< \varepsilon$.

To prove it, one has to carry out induction on n taking some sufficiently small subdivision of P_n and considering its (n-1)-squeleton.

Theorem 3. Let $f: S^n \to Y$ be a lowering dimension map. Then for some $y_0 \in Y$ the set $f^{-1}(y_0)$ contains a continuum K with diam $K \ge \sqrt{\frac{2(n+2)}{n+1}}$.

Proof. Assume that Y = f(X), so that Y is a compact space with dim Y $\leq n-1$. Suppose the contrary. Then we can find a closed finite covering ω of Y with ord $\omega \leq n$ such that for any $\Phi \in \omega$ the set $f^{-1}(\Phi)$ does not contain such a continuum. Since dim $Y \leq n-1$, there is an ω -map $h: Y \to P_{n-1}$ of Y into some (n-1)-dimensional polyhedron. Let γ be a closed covering of P_{n-1} such that $h^{-1}(\gamma)$ is inscribed in ω . According to Lemma 4, P_{n-1} may be represented as $P_{n-1} = \bigcup_{i=1}^{n} F_i$, where each component of the sets F_i is contained in some element of γ . Consider the representation of S^n

$$S^n = \bigcup_{i=1}^n f^{-1} h^{-1}(F_i).$$

According to Theorem 2, some $f^{-1}h^{-1}(F_i)$ contains a continuum K with $\dim K \geq \sqrt{\frac{2(n+2)}{n+1}}$. Then hf(K) is contained in some component of F_i and thus in some element of G_i . Since $f(K) \subset h^{-1}hf(K)$, then f(K) is contained

thus in some element of γ . Since $f(K) \subset h^{-1} h f(K)$, then f(K) is contained in an element of $h^{-1}(\gamma)$ and hence in some element Φ of ω . But then we have $f^{-1}(\Phi) \supset K$, which contradicts the definition of ω .

Our remarks on Theorem 2 remain valid here — for any lowering dimension map $f: S^2 \to Y$ some $f^{-1}(y_0)$ contains a continuum K with diam K = 2 (this is proved by the author in [2] for arbitrary maps $f: S^{2k} \to Y_k$, where dim $Y_k \leq k$). On the other hand, for $n \geq 3$ it is not true, as following from the Väisälä's example.

Let $\varphi: X \to S^n$ be a map non-trivial in dimension n and $f: X \to P_n$ maps X into an n-dimensional contractible polyhedron P_n . We shall prove that for some $x_0 \in X$ the set $\varphi f^{-1} f(x_0)$ is not contained in any open semisphere of S^n . It is enough to show that $H^n(f(X)) = \{0\}$. Really, consider in this case f as a map

 $f: X \to f(X)$, then $f^* \equiv 0$ and the existence of $x_0 \in X$ with this property follows by the proof of Theorem 1. Form the exact sequence

$$H^n(P_n) \xrightarrow{i^*} H^n(f(X)) \xrightarrow{\partial^*} H^{n+1}(P_n, f(X)).$$

Here $H^n(P_n) = \{0\}$, since P_n is contractible and $H^{n+1}(P_n, f(X)) = \{0\}$, consequently $H^n(f(X)) = \{0\}$.

Then Lemma 2 implies diam $\varphi f^{-1} f(x_0) \ge \sqrt{\frac{2(n+2)}{n+1}}$, i. e. there exists $x_1 \in$

$$X$$
 such that $f(x_0) = f(x_1)$ and $||\varphi(x_0) - \varphi(x_1)|| \ge \sqrt{\frac{2(n+2)}{n+1}}$.

Suppose now $f: X \to P_k$ maps X into a k-dimensional polyhedron and k < n. At the close of this note we shall answer the question how many $x_0 \in X$ do there exist with the above-mentioned property.

Let $\varphi:X\to S^n$ maps the compact space X into the n-sphere S^n . We shall write

$$\gamma(X, \varphi) \leq k$$

if there exists a map $f: X \to P_{k+1}$ of X into a (k+1)-dimensional contractible polyhedron, such that for any $x \in X$ the set $\varphi f^{-1} f(X)$ is contained in some open semisphere of S^n .

The previous reasoning shows, that if φ is non-trivial in dimension n, then $\gamma(X, \varphi) \geq n$.

Lemma 5. $\gamma(X, \varphi) \leq \dim X$ for any compact space X.

Proof. Suppose dim X = k. There is a finite open covering ω of X such that for every $U \in \omega$ the set $\varphi(U)$ is contained in some open semisphere of S^n . There exists an ω -map $f: X \to P_k$ of X into a k-dimensional polyhedron P_k . Then for any $x \in X$ the set $\varphi f^{-1} f(x)$ is contained in some open semisphere. Denote by $C P_k$ the cone over P_k . It is clear that $C P_k$ is a contractible (k+1)-dimensional polyhedron, and if we consider f as a map $f: X \to C P_k$, then f has the required property.

Consequently, $\gamma(X, \varphi) \leq k$.

Lemma 6. Let $\gamma(X, \varphi) \geq n$ and $f: X \to P_k$ maps X into a contractible k-dimensional polyhedron. Consider the set

(1) $A(f) = \{x \in X \mid \varphi f^{-1} f(x) \text{ is not contained in any open semisphere of } S^n \}$. Then $\gamma(A(f), \varphi|_{A(f)}) \ge n - k$.

Proof. Suppose that $\gamma(A(f), \varphi|_{A(f)}) \leq n-k-1$, i. e. that there exists a map $g: A(f) \to Q$ of A(f) into the (n-k)-dimensional contractible polyhedron Q such that for every $x \in A(f)$ the set $\varphi g^{-1} g(x)$ is contained in some open semisphere of S^n . Since Q is contractible, g has an extension $\tilde{g}: X \to Q$. Form the map

$$h = f \times \tilde{g} : X \to P_k \times Q.$$

Clearly, $P_k \times Q$ is an n-dimensional contractible polyhedron. We shall prove that for any $x \in X$ the set $\varphi h^{-1} h(x)$ is contained in some open semisphere. Note, that

$$\varphi h^{-1} h(x) \subset \varphi f^{-1} f(x) \cap \varphi \tilde{g}^{-1} \tilde{g}(x).$$

In the case $x \notin A(f)$ the set $\varphi f^{-1} f(x)$ is contained in some open semisphere, thus $\varphi h^{-1} h(x)$ is contained in the same semisphere.

Suppose now that $x \in A(f)$. Then $f^{-1} f(x) \subset A(f)$ and $h^{-1} h(x) = f^{-1} f(x)$ $\cap \tilde{g}^{-1} \tilde{g}(x) \subset A(f) \cap \tilde{g}^{-1} \tilde{g}(x)$. But $A(f) \cap \tilde{g}^{-1} \tilde{g}(x) \subset g^{-1} g(x)$, really, if $y \in A(f)$ $\cap \tilde{g}^{-1} \tilde{g}(x)$, then $\tilde{g}(y) = \tilde{g}(x)$ and $\tilde{g}(y) = g(y)$, $\tilde{g}(x) = g(x)$, so that g(y) = g(x), thus $y \in g^{-1} g(x)$. Consequently, $h^{-1} h(x) \subset g^{-1} g(x)$, hence $\varphi h^{-1} h(x) \subset \varphi g^{-1} g(x)$. The set $\varphi g^{-1} g(x)$ is contained in some open semisphere, therefore $\varphi h^{-1} h(x)$ is contained in the same one.

All this reasoning implies that $\gamma(X, \varphi) \leq n-1$, which contradicts the condition $\gamma(X, \varphi) \geq n$.

Theorem 4. Let X be a compact metric space and the map $\varphi: X \to S^n$ be non-trivial in dimension n. Let $f: X \to P_k$ map X into a contractible k-dimensional polyhedron. Consider the set

$$B(f) = \left\{ x \in X \mid \text{diam } \varphi f^{-1} f(x) \ge \sqrt{\frac{2(n+2)}{n+1}} \right\}.$$

Then dim $B(f) \ge n - k$.

Proof. As it is shown above, $\gamma(X, \varphi) \geq n$. If we consider the set A(f) defined by (1), then the inequality $\gamma(A(f), \varphi|_{A(f)}) \geq n - k$ holds by Lemma 6, hence $\dim A(f) \geq n - k$ by Lemma 5. Obviously, $A(f) \subset B(f)$, therefore $\dim B(f) \geq n - k$.

Corollary. Let $f: S^n \to P_k$ map S^n into a k-dimensional contractible polyhedron P_k . Consider the set

$$B(f) = \left\{ x \in S^n \mid \operatorname{diam} f^{-1} f(x) \ge \sqrt{\frac{2(n+2)}{n+1}} \right\}.$$

Then dim $B(f) \ge n - k$.

REFERENCES

- 1. Väisälä, J. A theorem of the Borsuk-Ulam type for maps into non-manifolds. Topology, 20, 1981, 212-216.
- 2. Стефанов, С. Т. О понижающих размерность отображениях сферических пространств. В: Докл. XV конф. СМБ, Солнечный берег, апрель 2-6, 1986, 309-315.
- 3. Щепин, Е. В. Ободной проблеме Л. А. Тумаркина. Докл. АН СССР, **217**, 1974, 42-43.
- 4. Stefanov, S. Nonexistence of orbital morphisms between dynamical systems on spheres. Ann. Sof. Univ., Fac. Math. and Inf., 84, 1990, 123-128.