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MAPPING THEOREMS ‘
FOR COHOMOLOGICALLY TRIVIAL MAPS

SIMEON STEFANOV

Cumcon Cmepanos. TEOPEMbI O COBIAIEHMUU LISl KOTOMOJOI'MYECKHU
TPUBUAJBHBIX OTOBPAMKEHUMA

Hlonyuennt HEKOTOPLIE TeopeMbl 0 COBNageHun ana orobparkennii n-chepur S™. Cnenc-

HA
TBAEM MOKA3aHO, YTO KAXKJ0€ KOMOMOJNIOI'MYECKN TpUBUaiibHoe orobpaswkenne [ ;: § —— Y
chrepet S™ Ha HexkoTOopoe Y ckieuBaeT NMapy Touek Ty, 3 € ST, pacCcTOARUE MexAY KOTOD-
LIMY He MeHblle AuMaMeTpa npasunbioro (n -+ 1)-cuMnnexca snucannoro 8 S

2(n+2)

fz1) = f(z2), |l —a2]f 2 e

Hdansme AOKA3AHO, UTO HJIA KA A0 Da3sJIOYEeHHUA S™" Han 2AMKHYTRIC HOOMHOXECTBA,

s [2nt2)
HEKOTOpoe U3 HUX codepwuT KonTunyyM K ¢ diam K 2 T [Tokasano rakke, uro
n -+

KA J0€e NOHWMKAKOEE pasMepHocTh oTobpamenue f : S™ — Y NOCTOAHHO Ha KOHTMHYYM
2(n+2)
n -1

S™ B k-mepHble cTArMBaeMble noauaapsl (aas k < n).

K ¢ diamK 2 . Hakoneu nonyuena reopema o coBnajieHuu Jns orobparkenui
Simeon Stefanov. MAPPING THEOREMS FOR COHOMOLOGICALLY TRIVIAL MAPS

Some mapping theorems for mlaps of the n-sphere S™ are obtained. As a corollary, it is

on
shown that every cohomologically trivial map f : 8" ——— Y of 5™ onto some Y identifies a
pair of points 7, z2 € S™ such that the distance between them is not less than the diameter of
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the regular (n + 1)-simplex inscribed in 5™:

Furthermore, it is proved that for any decomposition of S™ into n closed subsets some of

. . 1 . [20n+2 . .
them contains a continuum K with diam K 2 —(-:%l Also it is shown that every lowering
i1

2(n + 2)
n+1
a mapping theorem for maps of S™ into k-dimensional contractible polyhedra is obtained (for

k < nj. ”

dimension map f : ™ — Y is constant on a continuum K with diam K 2 . Finally,

The Borsuk-Ulam theorem states that every map of the n-dimensional unit
sphere S™ into R™ identifies a pair of antipodal points. This theorem ceases to be
true if we replace R™ by an arbitrary n-dimensional contractible polyhedron P,.
However, it 1s easy to see that there exists a positive o such that any map of 5" into
“some P, identifies a pair of points zy, zo € S™ with ||z1 — z2|| 2 «. We shall find
the greatest o with this property and we shall prove the corresponding mapping
theorem in a more general situation (Theorem 1). The fact is that the greatest o
with the above-mentioned property is the diameter of the regular (n + 1)-simplex
inscibed in S™. Corollary 1 of Theorem 1 gives a generalization of a theorem due
to J. Viisala [1]. Furthermore, we obtain a theorem for decomposition of S™ into n
closed subsets (Theorem 2), a mapping theorem for lowering dimension maps of S™
(Theorem 3}, and finally a mapping theorem for maps of 5™ into lower dimensional
contractible polyhedra (Theorem 4).

. 7
Lemma 1. Lel ey, €3, ..., €n41 be unit veclors in R™ such that Y Aje; = O
, 1

n+1
for some A; 2 0 with > A\ = 1.
1

Then {e;, ¢;) £ — - for some 1, j.

1 ‘ .
Proof. Suppose the contrary — (e;, ¢;) > —— for every i, j. Then
. n

n+l \ 2 n4l

ZA,» ZA2+QZAA
1

3(3
and
e n41 7141 n-+1
0= Xe » dic Z,\MQZAA (e, ef) >ZA2—-—Z)\AJ,
1 1 1<j 1<J
hence

n+1‘» n+1
O>ZA2-~E 1=y A2,
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n+1 1
Z A< —y On the other hand, a well- known inequality gives

n-+1 2
n41 (Z 1\3:)
Yoz -
1

n+l1  n+1l’

which is a contradiction.

2(n + 2)

n-+1

Lemma 2. Let F be a closed subset of S™ with diam F' < . Then

7 1s contained in some open semisphere of S™.

Proof. Denote by co F the convex hull of 7 in R"¥! and suppose that co F'
Joes not contain the origin O. Then there is a hyperplane 7" in R™*! such that
O €T and FNT = O, hence one of the components of S”\ 7T is an open semisphere
containing F'.

Suppose now that O € co F, then, according to the theorem of Caratheodory,

n+2
() is a convex linear combination of n + 2 points of FF : O = 5 A;z;, where
1=1
n+2 ' ] ’ —
M 2 0-5 A =1and z, ..., toys € F. Consider the unit vectors ¢; = Ox;.
1=1
, 1 o
According to Lemma 1, we have (e;,ej) £ — T for some i, j. Let @ denote the
n

angle between e; and e;, then cosp = (e;, ;) £ —

n-+
1 —
zqm . COS{P 1 + w which contradicts the
n+1 n+1
condition diam F' < 1.’%(-?—%-1-2—"
n-+1

2(n +2)
1

n+

; and we have ||z; — z;|| =

Note that the number is exactly the diameter of the regular (n41)-

simnplex inscribed in S”.
All cohomologies in this note are Cech cohomologies with integral coefficients.

Lemma 3. Lel w be a finite open covering of the compact space X and
7 : X — N, be the canonical projecltion of X 1into the nerve of w. Suppose
i )
/X .Y isa map of X on Y and there exists £ € H™(X) such that
€ € Imm* \ Im f~. Then for some yo € Y the set f~'(yo) is not contained in
any element of w. V

"This proposition is proved by the author in [4, Lemma 2].
Given a map f : X — Y we shall say that f is trwzgl in dimension n if

frm(Y)) =0.
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Theorem 1. Let X be a compact metric space and ¢ © X — S™ be a map,
which is non-trivial in dimension n. Suppose f : X 2 Y isa map of X onY

and there is £ € H™"(X) such that £ € Im* \ Im f*. Then there ezist z1, zo € X

such that f(z,) = f(z2) and ||¢(z1) — p(z2)]] 2 »2—(7??;?2.

Proof. Tt is enough to prove that there exists yo € Y such that the set
©(f~ (yo)) i1s not contained in any open semisphere of S*. Really, in this case

2(n+2)
+1

Suppose that for any y € Y the set ¢(f~!(y)) is contained in some open
semisphere O,. Choose an open V, 3 y with the property go(f“l(Vy)) C Oy.
The covering {V, \y’é Y} has a finite subcovering {V,, |i=1,2, ..., k}. Put
w=1{0y, |i=1,2 ..., k}. Since p(X) = 5™, w is a finite open covering of S”
such that for any y E Y the set o(f~!(y)) is contained in some element of w.
Consider the diagram

Lemma 2 implies diam o(f~{yo)) = and the theorem is proved.

X —_— S
ﬁl J?Tg
N@-x(w) ? Nw

where m and 7y are the canonical projections and p is the natural simplicial iso-
morphism. By the same reasoning as in Lemma 3 the diagram

L

¥

H™(X) CH™(S™)
Hn(NW~1(w)> %‘ Hn(Nw)

©

1s commutative. Note that 7§ i1s an isomorphism, since the elements of w are open
semispheres and the intersection of each finite system of semispheres is cohomologi-
cally trivial. Then £ € Im¢* implies € € Im 7*, so that £ € Im7*\Im f*. Hence, by
Lemma 3, there exists yo € Y such that f~!(yo) is not contained in any element of
¢~ (w). It means that ¢ f~!(yo) is not contained in any element of w, but yy € V,,
for some i, thus ¢ f~!(y0) C ¢ f~1(Vy,;) C Oy, € w, which is a contradiction.

The theorem is proved.

Note that in the case ¢* # 0, f* = 0 the existance of £ € Imp* \ Im f* is
guaranteed and the theorem is valid.

Let X and A be disjoint closed subsets of RY. We say that X is n-linked with
A in R if the inclusion map i : X — R \ A is non-trivial in dimension n.

Assume for convenience that R* ¢ R™ for k < n. ‘

Corollary 1. Let the compact space X be n-linked with RF in R***+1 qnd
7 RPHEFL Rt ge the projection of RMTETY on the orthogonal complement
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of BE (R*TI NRF = {O}). Put ap = infeex ||n(z)||. Then for any map f :
X 2" ¥ trivial in dimension n there ezist Ty, vy € X such that f(x1) = f(z,)

2 2
and ||z1 — ]| 2 ao “%:";1”2
Proof. Put ¢ = ﬁi, where i 1 X — R*T¥F1\ R¥ is the inclusion map.
w
Then ﬁ—:ﬁ c RPHFHL\RE  S7 where SP = {z € R*' |||z} = ag}. We have

#* : *
o =1 (ﬁ) , therefore ¢ is non-trivial in dimension n, since (ﬁ) 1s an
s ;

isomorphism and ¢ is non-trivial in dimension n. Then the conditions of Theorem
1 are fulfiled, hence there exist z1, z3 € X such that f(z1) = f(z2) and ||p(z1) —

p(z2)]] 2 ao -2-%;%)- (¢ maps X into S7 ). Finally, we have
Ty — 2 Hm(zy) — n(= _mz1)_ —a _m(z2)
lzr — z2|| 2 |l7(z1) — m(z2)l] 2 |20 Tl ()]
= llp(1) = plaa)l 2 aoy [ 2D

The first inequality is obvious, the second one holds by the definition of ayq.
In his paper [1] J. Viisal3 has proved that if X is a partition in R™*! between

O and oo, then for any map f : X 2, ¥ trivial in dimension n there exists
yo € Y such that the set f~!(yo) is not contained in any open halfspace W with
OW 3 O. Clearly, this theorem may be obtained by the non-metrical variant of
Theorem 1 and Corollary 1 — we only have to replace the condition “there exist

2(n +2)
n+1
exists yg € Y such that ¢ f~'(yo) is not contained in any open semisphere”. To
obtain now the theorem of Vaisila, it is enough to take Corollary 1 in the case
k = 0; really, a compact space X is n-linked with O in R™*! iff X is a partition

between O and oc. : |

Ty, t2 € X such that fzy) = f(z2) and ||p(x1) — (z2)|| 2 ” by “there

Corollary 2. For any map f : S™ 2, Y trivial in dimension n there exisl
| | 2(n+2)

xy, Ty € S™ such that f(z)) = f(zg) and ||z ~ 2| 2 o

This corollary may be immediately obtained by the theorem of Vaisala and
Lemma 2.

We may ask whether f identifies a pair of points z;, z3 € S™ with ||z; —z,|| =

2(n 4+ 2)

s It is not difficult to show that the answer is “no” — there exists a
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map f . st 2 T from St onto the letter T such that llz1 — z2|| = /3 implies
flz1) # f(x2).
2(n + 2)

e 1s the greatest number with this prop-

Another question is whether

erty. The answer is “yes” and the corresponding example may be constructed as
follows:

Let P be the regular {n + 1)-simplex inscribed in S* and P("~1) be its
(n — 1)-dimensional squeleton. Put ¥ = C P(®=1D where C P("~1 is the cone over
P"=1) with a vertex O. The obvious deformation J ¢+ 8" — Y has the property

diam f~!(y) < W for any y € Y. Moreover, diam f~1(y) = M?(n:—f) if
n

y=0.

n
Theorem 2. Let S™ be the union of n closed subsets S™ = |J F;. Then some
=1

1=
. , . , /2 2
Fy contains a continuum K with diam K 2 —%;_—;f—l—)

Proof. Suppose the contrary - then there exist ¢ > 0 such that none of the sets
O F; contains such a continuum. Let w; be the finite family of all components of

K
O Fi- Set w = |J w;. Then w is a covering of S with ord w < n, since every w; is
f=1
a disjoint family. Thus, the nerve N, is an (n — 1)-dimensional polyhedron and the
cone ' N, is an n-dimensional contractible one. Consider the map f = in, where
T : 8™ — N, 1s the canonical projection and 7 : N, — C' N, is the inclusion map.
Then [ : S™ —» C N, is trivial in each dimension and according to Corollary 2 .

2(n + 2)
a4l
- flz1) = f(z2) implies 7m(x1) = m(z2), i.e. z; and x4 befong to one and the same
2(n +2)

n-+1

there exist z1, zy € S™ such that f(zy) = f(z2) and ||z, — z2|| 2 . But

element K of w, therefore diam K 2 , which contradicts the assumption.

Evidently, n is the greatest number with this property. In the case n = 2 we
may even prove that for arbitrary decomposition §? = F, U F, some F; contains
a continuum K with diam K = 2 (i.e. contalning a pair of antipodal points).
Really, if we suppose the contrary, we find as above a map 7 : S? — N,,, where
N, is an 1-dimensional polyhedron such that 7(z) # n(~z) for any = € S?, which
contradicts a theorem of E. V. Schepin [3]. For n > 3 this is not true. Vaisala
[1] has constructed a map f : S® — P; of S® into a k-dimensional polyhedron,

n+1 k+1
where k = [-w-———«-:], such that f(z) # f(—z) for any z € S". Let P, = |J F;
, i=1

be the representation of Py from Lemma 4, where ¢ = % rgfgn 1f(z) — f(—z)|].
T n
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k+1
Then 5" = U f~Y(F;) and none of the f~!'(F}) contains a continuum K with

20n+2) .

diam A = 2. Nevertheless, we do not know whether 1s the greatest

n -+
number with this property.

Lemma 4. Given € > 0, every n-dimensional polyhedron P, may be repre-
sented as the union P, = T-Jl F; of n + 1 closed subsets such that the components
of each F; have a diamete;j £.

To prove it, one has to carry out induction on n taking some sufficiently small
subdivision of P, and considering its (n — 1)-squeleton.

Theorem 3. Let f . S®™ — Y be a lowering dimension map. Then for some
2(n +2)

yo €Y the set f~1(yo) contains a continuum K with diam K 2 T
n

Proof. Assume that Y = f(X), so that Y is a compact space with dimY
< n — 1. Suppose the contrary. Then we can find a closed finite covering w of ¥
with ord w £ n such that for any ® € w the set f~}(®) docs not contain such
a continuum. Since dimY £ n— 1, there is anw-map h : Y — P,_; of Y into
some (n — 1)-dimensional polyhedron. Let v be a closed covering of P,_; such
that h‘l(*y) is inscribed in w. According to Lemma 4, P,_; may be represented as

Po_1= U F;. where each component of the sets F; is contained in some element
i=1
of v. Consider the representation of S”

= O S RN,
izl

According to Theorem 2, some f~! h=(F;) contains a continuum K with

2(n+2)
n+1 °

thus in some element of . Since f(K) C h~!h f(K), then f(K) is contained
in an element of A~!(y) and hence in some element ® of w. But then we have
f71(®) D K, which contradicts the definition of w.

Our remarks on Theorem 2 remain valid here — for any lowormg dimension
map f : §2 — Y some f~'(yo) contains a continuum K with diam K = 2 (this is
proved by the author in [2] for arbitrary maps f : S — ¥, where dim Yy < k).
On the other hand, for n 2 3 it is not true, as following from the Vaisala’s example.

Let ¢ : X — S™ be a map non-trivial in dimension n and f : X — P, maps
X into an n-dimensional contractible polyhedron P,. We shall prove that for some
zy € X the set ¢ f~! f(zo) is not contained in any open semisphere of S™. It is
enough to show that H”(f(X)) = {0}. Really, consider in this case f as a map

diam K 2 Then h f(K) is contained in some component of F; and
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f o X — f(X), then f* = 0 and the existence of zg € X with this property follows
by the proof of Theorem 1. Form the exact sequence

*

HY(Pa) —— HM(f(X)) = H™\(Pn, [(X)).

Here H"(P,) = {0}, since P, is contractible and H"*1(P,, f(X)) = {0},
consequently H"(f(X)) = {0}.

Then Lemma 2 implies diam ¢ f~! f(zq) 2 \ / W, 1. e. there exists z; €
| [2(n + 2 |
X such that f(zo) = f(z1) and [J¢(ze) — ¢(z1)|| 2 .-%%r_l}.

Suppose now f : X — P, maps X into a k-dimensional polyhedron and k < n.
At the close of this note we shall answer the question how many z¢9 € X do there
exist with the above-mentioned property.

Let ¢ : X — S™ maps the compact space X into the n-sphere S*. We shall
write

1X, 9) sk |
if there exists a map f : X — Pr4y of X into a (k + 1)-dimensional contractible
polyhedron, such that for any x € X the set ¢ f~! f(X) is contained in some open

semisphere of S”.
The previous reasoning shows, that if ¢ is non-trivial in dimension n, then

X, ¢) 2 n.
Lemma 5. v(X, ¢) £ dim X for any campact space X.

Proof. Suppose dim X = k. There is a finite open covering w of X such that
for every U € w the set ¢(U) is contained in some open semisphere of S™. There
exists an w-map f : X — P of X into a k-dimensional polyhedron Pj. Then for
any ¢ € X the set ¢ f~! f(z) is contained in some open semisphere. Denote by
C Py the cone over Py. It is clear that C Py is a contractible (k + 1)-dimensional
polyhedron, and if we consider f as amap f : X — C Py, then f has the required
property.

Consequently, y(X, ¢) £ k.

Lemma 6. Let v(X, ¢) 2 n and f : X — Py maps X inlo a contractible
k-dimensional polyhedron. Consider the set

(1) A(f) = {z € X |o f~! f(z) is not contained in any open semisphere‘ of S”’} .

Then y(A(f), ¢lags)) 2 n—k.

Proof. Suppose that y(A(f), ¥la(s)) £ n—k —1, 1. e. that there exists a map
g A(f) — Q of A(f) into the (n— k)-dimensional contractible polyhedron Q such
that for every © € A(f) the set ¢ g~! g(z) is contained in some open semisphere of
5™. Since @ is contractible, g has an extension § : X — Q. Form the map

h=fxg: X —> P, xQ.
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Clearly, Pr x Q is an n-dimensional contractible polyhedron. We shall prove
that for any = € X the set ¢ =1 h(z) is contained in some open semisphere. Note,

that
ek h@) C e @) i ().

In the case z ¢ A(f) the set ¢ f~! f(z) is contained in some open semisphere,
thus ¢ h~1 h(z) is contained in the same semisphere.

Suppose now that z € A(f). Then f~! f(z) C A(f) and h=1 h(z) = f~! f()
N~ tglz) c A(f)ng 'g(z). But A(f)Ng'g(z) C g7t g(x), really, if y € A(f)
Ng~! §(e), then §(y) = §(z) and §(y) = 9(y), §(z) = g(x), so that g(y) = g(z), thus
y € g~ g(z). Consequently, A= h{z) C g~ g(z), hence ph~t h(z) C pg~ ! g(z).
The set pg~! g(z) is contained in some open semisphere, therefore ¢ h=! h(z) is
contained in the same one.

All this reasoning implies that W X, ¢) £ n—1, which contradicts the condition

X, ¢} 2 n.

Theorem 4. Let X be a compact metric space and the map ¢ : X — 5"
be non-trivial in dimension n. Let f . X — Py map X into a contractible k-
dimensional polyhedron. Consider the set

B(f):{xEX]diam(pf‘lf(a:) 2 ?—ggf—-f—)}
Then dimB(f) 2 n— k.

Proof. As it is shown above, y(X, ¢) 2 n. If we consider the set A(f) defined
by (1), then the inequality v(A(f), ¥la¢s)) 2 » — k holds by Lemma 6, hence
dimA(f) 2 n — k by Lemma 5. Obviously, A(f) C B(f), therefore dim B(f) 2
n—k.

Corollary. Let f : S® — Py map S" into a k-dimensional contractible poly-
hedron P,. Consider the sel

B(f) = {:1: € §* | diam f~! f(z) 2 W}

Then dim B(f) 2 n— k.

REFERENCES

o)

. VAisali,J. A theorem of the Borsuk-Ulam type for maps into non-manifolds. -— Topology,
20, 1981, 212-216. |

2. Credamnos C.T O nomwxaomux pa3MepHoCTb oToOpakeHUAX ChePUUECKUX
npoctpancTe. B: Hokn. XV koud. CMB, Conneunnii 6eper, anpens 2-6, 1586,
309-315.

3. lll e n un, E. B. O6 oanoit npo6neme JI. A. Tymapkuna. — Hoxn. AH CCCP, 217,
1974, 42-43.

4. Stefanov,S. Nonexistence of orbital morphisms between dynamical systems on spheres.

Ann. Sof. Univ., Fac. Math. and Inf., 84, 1990, 123128,

Recetved on 22.09.1984

295



