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Let Bn(z), n =0,1,..., be the Bessel polynomials generated by

- (1=~ 1/2 i
(1-4zw)“’2exp{‘ u 2:“‘”’ }:an(z)w", 2] < 1

n=0
and the functions gn(z) be defined by the relations
En(z) =4""z"Bn(1/z) exp(-2/2).

Let K = {kn}22, be an increasing sequence of non-negative integers.
Sufficient conditions for the completeness of the systems {By,(z)}.—, and

{gk"(z)}:‘;o in spaces of holomorphic functions are given in terms of the density

of the sequence K.
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1. INTRODUCTION

Let G be an arbitrary region in the complex plane C and H(G) be the space
of the complex functions holomorphic in G. As usual, we consider H(G) with the
topology of uniform convergence on compact subsets of G. A system {¢,(2)}5L, C
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H(G) is called complete in H(G) if for every f € H(G), every compact set K C G
and every € > 0 there exists a linear combination

N
P(Z)=ch¢n(z): anC; n=071)2)"'1N1
n=0
such that [f(z) — P(z)| < € whenever 2 € K. For example, if G C C is simply
connected, the system {2"}3%, is complete in H(G) and this assertion is nothing
but a particular case of the Runge’s approximation theorem [1, (2.1), p. 176].

Let v be a Jordan curve in C and C,, be the closure of its outside with respect -
to the extended complex plane C = CU {o0}. By H, we denote the (vector) space
of all complex functions, holomorphic in an open set containing C, and vanishing
at infinity. The next statement is a criterion for completeness in the space H(G)
[2, Theorem 17, p. 211).

(CC) A system {pn(2)}5%, of complex functions holomorphic in a simply con-
nected region G C C is complete in the space H(G) iff for every rectifiable Jordan
curve ¥ C G and every function F' € H the equalities

/F(z)gon(z)dz =0, n=0,1,2,...,
y
imply F = 0.
Completeness of systems of special functions in spaces of holomorphic functions
has been considered also by Kazmin [3], Leontiev [4, Ch. 3], Rusev [5-9].

2. BESSEL AND INVERSED BESSEL POLYNOMIALS

Let us define the function ®(z, w) as
1—(1-4z2w)'/?
2z

&(z,w) = (1- 4zw)"l/2exp{ } ,  |4zw| < 1. (2.1)

Note that the identity
1-(1-4zw)t/? 2w
2z T 14 (1= 4zw)l/?
implies that the point z = 0 is a removable singularity ‘of this function for every

fixed w.
Let Bno(z), n =0,1,..., be the Bessel polynomials defined by [10, (11.2), VII]

(2.2)

&(z,w) =Y _ Ba(z)u", zw|< L. . (2.3)
n=0

The polynomials y,(z;a,b) [11, 6] are defined by
11 2-a b
- -1/2 - (1= 1/2 2 (1 =1 =22t)Y/2
(1 - 2zxt) exp (2 2(1 2zt) ) exp (21. (1 (1 —2zt) ))

= i (g)n yﬂ(z;a,g)z"(n!)-l. | (2.4)

n=0
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Their explicit form

yn(x;a,b)--i(;:) (n+k:a'_2)k! (%)k (2.5)

k=0

is given in [12, 19.7, (19)]. The substitution of z, ¢, a and b, respectively with 2z,
w, 2 and 2 in (2.4) and (2.5), gives the equality

®(2,w) = Z ¥a(22;2, 2)w"(n!) 7},

n=0
e
(n + lc)'
Bn(z) = E < %l(n— k)! k)l ' (2.6)
The polynomials (—1)*n!B,(~2z), Wthh are also called Bessel polynomials, are
considered in [13].
Denote
~ - 1 z
Bn(z) =47"2" B, (;) exp (—5) . (2.7)
Having in mind (2.6), we get
o ep(=z/2) O~ (nt B!
Bn(z) = n!4n E kl(n — lc)' ' (28)
Let

&(z,w) = (1 —w)~Y?exp {-%(1 - w)1/2} , z€C, weC\[l,00). (2.9)
Lemma 2.1. If |w| < 1 and z € C, then
B(z,w) =Y Ba(z)w". (2.10)
n=0

Proof. The substitutions z = (™! and w = (w/4 applied consecutively in (2.1),
(2.3) give

—(1 - / o
o(c ) = (1~ due) P exp { LS h = 57 o,
n=0

— (1 =)/ .
<I>(<“,Cw/4)=(l—w)“”exp{1 (12 i 2C}=E4’"C"Bn(C-l)w".

n=0

After multiplication of the last equality by exp(—(/2) we obtain

o0

—u)1/2
exp(=¢/2)®(C ", Cw/4) = (1 —w) ™ exp { @-e” } 5 Bn(0)"
and since [4zw| < |w| < 1, the lemma is proved.
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/
3. AUXIL|IARY STATEMENTS

Denote
Ao ={z:2€C, |argz| < ar}, C'=C\/{0}. (3.1)
Lemma 3.1. Let G C Aq, 0 < a < 1, be a simply connected region, v C G be
a rectifiable Jordan curve, F € H,, F # 0, and irelf [z| =r. Let lw| < 1/(4r) and
z€y

flw) = /F(z)<1>(z,w) dz. (3.2)

Then the following ezpansion holds:

fw) =) An(F)w" (3.3)
n=0
with the coefficients
An(F) = / F(2)Ba(z) dz. (3.4)

Moreover, the radius of convergence of the series (3.3) is finite.

(2, w) : :
-——a—wT——'}w=o. Since f(‘lU) 1S

holomorphic for |[w| < 1/(4r), then f(w) can be expanded in a Taylor series

fw) =3 i.( [ro{T5) dz) W = i( [ F@Ba2) dz) w,

n=0 Y n=0

Proof. It follows from (2.3) that B,(z) = ;}i {

which yield (3.3), if the notations (3.4) are taken into account.
Having in mind the identity (2.2), we get

2w
— (1 —-1/2 oy,
®(2,w) = (1 - 4zw) exp [T (1= deu) /2
- —2w
= (1 — 4zw)~/? = . ‘
( 2w) exp { 1+(1—- 4zw)1/2} | (3:5)

, Suppose that the radius of convergence of (3.3) is infinite. This means that
(3.3) defines an entire function. Let us evaluate the order of f(w). Using (2.1) and
(3.2), we get consecutively '

ds

1 —(1—4zw)'/?
2z

F(z)(1 — 4zw)~ 2 exp {

)] < /

¥

- —1/2 — -1 _ 1/2
S/IF(Z)||1—4zw|‘1/23xp{|z|-1/2|w|1/2 w (w=! —4z2)
4

221/2

e
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As lim ,w“ll? —(w! - 42)1/2, = 2|z|*/? and ' l|im (1—4zw)~'/2 = 0, then the
wi—00

|w|—o0
following inequalities hold:

w2~ (wt - 4z)1/2
221/2

<2, |1-4zw|"2<1,

for sufficiently large |w|. Denoting
m=sup |F(z)|, w(y)=L, M=ml, (3.6)
z€y

we conclude that there exists a constant B > 0 such that the inequalities
[f(w)] < M exp (2z]7/2(w]'/?) < Mexp (r~/?[u]'/?)

hold for every |w| > B. Therefore, the order of the function f is p < 1/2.

Further we apply the Phragmen-Lindelof theorem [14, p. 206] for f(w). To
this end, consider first f(—~u), u > 0, and use ®(z,—u) as given in (3.5).
Since ¥ C Aq, then |arg(l + 4zu)] < ar and |arg(l +4zu)'/2| < ax/2. There-

2u
1/2
fore |arg (1+ (1 +4zu)'/?)| < an/2. Then ’arg 1+ (1+4zu)l/2
2u

15 (1+ 4z0)1/2 > 0. Further, using the notations r; = zuel_iy' Rez and (3.6), we

< am/2, ie.

Re
get

ds

ox ( 2u )
PATTH (14 4zu)!/?

-2u
< ml +4rlu)_1/2/exP (.R" 1+ (1+ 4zu)1/2) 4

|f(—u)| < m/ |(14;4zu)‘1/zl

y
< M(1+ 4ru)~2, | - (3.7)

Now, let max(e,1 —a) < B < 1, arg(—w) = (1 — B)m, argz = 6. Then
arg(—zw) = (1 — )7 + 0, and as —amw < § < ar, we get consecutively

(1 —a—pB)r < arg(—zw) < (14 a - f)m,
(1—a-pf)r < arg(l -4zw) < (14 a - pf)r,
(1-a- ﬁ)% <arg(l —4z0)'* < (1 +a - ﬁ)-;[ :
Denoting ¢ = arg (1 + (1 — 4zw)'/?), we have

—2w

M8 T = awyi? ~ LAY

T ™
(1-a=-f)7 <¥<(+a-pZ,

(—a=pz=1-fr-(1+a-p)
<(lﬂﬂ)w_¢<(1—ﬂ)ﬂ'—(l-a—ﬂ)%:(1+a_ﬂ)1’
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—2w —2w
14 (1 - 4zw)l/? 14 (1 -4zw)l/2
lim (1-4zw)~'/2 =0 and (3.6), we conclude that there exists a constant P > 0

|w|—o0

such that

hence |arg

T,
< 7 e Re( ) > 0. Now, using

i< mp [exp (e (- s mp @)

The rays Iy = {w: w = —u, u >0} and l; = {w : arg(—w) = (1 — B)x} divide
the complex plane into two angular domains of sizes (1 + f)r. The order of the
function is p < 1/2. It follows from (3.7) and (3.8) that |f(w)| is bounded along I;
and l3. As 1/2 < (1 £ 8)~!, according to the Phragmen-Lindelof theorem f(w) is
bounded in both angular domains and therefore in the whole complex plane. Hence
f = const. It is seen from (3.7) that ulirglo f(—u) = 0, which means f = 0. Since

F # 0 and the system {B,(z)}3%, is complete in H(G), see Theorem 1, the last
equality contradicts the criterion for completeness (CC). Therefore the radius of
convergence of the series (3.3) is finite.

Lemma 3.2. Let G C Ay, 0< a < 1/2, be a simply connected region, v C G
be a rectifiable curve, F € Hy and F # 0. Then there ezists a real number ¢ € (0, a)
such that the function f has no singular points outside the set A,.

Proof. The curve v is a compact set, hence there exists a closed domain A4,
0 < ¢ < ayof the kind (3.1) such that ¥y € A, and yNIA, # 0. The values of w, for
which 1 — 4zw = 0, are w, = (4z)~1. Let z € . Then w, € A, too. Therefore all
the points for which 1 — 4zw = 0 are in the set A, and the function (1 — 4zw)~/2
is a holomorphic function of w outside A,. Hence the function (3.2) is holomorphic
for w € Ext A, too.

Lemma 3.3. Let G C Aq, 0 < a < 1/2, be a simply connected region, ¥ C G
be a rectifiable Jordan curve, F € Hy and F # 0. Let

flw) = / F(2)®(z,w)dz, we C\[1,00). (3.9)

Then the following ezpansion holds:
o0
flw) =) Au(F)w" (3.10)
n=0 :
for |lw| < 1 with coefficients

A, (F) = / F(2)Ba(z) dz. (3.11)

Moreover, the radius of convergence of the series of (3.10) is finite and it has no
singular points in C\ [1, 00).
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Proof. From (2.10) it follows that B,(z) = 5? {ag%—u—)-} . As f(w) is
' ‘ ’ w=0

holomorphic for |w| < 1, then f(w) can be expanded in a Taylor series, i.e.:
~ o= 1 " d(z, w W - ~ _
fw)=)" = = ( /F( ){——51(—07——)} dz)w = Z( /F(z)Bn(z) dz) w”
n=0 ¥ n=0 n=0 ¥

which yields (3.10), if the notations (3.11) are taken into account.
Suppose that (3.10) has infinite radius of convergence. This means that (3.10)

defines the entire function f. From (2.9) and (3.9) we obtain

lf(w)l /IF(z)]ll w|™ ”"’exp{' l|w|1/2| -1 llllz}

Since lim Iw 1!1’2 = 1and lim |l = w|~Y2 = 0, then the inequalities
|w]—o0 |w|—oco0
|w=! - 1]1/2 < 2, |1 = w|~"? < 1 hold for sufficiently large |w|. If we denote

R = sup |z| and use (3.6), we obtain that there exists a constant D > 0 such that
2€7

the inequality | f (w)l < M exp (lelll 2) holds for every |w| > D. This means that

f is of order p < 1/2.

Now let us investigate the behaviour of f(w) along each of the rays l; = {w:
w=-u, u>0}and I3 = {w: arg(—w) = (1 — 2a)7/2}. As v C Aq, then

arg (%(1 + u)1/2> < am, i.e. Re (-;-(1 + u)l/z) > 0. Using the notation (3.6),

we get

F-w] < m@+ w72 [exp {Re(<3a+u) }ds

J
<MQ1+u)"2< M. (3.12)

Now let w € I3. As —ar < argz < aw, we have consecutively

0<arg(l-w)<(1- 2a)%,
0<arg(l—w)/?< (1~ 2a)§,

0 < arg (%(1 - w)1/2) <(1+ 2a)%, ie. Re (%(1 - w)llz) > 0.

Using that I llim |1-w|~1/2 = 0 and (3.8), we conclude that there exists a constant
w|=+00

Q > 0 such that |
If(w)l < mQ/exp {Re (—%(1 - w)l/z) } ds < MQ. - (3.13)
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The rays {; and I3 divide the complex plane into two angular domains with sizes
(1 —2a)7/2 and (3 + 2a)m/2. The order of the function is p < 1/2. As seen from

(3.12) and (3.13), f(w) is bounded along /; and /3. Because of 1/2 < 2(1—2a)‘1 and
1/2 < 2(3+2a)~1, according to the Phragmen-Lindelof theorem f(w) is bounded in
both angular domains and thereforg on the whole complex plane. Hence f = const.

From (3.12) it is seen that lirroxo f(=u) = 0, that is f = 0. Since F # 0 and
- 0o '
the system {Bn(z)} . is complete in H(G), see Theorem 2, the last equality
n=

contradicts the criterion (CC). Therefore the series (3.10) has a finite radius of
convergence. Finally, let us note that (3.9) has no singular points in C\ [1, 00).

4. MAIN RESULTS

Theorem 4.1. Let G C C be a simply connected region. Then:
1) The system of the polynomials {B,(z)}5%, is complete in the space H(G);

o~ o0
i) The system of the functions {Bn (z)} . is complete in the space H(G).

Proof. 1) According to (2.6) deg B, = n, n = 0,1,2,..., and therefore the
system {B,(z)}3., is linearly independent. Therefore { B,(2)}3%, is a basis in the
space of the algebraic polynomials. Hence 2" is a linear combination of { Bx(z)}%-o,
therefore it can be concluded that {B,(2)}3%, is complete in H(G).

ii) According to (2.8) the coefficients of the polynomials exp(z/2)Ba(z) are
all different from zero, i.e. deg (exp(z/?)g,,(z)) = n,'n =0,1,2,... Therefore

the system {exp(.z/2)§n(z)}:i0 is linearly independent, which means that it is
a basis in the space of algebraic polynomials. Then 2" is a linear combination of
{exp(z/2)§,c (z)}:::o. That is why {exp(z/2)§,’.(z)}':o is compete in H(G), and
since exp(z/2) # 0 for each z € C, the correctness of the theorem is proved.

Theorem 4.2. Let 0 < a < 1 and lim (n/kn) = 6 > a. Then the system of

n—0o0
the polynomials

{Bk.(2)}nzo | (4.1)
is complete in the space H(G) for each simply connected region G C Aa.

Proof. Suppose the statement is not correct. Then there exists a simply con-
nected region G C A, such that the system (4.1) is not complete in H(G). Ac-
cording to the criterion (CC) this means that there exist a rectifiable Jordan curve
v C G and a function G € H, such that F # 0, but

/F(z)Bkn(z) dz=0, n=0,1,2,... (4.2)
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Let r = :1615 |z| and |w| < (4r)~'. Consider the complex-valued function f(w),

defined in (3.2). Let us note that it is not identically zero. Moreover, if k, are
the indices of the coefficients (3.4) in the power series (3.3), for which {k } =
{n}%o \ {kn}S%o, it follows from (4.2) that

flw) = A (F)ute. (4.3)
n=0 .

~ o0
For the density of the sequence {kn} we have
n=0
A=1-6§<1-a. (4.4)

As F # 0, not all the complex numbers (3.4) are zeroes. Then, according to Lemma
2, there exists a number ¢ € (0, a) such that all singular points on the circle |w| =
(R is the radius of the convergence of the series (3.3)) lie in the set A, i.e. there is
a closed arc with lenght 27x(1~—¢), where (3.3) has no singular points. On the other
hand, by a Polya theorem [15, Th. 7, p. 625] every closed arc of the circle |w| =
with lenght 2rA contains at least one singular point of (4.3). Because of (4.4) we
have 27A = 27(1 — 6) < 27(1 — a) < 27(1 — ) and we come to a contradiction.
Therefore the system (4.1) is complete in H(G) for every simply connected region
G C Aa.

Theorem 4.3. Let 0 < a < 1/2 and lim (n/k,) = 6 > 0. Then the system
of the functions T
B}, (4.5)
is complete in the space H(G) for every simply connected region G C A,.

Proof. Let us suppose that the statement is not correct. Then there exists
a simply connected region G C A, such that the system (4.5) is not complete in
H(G). That means that there exist a rectifiable Jordan curve ¥ C G and a function
Fe H such that F % 0, but

/ F(2)Be.(z)dz =0, n=0,1,2,... (4.6)

Y

Let |w| < 1. Consider the complex-valued function f (w), defined by the equality
(3.9). Observe that it is not identically zero. Moreover, if kn are the indices of the

coefficients (3.11) in the power series.(3.10) for which {k,,} W= {n}%o\ {kn} %0,
it follows from (4.6) that

flw)y =3 A (Fyu®=. 4.7)
n=0
We have
A=1-6<1 (4.8)
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~ (o]

for the density of the sequence { kn} . As F' # 0, not all of the complex numbers
(3.11) are equal to zero. Then, according to Lemma 3, the unique singular point
of f(w) on the circle |w| = R (R is the radius of convergence of the series (3.10))
is w = R. On the other hand, according to a Polya theorem [15], every closed arc
of the circle |w| = R with lenght 27A contains at least one singular point of (4.7).
Because of (4.8) we have 27A = 27(1 — ) < 27 and we come to a contradiction.
Therefore the system (4.5) is complete in H(G) for every simply connected region
G C Aqa.
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