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A numerical investigation of the two-dimensional flow around a circular cylinder is
performed using a primitive-variable approach. Steady (but unstable) solutions have
been calculated up to Re = 200. The imbedding system is solved numerically by a
difference scheme of splitting type. A staggered non-uniform grid is used. The obtained
results are in good agreement with the available data.
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1. INTRODUCTION

The numerical treatment of high-Reynolds number viscous flows is of consider-
able interest for the applications because of the fact that the predominant part of the
practically important flows take place either in large scales and high speeds or with
small viscosity. Classical examples of such a kind are, above all, geophysical flows
and flows around vehicles and vessels. The steady-state solution to Navier-Stokes
(N-S) equations for high Reynolds numbers is unstable and cannot be treated as an
initial value problem for the unsteady N-S equations. At the same time, the above
mentioned problem is of crucial fundamental importance in the sense of answering
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the question of which is the limiting pattern for the solution of N-S equations when
the coefficient Re™! of the highest-order derivatives approaches zero.

The problem of steady-state viscous incompressible flow past bluff bodies has
over a long time received much attention, both theoretically and numerically. The
circular cylinder is the simplest two-dimensional bluff body shape and the flow past
it has been the subject of considerable experimental and numerical study. The flow
round this shape has the attraction of being the source of intriguing transitions.
Many of the numerical treatments are concerned with low Reynolds number flows.
In spite of the many numerical calculations on flow past a circular cylinder, accurate
results have been obtained only for Reynolds number (Re = Uyd/v) up to about
700, see Fornberg [14, 15]. The Reynolds number Re is the governing dimensionless
parameter. The cylinder diameter d = 2a is the characteristic length; velocity
at infinity Us is the characteristic velocity; and v is the kinematic coefficient of
viscosity. Fornberg has found that the wake bubble (region of recirculating flow) has
eddy length L o« Re, width W o v/Re up to Re = 300, and W  Re beyond that.
Smith [18] has developed an asymptotic theory which agrees with Fornberg’s results
up to Re = 300 only. Smith [20] and Peregrine [17] have performed theoretical
work which gives a fresh interpretation of Fornberg’s results. There are several
differences between the theories of Smith and Peregrine, some of which are a matter
of interpretation. These are unlikely to be resolved without further analysis and
computational work.

The problem of viscous steady-state flow past a circular cylinder at high
Reynolds numbers represents one of the classical problems in fluid mechanics. Al-
though some agreement between theoretical, numerical and experimental results
exists, there is a need for further work in all these aspects of this fundamental and
classical problem. In the present paper the steady-state Navier-Stokes equations
are solved using the so-called Method of Variational Imbedding.

2. BASIC EQUATIONS AND METHOD OF SOLUTION

The N-S equations are given in dimensionless form, corresponding to a cylinder
of radius r = 1 in an uniform stream of unit magnitude with direction along the
positive axis of z. Polar co-ordinates (7, ¢) are used. The N-S equations governing
the steady-state motion then read

Ouy  uypOuy . Ul 1 6p 1 [ 2 6u,.]
AT L A z 2.1
Y T T 6<p+ r r6«,o+Re Du 2 0p |’ (2.1)
Ou,  uy, Our ui dp 1 2 Ou,
i Yo lUr 2o - 4 Dy - =2 2.2
or + r 0p 7 6r+ Re | . 2 0y (22)

+'_+"'—=0) (2'3)

178



where u; = u(r,¢) and u, = v(r,p) are the velocity components parallel respec-
tively to the polar axes r and ¢; p = p(r, ) is the pressure. Respectively,

2 2
D= 6_2 + l.(_?.. - _1_ 4 ii__
r2 " rdr r2 r?29y?
is the so-called Stokesian.
In terms of dimensionless variables, the cylinder surface is represented by r = 1,
while the velocity at infinity — by unity.
The boundary conditions reflect the non-slipping at the cylinder surface

ur(1,9) = up(l,9) = 0, (24)

on the one hand, and the asymptotic matching with the uniform outer flow at
infinity, on the other. Numerically one has to pose the asymptotic condition at a
certain large enough value of the radial co-ordinate, called “actual infinity,” say,
Teo. Then the dimensionless boundary conditions read

U (Too,P) = €OS P,  UY(Teo,p) = —sinp. (2.5)

Due to the obvious flow symmetry with respect to the line ¢ = 0, 7, the com-
putational domain may be reduced to 0 < ¢ < 7, » > 1 and additional boundary
conditions on the lines ¢ = 0 and ¢ = 7 are added to acknowledge the mentioned

symmetry, namely:
_ Ou,

Oy

Uy =0 for =07 (2.6)

2.1. APPLYING THE METHOD OF VARIATIONAL IMBEDDING

For tackling inverse and incorrect problems, Christov [4 - 6] has developed
the already mentioned Method of Variational Imbedding (MVI) which is a special
implementation of the Least Square Method to ODE and PDE.

Consider the imbedding functional

T o0
J ://(@2 + Q% + X*) rdrdy, (2.7)
01
where
_ Ouy, | u,Ou, | upu, 10p 1( 23ur)
q”"'"aT*'T&p’L r +r5<; Re Du¢+r26¢ ’

Q= u,

%+ﬂp_3u,_§+ap 1 2 0uy
dr r 0p r  Or Re r ’
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As far as the boundary value problem for the N-S equations possesses a solu-
tion, then the global minimum of the functional (2.7) is equal to zero, which is the
value the functional assumes on the solutions of N-S. This allows us to seek a local
minimum of the functional J and to check afterwards whether this is the global
minimum.

The necessary conditions for minimizing of a functional are the Euler-Lagrange
equations (see [8]). After some simplification these equations of Euler-Lagrange for
the velocity components and pressure take the form of a conjugated system for @,
Uy, 2, u, and p:

1
Re

269) (ur6<1> u, 00 2u,Q 16X>+¢8u, Q(?u,zo,

(D‘“ 25 at Tt tree B T T 00

1 2 Ju, Ouy  upOuy,  upu, 18p
—(Du¢+-———) ( ar +_r_6<p+ r +r63p te=0,

1 2 09 0 u, 00 u,® 09X Ouy, Ou,
ﬂ(DQ—ﬁ_B;)-F( 6r+r6<p T +6r)—¢6r _Qar =9,

1 2 Ou, Ou, u,Ou, ul 9p B
‘ﬁ(”uf—ﬁw) (“'W*T%‘T*b_r +a=9,

Ouy, Our  Ouy, Ou, 8u¢ au,
Ap_—<6<p or or 8<p+ or )

All five equations above are of elliptic type and of second order on each bound-
ary point. Therefore, five boundary conditions are needed. We already posed two
of them when formulating the problem, see Egs. (2.4) — (2.6). The remaining
three are the natural conditions for minimization of the functional (2.7), which are
nothing else but ® = Q@ = X = 0. From the continuity equation X = 0 we have
Au,/dr = 0 at the boundaries r = 1 and r = ro,. Respectively, the symmetry con-
ditions at the lines of symmetry ¢ = 0, 7 are dp/d¢ = 0, which is equivalent to
the condition on the function u,(r, ga) at the same lines, namely —8%u,, /9¢? = 0.
Thus we have a correctly posed boundary problem for the set of functions we are
looking for.

1t is clear that if we find a solution of the imbedding system for which ® and
Q are equal to zero, then uy, u, and p form the solution of the original problem.

Here we consider the same problem that was outlined in (8]. The difference
is that we treat the Imbedding system differently. In (8] the autors have solved
numerically the Imbedding system of Euler-Lagrange equations for functions u,,
u, which are of forth order, and pressure equation for p of second order. This system
looks apparently much more complicated (together with boundary conditions) than
the system of five equations for ®, u,, 2, u, and p.
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2.2. THE VECTORIAL FORM OF THE EQUATIONS. FICTITIOUS TIME

We introduce the notations (E is the unitary operator)

d Fe E 0 0 0 O
B Uy . Fte 0O E 0 0 0
f=| o |, FP=| F®* |, I=[ 0 0 E 0 0 |,
Uy Fur 0o 0 0 E 0
p FP 0 0 0 0 F
where
2 00 0 u,0® 2u,Q 10X Ou, Q Ou,
» Y 4 z & i
F Re-r2 gy U ar r6<p+ r r6<p+ ar r Oy’
we 2 Ous Ou,  uy Ouy uwu,)
Fov= Re-r? 9y ( 6r+r6<p+ r )’
2 0% N v, u,® X Ou Our,
Q_ il Y Y _ Y _ 0 ,
P = Re-r28<p+ur8 +r6<,o T ar q)ar or
u 2 Jduy Bu,  u,du, Uy
F “Re-ﬂﬁp_'(“’“aTJ’ r d¢ v |’

FP

dp Or or 0Oy T ? or

d
1 /18 0 1 1 82 0 10
_ (1,9 1 ~ L9y, Ap = ~m)
Arr = e(rarrar r2>’ Ave Re - r2 §p?’ A Tor % roy

10 6 1 62
) . 2~ 2 P) — = 7
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Ay O 0 0 0

\E A 0O 0 0

A] = 0 0 Arr 0 0
0 0 1E A, —A

(r]

0 0 0 0 Avr

and
Ape O 0O 0 0
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we render the equations for @, u,, 2, u, and p to the following vectorial form for 6

(Ay + A2)d + FP = 0. (2.8)
Upon adding derivatives with respect to a fictitios time ¢, we get

o0 —_—

57 = (A + Ag) + Fe, (2.9)
Note that in the physically unsteady case the time derivatives are present only

in the equations for the velocity components (the original system is not of Cauchy-

Covalewska type).

2.3. THE SPLITTING SCHEME

The system under consideration is non-linear. It can be solved by means of
an iterational process in which at each stage the equations are linearized. In the
present work we make use of the iterative procedure based on the co-ordinate-
splitting method because of its computational efficiency. We employ the method of
fractional steps, namely the second scheme of Douglas and Rachford (12], sometimes
called the scheme of “stabilizing correction” [22]. The stabilizing correction scheme
reads (7 is the increment of the fictitious time)

é‘n+a} _ é‘n é’n+l _ é‘n—{—%

= A2§n+l - Agé.n,

= A0 E 4 A FT
T T

or, which is the same,
(I = 7A)G S = (14 7A5)6" + 7FT, (I = rA)§H! = 673 — r A0,

The approximation with respect to fictitious time can be assessed after excluding
the half time-step variable 7+ 3. After some obvious manipulations, we obtain the

equation
é‘n+l _ é’n - -
(I+7%A1A,) ———=(A1+ A} + FP (2.10)

The splitting scheme is implicit for the linear terms and explicit for the non-linear
convective terms.

2.4. GRID PATTERN AND APPROXIMATIONS

The flow field shows a mixture of different scales for high Re. There is a
thin boundary layer close to the body, which separates and extends downstream.
Neither Cartesian nor polar co-ordinate systems are adequate enough for describing
the topology of the flow when the separation takes place. These problems are
aggravated with the increase of the Reynolds number. The usual polar co-ordinate
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Fig. 1. Grid pattern

system, dense enough to resolve the wake far out, will be very wasteful in other
directions. For this reason our mesh labelled by ‘o’ is chosen to be non-uniform.

The spacings are given by

R-1 s
h, = hy =
(P Nw—l’

N, -1’

where N, stands for the number of points in the direction r and N, — in the
direction ¢, respectively. The mesh is staggered for p in direction ¢. For u, and Q
it is staggered in both directions. In Fig. 1 the mesh is depicted, where the thick
lines represent the borders of the region of computations. The co-ordinates of a
point of the mesh are defined as follows:

r; = exp[(i — 1)h,], @j = %[(j-— 1)h,)?, wherei=1,...,Ny; j=1,...,Ny.

The points in Fig. 1, which are labelled by ‘o’, are those where the functions u,,
and ® are calculated. The pressure is calculated in the points labelled by ‘4’, and
functions u, and § are calculated in the grid point labelled by ‘e’.

We employ the following two-point and three-point approximations for the first
and second derivatives (equivalent to the central differences scheme on uniform
mesh). The derivatives are approximated as

Ou Ui = Ui-y
_— P R
Oz '-_% h,'_l
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Ou hi_y hi — hi_y h;

0z |, hi(hi + hiy) T * hihioy T hicy(hi + hiy) 0
6211 —~ 2 Uil — Uyg U; — U
0z2 |, ™ hi + hi_ h; hi1 '

where u stands for ®, u,, Q, u, or p and z stands for r or @. Respectively, h;_,
and h; are the values of the spacing on the left or on the right from the reference
point (Fig. 2).
i—1 i i41
-— . —e
hiaa h;

Fig. 2. A point of the non-uniform mesh

The staggered mesh allows to use second order approximations for the bound-
ary conditions. All boundary conditions are imposed implicitly.

2.5. IMPLEMENTATION OF THE SCHEME

The algebraic problem is coupled with the difference approximations of the
boundary conditions. The boundary conditions for the pressure equation stem
from the additional condition on function u, from the continuity equation. The
idea consists in treating the system for different half-time steps as conjugated (see
[19, 2]). On the first half-time step (the operators with derivatives with respect
to r) we solve the equations for the “vector” {®,u,}. Respectively, the equations
for the “vector” {Q, u,, p} are solved simultaneously. On the second half-time step
(derivatives with respect to ) the respective equations for the vectors {p, uy,, )}
and {u,,Q} are solved. The arguments for selecting the “pairs” and “triplets” of
equations are obvious: & enters the equation for u,, while Q enters the equation
for u,. The resulting systems are either five- or seven-diagonal and can be treated
by the solver described in [7]. The method of the so-called non-monotonous pro-
gonka is a kind of Gaussian elimination with pivoting and it is highly efficient for
multidiagonal cases. The solution algorithm allows for complete coupling of the
boundary conditions.

We solve the system governing the functions O(r, @), uy(r, ), Qr, @), u.(r, ®)
and p(r,¢) in the following iterational manner:

(1) The initial conditions ®°, ul, Q° u?, p° for small Reynolds numbers (Re ~
2 = 4) are defined as

ry — l Ty — 1
cosp;, Qi ; =0, urlij = .

singz, pli; = 0.

®lij =0, upli,; =

oo — 1 oo — 1

For larger values of Reynolds number the solution for the closest smaller Re
is used as the initial condition for the iterations for the current Re.

The counter of time steps is set n = 0:
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(11) On the first half-step for the line ¢ = ; we solve two systems for the un-

1 1
knowns ®"+% ult? Qn+d urt7 and p**t3 — with a seven-diagonal matrix
for {Q, u,,p} and a five-diagonal matrix for {®, u,};

(iil) Similarly, for the vectors ®"+!, up*! Q**! u2*! and p"*!, we solve for the
lines r = r; on the second half-step two systems — with a five-diagonal matrix
for {2, u,} and a seven—diagonal matrix for {®, u,,p};

(iv) The norm of the difference between two consecutive iterations (n+1) and (n)
(time steps with respect to fictitious time)

max |§"*! — 6"
i,
is calculated. If this norm is lesser than a prior prescribed value, then the
calculations are terminated. Otherwise the index of iterations is stepped up
n:=n+ 1 and the algorithm is returned to step (ii).

3. RESULTS AND DISCUSSION

In order to assess the approximation of the proposed scheme and the perfor-
mance of the algorithm, a number of numerical experiments have been conducted.

The accuracy of the developed here difference scheme and algorithm is checked
with the mandatory tests involving different increments of the fictitious time 7 and
mesh parameters: Ny, N, and ro. ‘

First of all, we check that the approximation of the steady-state solution does
not depend of the fictitious time increment of the splitting scheme. Theoretically,
it follows from equation (2.10) and provides a good check for the correctness of the
algorithm if it is respected in practice. We have calculated the flow with Re = 40
with three different fictitious-time increments: 7 = 0.1, 0.01, 0.001. We have found
that the iterative solution of the steady-state problem does not depend on the
magnitude of the time increment 7.

The second important verification is the spatial approximation of the scheme.
We have conducted a number of calculations with different values of mesh parame-
ters and verified the practical convergence and the approximation of the difference
scheme. In Table 1 and Table 2 we present the obtained numerical results for some
parameters like positions of separation point psep from the rear stagnation point,
difference between the pressure at front and at rear of stagnation point. The values
of the drag coefficient Cp are computed from

4 ] Ju :

— | = dep.

Re / Or Snear
0

r=1

Cp = -2 /p(l,(p) cospdp —
0
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The first term on the right gives the pressure drag coefficient and the second —
the friction drag coefficient. In these tests Re = 100, ro, ~ 53. For N, = 125 and
Ny = 195 the difference between the present results for psep and p(1, 7)—p(1,0) is
indistinguishable within the accuracy of calculations with ordinary precision. But
for N, = 126 and N, = 161 the flow picture changes significantly. These calcula-
tions illustrate the convergence of the difference approximation to the solution of
the differential problem under study.

TABLE 1. Results of calculation for TABLE 2. Results of calculation for
different N,, Re = 100, Ny = 126 and different N,, Re = 100, N, = 126 and
Too A2 53 Too & 53
Ny | ¢sep Cp p(1,7) — p(1,0) Nr | vsep Cp p(1,m) — »(1,0)
100 1.013 | 0.89820 0.56900 126 1.031 0.89289 0.59805
125 1.031 0.89289 0.59805 161 1.049 | 0.94539 0.63609
195 1.031 0.89081 0.59805 199 1.065 | 0.96055 0.64400

The values of ro, are obtained as the results of experience (13, 11].

We have successful calculations for 2 < Re < 200. The numbers of grid points
N, and N, cannot be very large (although it is desired) due to computer limitations.
The tests have shown that for Re < 100 the mesh size with N, = 150, N, = 251,
oo =~ 88 is probably safe. The calculations at Re = 200 presented bellow are
carried out by using the mesh size N, = 125, N, = 199, ro, =~ 80.

Some of our results along with the results of other authors are given in Table
3 for comparison. The values of Cp, L and p(1, 7) — p(1,0) for Re = 20, 40, 50, 100
are in good agreement with those of Fornberg [13] and reasonably agree with those
of Takami and Keller [21] and Dennis and Chang [11].

TABLE 3. Calculated values for Cp, L and p(1,7) — p(1,0)

Ref. Re Cp L p(1,7) - p(1,0)
21} 20 | 2.003 | 2.87
40 | 1.536 | 5.65
50 | 1.418 | 7.10
1] 20 | 2.045 | 2.88 0.9290
40 | 1522 | 5.69 0.8265
100 | 1.056 | 14.11 0.7265
[13] 20 | 2.000 | 2.82 0.910
40 | 1.498 | 5.48 0.801
100 | 1.060 | 13.20 0.693
200 | 0.831 | 26.20 0.589
Present work | 20 | 2.0005 | 2.84 0.9215
40 | 1.4877 | 5.47 0.8163
50 | 1.3470 | 6.61 0.7843
100 | 1.0052 | 13.33 0.6956
200 | 0.6769 | 17.81 0.4740
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Fig. 3. Streamlines and vorticity fields
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Fig. 4. The separation angle
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Streamlines and vorticity isolines of the flow for Reynolds numbers 50, 100
and 200 are shown in Fig. 3. For the stream function the contour values, starting
from the top, are {0.4, 0.3, 0.2, 0.1, 0.05}; enclosed streamlines, starting from
the centre, are {—0.1, —0.05, 0}, and for the vorticity the contour values are
{0.1, 0, —0.2, —0.4, —-0.6, —1, -3, ...}. Fig. 4 gives the calculated values of Psep
measured from the rear stagnation point. They are in good agreement with the
calculations of Fornberg [13] and of Dennis and Chang [11]. Theory based on the
Helmholtz-Kirchhoff model predicts that as Re goes to infinity [1], the separation
point may move forward to an angle of 125°. In [10] this angle is p = 1.815(104°).
Our results and this possible limit are shown in Fig. 4.
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