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FACTORIZATIONS OF THE GROUPS Q;(q)"
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The following result is proved:
Let G = Q7(q) and g is odd. Suppose that G = AB, where A, B are proper non-Abelian
simple subgroups of G. Then one of the following holds:

(1) g=3and A 2 Ls(3) or G2(3), B = Spe(2) or Ag;
(2) g¢=-1(mod4) and A 2 G2(g), B Lg(g)

(3) ¢=1 (mod4) and A & Ga(q), B & Uyg(q);

(4) ¢=3*"t1>3and A> 2Gy(q), B 2 Ls(q);

(3) g= 32n+1 and A & Ua(q), B & La(g);

(6) ¢ =23"and A ™ Lj(q), B Us(q);

() A Ga(q), B2 PSpi(a).
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1. INTRODUCTION

In [1-3] we determined all the factorizations with two proper simple subgroups
of all groups G of Lie type of Lie rank 3 except for G = Q7(¢). In the present
work we extend this investigation to the simple groups Q7(q) of Lie type (Bs) over
the finite fields GF(gq). Thus we complete the determination of all factorizations
(into the product of two simple groups) of all simple groups of Lie type of Lie
rank 3. Here we may assume that ¢ is odd in view of the well-known isomorphism

* This work was partially supported by the Bulgarian Ministry of Education and Science, Grant
No MM 412/94.
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Q7(¢q) = PSps(q) if ¢ is even (recall that the factorizations of the groups PSpe(q)
have been determined in [3]). We prove the following

Theorem. Let G = Q7(q) (q is odd) and G = AB, where A, B are proper
non-Abelian simple subgroups of G. Then one of the following holds:

(1) g =3 and A = L4(3) or G2(3), B = Spe(2) or Ao;
(2) ¢= -1 (mod 4) and A = G»(q), B = L4(q);

(3) ¢ =1 (mod 4) and A = G,(q), B = Us(q);

(4) =32"*1 > 3 and A= 2Gy(q), B = La(g);

(5) ¢ = 3"+ and A = Us(q), B = La(q);

(6) ¢ = 3?" and A= L3(q), B= Ua(q);

(7) A= Ga(q), B = PSpa(q).

The factorizations of Q7(g) into the product of two maximal subgroups have
been determined in [7). We make use of this result here.

We shall freely use the notation and basic information on the finite (sim-
ple) classical groups given in [6]. Lf(q) denotes L.(q) if ¢ = + and U,h(q) if
¢ = —. Let V be the natural 7-dimensional orthogonal space over GF(q) on which
G acts, and let ( , ) be a non-singular symmetric bilinear form on V. There is
a basis {d,e;, f; | i = 1,2,3} of V, called a standart basis, such that (d,d) = 2,
(dyei) = (d, fi) = (ei,e5) = (fi, f5) = 0,(ei, f;) = & for i, = 1,2,3. Let P be
the stabilizer in G of a totally singular k-dimensional subspace of V. If W is a
non-singular subspace of V' of dimension k, we denote the stabilizer Gw of W in G
by Ni (¢ = ), where W+ has type O7_; if k is odd, and W has type O if k is
even. From Propositions 4.1.6 and 4.1.20 in [6] we can obtain the structure of P
and Ni. In particular, it follows that

P () ((0- D/2x PSpa(@) 2, Py=[]: 1GLs(o)

Ny =Q6(g)-2=(2,(¢ - €1)/2)-Li(9) 2, N5 =((q ~€1)/2 x PSpa(q))-[4].

From this 1t follows immediately that N contains a subgroup isomorphic to L§(q)
if and only if ¢ = ~¢1 (mod 4); also, in P there exists a subgroup isomorphic to
L3(g) only if ¢ #1 (mod 3). Lemma 4.1.12 in [6] gives us a possibility to describe
in P, the subgroup L isomorphic to PSps(q), namely, we may regard L (up to
conjugacy in G) as the subgroup of G fixing the vectors €;, f; and stabilizing the
subspace (d, e3, €3, fz, f3) of V. In the same way , using again Lemma 4.1.12 in [6],
we may take (if ¢ # 1(mod 3)) the L3(g) subgroup of Ps to be the subgroup K of G
fixing the vector d and stabilizing each of the subspaces (e, 3, e3) and (f1, f2, f3)
on which K induces an SL3(q) subgroup. Note that each of the groups Nf and N§
also contains a subgroup isomorphic to PSp4(q).
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2. PROOF OF THE THEOREM

Let G = Qv(gq), where ¢ = p™ and p is an odd prime, and G = AB, where

A, B are proper non-Abelian simple subgroups of G. The factorizations of Q+(3)
are determined in [4]; this gives (1) and (2), (5), (7) (with ¢ = 3) in the theorem.
Thus we can assume that ¢ > 3. The list of maximal factorizations of G is given

in [7]. This leads, by order considerations, to the following possibilities:
1) A= Us(q) (in Ny), B = G2(\/9) (in a G2(g) subgroup of G), m even;

2) A= Us(q) (in Ny), B = L3(q) (in P3), ¢ = 1(mod 4) and ¢ # 1(mod 3);

3) A= Gy(q), B = PSpa(q) or B = L5(q) (in Nf with ¢ = —¢l(mod 4));

4) A= 2Gy(g), B = La(q) (in N¥), ¢ = 3"+ > 3
5) A= L(q) (in a G2(q) subgroup of G), B = L7(q) (in N¢), ¢ # €1 (mod 3)

and ¢ =€l (mod 4).

We consider these possibilities case by case.

Case 1. Here |JANB| = ¢— 1. Now let B; = G2(g) be a subgroup of G
containing B. Then G = AB, and |ANB,| = |SU3(q)|. Since (ANB;)NB =ANB
has order g — 1, it follows (by order considerations) By = (AN B;)B. However, the

group B) = G(q) possesses no such factorization ([5]), a contradiction.

Case 2. Here we use the following two realizations of the group G1 = SO7(g):
(i) SO7(g9) = {X € SL72(q) | X*HX = H}, where

is the matrix of the bilinear form ( , ) in the standart basis d, ey, €2, €3, f1, f2, f3;

(ii) SO(q) ={Y € SL7(q) | Y'IY = I}, where

/2/\

0_)

\" 0

—2x )

is the matrix of the form ( , ) in the basis ey + Af1, €2, €3, d, fa, f2, €1 — Afi with

A a non-square in GF(q).
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Let X,Y € SL7(¢) and Y = TO'IXTO, where

000100 0)
100000 1
010000 0
To=] 001000 0
X 0000 0 —A
000001 0
\0 00010 o)

Then Y'IY = I if and only if X'HX = H.
Now, from the above description of the L3(g) subgroup in P, with respect to
(i), we have

1] 0] o
B = {( 0O|M]| 0 ) | MeSLs(q)}i‘Ls(q)-
00 | M~

Further, we may take A to be the Us(g) subgroup in the subgroup P of SO-(q)
which has the following form about (ii):

110

P=1l o, | €S0re)} =505 ()= 2x Uo).

Moreover, we have PN G = A and hence PN B = AN B. A direct calculation
shows that

1 0 0
170
PNB=T;" 1577 0 To,
1] 0
A

where T' € SLa(q). Thus ANB = SL(q) and order considerations imply G # AB.
Now we proceed to prove that in the remaining cases 3-5 (with suitable ¢) the
factorizations exist.
Case 3. Let us consider the following realization of the group SO7(q):

(i) SO+7(q) ={Z € SL7(q) | Z'JZ = J}, where

( L)
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is the matrix of the bilinear form in the basis e, e, e3,d, f3, fa, f1 (see (i) above).
Now, with respect to (ii1), we make use of the well-known 7-dimensional represen-

tation of the group G2(gq) over the field GF(q) ([8]).
The root system of type (G2) is

E = {£&1, £62, £63, (61 — €2), £(&2 — €3), (€3 — &)},

where £ +€,+€3 = 0. Let £ and E;;, =3 <7,j < 3, denote the 7x 7 identity matrix
and matrix units, respectively. Then the generators z.(t) (r € >, t € GF(q)) of
G2(q) are represented as follows:

2g,-¢;(t) = E+HE-i-j — Eji),
T1¢,(t) = E+t(£2E5i0 F Eoxi £ Exjzr F Bxisgj) — * Exisi,
where (i, 7, k) is an even permutation of 1, 2, 3. Note that
wr = o (2o (=1)z,(1), he(t) = z,)z_r (=t ")z, (t)w; .
Any element of A = Gy(g) can be written uniquely in the form
za(t1)zs(t2)Tags(ta)T2a+5(1a) 230+ (t5)T3a420(t6 ) ha(u)hs(v) w za(s1)T0(52)

Zat1b(53)T2045(54)T3a+5(55)T3a+26(86),

where a = &, b =€ — €2, 4,8 € GF(g), u,v € GF(q)* and w = 1, wg, wp, waws,
WhWa, WaWpWa, Wewaws, (Wawp)?, (wswa)?, (waws)?wa, (whwa)?wy or (wawp )®.

On the other hand, using the above description of the PSp4(q) subgroup in Py,
with respect to (iii) we may take B = PSpa(g) to be a subgroup in the following
subgroup Q of SO7(q):

1/01]0
Q = { ( 0[]0 ) S SO7(q)} > S0s(q) = PSpa(g)-2
01011

Moreover, QN G = B and hence ANQ = AN B. A direct computation shows that
AN B consists of the following elements of A:

zy(t2)hs(v), zo(t2)ho(v)wpzs(sz) (v € GF(g)*, ta,s2 € GF(q)).

Hence |AN B| = q(¢® — 1) (in fact, AN B = (zy(t), z_3(t)) = SL2(g)). Now order
considerations imply G = AB. This is the factorization in (7) of the theorem.

Further, let A = G4(q) be the subgroup of G described in the above paragraph
and B = L4(q) be the subgroup of G in the subgroup R of SO7(g) which has the
following form with respect to (iii):

x| 0| %
R:{(O 1 O)6507(q)}250§(q)’52x[,4(q).

x| 0] %
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Here, again RNG = B and thus AN R = AN B. Just as above, we can find the
common elements of these Ga(¢) and L4(q) subgroups of G; they are as follows:

b(t2)T3a+b(t5)T3a+26(t6)ha(u)he(v),
zp(t2)Z3a45(t5) 30425 (26 ) ha(u)hy(v)wpzs(s2),
zb(t2)z3a+b(t5)x3a+2b(tG)ha(u)hb(v)wawbwa-r:ia-{-b(sf’)l
zy(t2)3a+5(t5)T3a426(t6) ha(u)hy(v)(waws ) zs(52)230426(56),
Th(t2)3a+b(ts)Taa420(t6)ha(u)he(v)(wswa) 2 T3a45(55) T30 426(56),
25(t2)Z3a+5(t5)T3a+26 (t6) ha (W) hy(v)(wpwa) ®wszs(52) T3a+5(55)T3a+26(56 ).
Hence |ANB| = ¢°(¢°~1)(¢*~1) (in fact, ANB = (z44(t), T+(3a+8)(t), To(3as26)(t) |
t € GF(q)) = SL3(q)). Again order considerations imply G = AB. This is the
factorization in (2) of the theorem.

Now, with respect to (iii), let A = G2(g) be the same subgroup of G described
above and B = U4(q) be a subgroup, in realization (ii), of the group P considered
in the previous case. Let Y,Z € SL7(g) and Y = Ko'lZKo, where

( 1 0 0 00 O 1 \
010 0 0 O 0
0 01 00O0 O
K= 0 0 0100 0
0 0001 0 0
0 0 0 0 0 1 0

\X 00000 -x)

Then Y'IY = I if and only if Z'JZ = J; here I and J are the matrices described

above.
A direct computation shows that the common elements (in realization (ii)) of

the above G(¢) and U4(g) subgroups are

K (za(t1)zs(t2)Za5(t3) 220 45(ta)Z3a48(ts) T304 25(t6)
ha(u)hy(v)wza(s1)zs(52)Zat5(53)T20+5(54)T3a+5(55)T3a+26(56)) Ko,
where:
w:landu:1,t1=t3=t4=t5=t6=sl=32=s3=34=35:36=0;

w=uwgand 53 =53 =84 =855 =56 =0, 8 = —u, t; = —uv™!, {3 = 11,
g = ti3, s = —11t4, tg = L1i2l4 — tltg ~ tatg + u‘lvA;

w:wbandu=1,t1 =13=t4=t5=t5=81283:‘.34:35:56:O',

w=wgwpand sy =s4 =55 =86 =0,83=u,t; = —-uv"l, i3 =11tg, 14 = t1ia,
ts = —11t4, tg = Au~ly - t3ts;

W = wpwe and 53 = 53 = 854 = 56 = 0, 51 = —u, 55 = —u~vly, 13 = tty—u" 2y,
ta = titg, ts = —tity — AuPv™!, tg = t3tat3 — 24112,

W = wawpwg and 52 = 53 = 56 = 0, 51 = u™ vty 54 = t 314, 55 = —u—2s; 84,

i3 = tyts + u 20l - u’zvsf, ts = vlv~! — t1la, tg = tyiaty — t;i% — 13t4;
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w = wywawp and s = 54 = 55 = 0, 53 = u, ¢ = u~lvty, t3 = —u"2v + t11,,
lg = t1l3, t5 = —uy~1) - l1lg, te = t)ioty — tltg — t3t4;

_ 2 — e _1
w = (wewp)? and sy = 55 = 0, ¢ = u — 28354, 8} = —uv~ls3, t3 = t1ty —

“2us3 + uT 20, 1y = titg — sq, t5 = uPvT = tyls, tg = tytaty — 1415 — taty;

u

w = (wpws)? and s2 = 53 = 0, 55 = —u— 25154, t) = uv~1(s2 — 5186 — A), t3 =
u~2usy +t1ty, 1y = t1ts — 84, ts = —uPv " 55 —tits, g = titaty — 13 —tats +uty;

w = (wows)?wa and 53 = 0,1 = uv™(25,54+85—5783), t3 = u~2v(s6+25354 )+
t1tg, 14 = t1l3+ 84 — 5183, I5 = —u2v“sl —t1l4, te = t1loly — tltg —t3tq — u‘lvs;;,
sf + 8355 — S156 — 2818354 = U+ A;

w = (wpwqa)?wp and sy = 0, s = u—25384 — 5285, t; = uv=(s3+s3s5—A), t3 =

u‘2v33 +i1ty, 14 = 11i3— 84,15 = —u2v‘155 — 11y, lg = u"v+t1t2t4 —tltg—t3i4;
w = (wawp)® and t; = —uv~(se+25354+5255), t3 = 1ty —u"2v(s?s3 25,54 —
55), g =11tz + 84 — 5183, 15 = u2v‘133 —t1t4, lg = t1l2l4 — tltg — laty — u“lvsl,

si -+ (83 - 8182)85 — 2518354 — 5186 = u + A.

Hence |[ANB| = ¢3(¢3+1)(¢*—1) = |SUs(q)| (in fact, from (7, 5.1.14 (a)] we can see
that AN B = SUs(q)). Order considerations yield G = AB and the factorization
in (3) of the theorem is proved.

Case 4. Here ¢ = 32"t1 > 3. In case 3 we proved that G = AB, where
A = Gy(3%11), B = Ly(3°"*') and D = AN B = SL3(3*"*!). Take a subgroup
C = 2G5(3?"+1) of A. Then (as shown in [9]) A = CD. It follows that [CN B| =
|C N D| =g~ 1. This implies G = CB, the factorization in (4) of the theorem.

Case 5. Suppose that G = AB. As A lies in a subgroup A; = G2(¢q) of G, we
have also G = A B. Since |[AN (A; N B)| = |AN B| = ¢ - 1, it follows (by order
considerations) that A, = A(A; N B). Now, from the list of all the factorizations
of G3(q) given in [5], it follows that this is possible only if A} N B = L3*(q), and
=3t ife=— ¢=3"ife=+.

Conversely, with these restrictions on g, let Ay = Gz(g) and B = L;“(q) be
the subgroups of G described in case 3. As we have seen, A, N B = L3°(¢) and
then (by [10]) there is a subgroup A = L§(q) of A; such that A} = A(A; N B). It
follows that |[ANB| = |[AN(A1NB)| = ¢ —1 and hence G = AB, the factorizations
in (5) and (6) of the theorem.

This completes the proof.
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