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1. INTRODUCTION

Let % = (A; Ry, Ry, ..., Ri) be a countable abstract structure, where each R;
is an a;-ary predicate on A.

A total mapping f of the set of the natural numbers N onto A is called a total
enumeration of A. Every total enumeration f of U determines a unique structure
B =(N; R{, R{, . .,R,f) of the same relational type as 2, where

Rl(z1,...,24,) <= Ri(f(z1),..., f(za,)).

Let a < w{H. A subset M of A? is said to be E2-admissible in 2 if for every
total enumeration f of 2 the pullback f=1(M) of M is L2 in the diagram D(%B;)
of By.

The notion of £¢-admissibility with respect to injective total enumerations was
introduced in 1964 by Lacombe [3] under the name V-admissibility. Several modifi-
cations and generalizations of this notion have appeared since 1964. Among them

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.
This work was partially supported by the Ministry of Education and Science, Contract 1 604/96.
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we would like to mention the L9-admissibility in partial enumerations introduced
in [5] and the relatively intrinsically 3 sets introduced in [1] and [2], which are
defined by means of £0-admissibility with respect to injective total enumerations.

In [5] the author made the observation that the sets on an abstract structure
which are 2?-admissible with respect to partial enumerations with relatively recur-
sively enumerable (r.e.) domains coincide with the sets which are ¥9-admissible
with respect to total enumerations.

In the present paper we are going to study further the interplay between ad-
missibility in total and partial enumerations. For we introduce the notion of X2-
admissibility in partial enumerations with relatively £2 domains, and more gener-
ally, for £ < n, £9-admissibility with respect to partial enumerations with relatively
22 domains. A normal form of the admissible sets is obtained. It turns out that for
k < n the admissible sets coincide with those which are £9-admissible in all partial
enumerations and are described by means of quantifier free recursive )32 formulas.
If k¥ = n, then our notion of admissibility leads to a class of sets, described by
means of a simple kind of recursive £ formulas on the abstract structure, in which
the quantifiers ranging over the domain of the structure are existential and appear
only on the last level.

The arguments use the machinery of the so-called regular enumerations, which
seems to have a wide range of other applications.

2. PRELIMINARIES

Consider again the countable structure 2 = (4; Ry, R, ..., R;), which from
now on we shall suppose fixed.

2.1. Definition. An enumeration of 2 is an ordered pair (f,B;), where
f 1s a partial surjective mapping of N onto A with an infinite domain, B; =
(N;01,02,...,01) is a structure of the same relational type as 2, and the following
condition holds for every i € [1,/] and all z4, ..., z,, € dom(f):

oi(z1,...,%5,) < Ri(f(x1),..., f(za,))

2.2. Definition. Let n > 1. The enumeration (f,B;) is called £¢ if the
domain of f is L2 in the diagram D(‘B;) of B;.

2.3. Definition. Let k> 1. A subset M of A% is L9-admissible in (f,B;) if
there exists a £J in D(By) subset W of N such that for all z),...,2, € dom(f)

(Z1,...,2q) EW <= (f(z1),...,f(zs)) € M.

As stated in the introduction, our goal is to obtain an explicit characterization
of the sets which are £2-admissible in all £ enumerations, k < n. For we consider
two kinds of recursive £9 formulas in the language L, of the structure 2, which
we call “quantifier-free” and “existential”, respectively.
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The 9, the TIY and the A}, quantifier-free formulas are defined simultane-

ously with their indices by induction on k. We shall suppose that a coding of the
formulas in £ is fixed. Given an index v, by ®* we shall denote the formula hav-

ing 1

ndex v. For every formula ®, by ®(X;, ..., Xs) we shall denote that the free

variables in ® are among X1, ..., X,.

As usual, by Wo, ..., W,,... we shall denote the standard enumeration of the

r.e. sets of natural numbers.

(i)

2.4. Definition.

The logical constant T and all atomic formulas in £ are 0 quantifier-free
formulas.

The logical constant F and all negated atomic formulas in £ are 113 quantifier-
free formulas.

The A? quantifier-free formulas are finite conjunctions of £3 and Y quanti-
fier-free formulas.

The indices of the £3, 11§ and AS quantifier-free formulas are their respective
codes as formulas in L.

If every element of W, is index of some AJ,, quantifier-free formula with
variables among Xi,. .., Xq, then

\V @', Xo)

veW,
is a £§ ., quantifier-free formula with index (0,k + 1, €).

If & is a £}, quantifier-free formula, then ~® is a M),, quantifier-free
formula. For every index {0,k + 1,e) of ®, the triple {1,k + 1,¢) is an index
of =~P.

If &,...,8 are T2 or I, r < k+1, then x = ®1& ... &P is a AR 4o
quantifier-free formula. If vy,..., vy are indices of ®1,..., P, respectively,
then (2,v;,...,vs) is an index of x.

2.5. Definition. A X} ezistential formula, k > 1,is a formula of the form

V v, ...3Yq'<1>"(Y1,...,Yq,,Xl,---,Xa)’
veV

where V is an r.e. set of indices of AJ formulas.

tial formula. S

Let M C A% and ®(X,, ..., Xa, Z1,-..,2s) be a I} quantifier-free or existen-

2 6. Definition. The set M is definable by ® on 2 if for some ¢1,...,ty € A
(Vsl,...,sa € A)((sl,...,sa) EM=U '--¢(31,...,s¢,t1,...,ib)).
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In the rest of the paper we are going to prove the next two theorems.

2.7. Theorem. Let M C A® and 1 < k < n. The set M is £0-admissible in
all 2% enumerations of A if and only if M is definable by some X quantifier-free
formula on 2.

2.8. Theorem. The set M 1is 23-admissible i all 22 enumerations of A if
and only if M s definable by some £9 existential formula on 2.

3. GENERIC ENUMERATIONS

The proofs of Theorem 2.7 and Theorem 2.8 use a forcing construction. In this
section we shall describe the fundamentals of this construction.

3.1. Satisfaction relation. To simplify the notations we shall consider only
the subsets of the domain of the structure . All results can be easily proved for
subsets of A%, a > 1.

Let (f,By) be a partial enumeration of the structure A = (A; Ry, Ry, ..., I)).
And suppose that By = (N;01,02,...,01). We shall identify the diagram D(B)
of B; with the set consisting of the codes of the atomic and the negated atomic
formulas which are true on B;. In other words, we shall assume that

D(™By) = {({i,z1,...,2q4,,€) 1 0i(z1,...,25,) =€, 1 € [1,1]}.
If u € N, then define
fE us=ueD(B;).
If E is a finite subset of NV, then
JEE< fEuforeach ue E.

Assume also fixed an effective coding of all finite sets of natural numbers. By
FE, we shall denote the finite set with the code v.

Let us fix for every n > 1 and each ¢ € N a unary predicate letter F*. We
adopt the notation =*F*(z) = F*(z) if i = 0 and ~*F(z) = —F*(z) ifi = 1. We
shall assume that the code of =*F?(z) is (i,n, ¢, z).

For each z € N and every predicate letter F* the satisfaction relation f |=
~'F7?(z) is defined by induction on n. Given a finite set £ of natural numbers
and n > 1, by f =n E we shall denote that every element u of E is of the form
(i,n,e,z) and f | = F*(z).

3.2. Definition.
(i) fEF(z) <= 3v({v,2) eW. & f E E,);
fE-F/(z) < [ F}z)
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(i) I Fr4i(e) <= Fu((v,2) € W & f I B);
fE-FMY(z) <= fEFI*(2).
3.3. Proposition.
(1) The sets {z : f |E F™(z)} coincide with the £ in D(B;) sets.
(2) The sets {z : f | ~FI(z)} coincide with the TI in D(Bj) sets.

Proof. The proof is by induction on n.
For n = 1 note that from the definition of “=” we have

fE F.(z) <= z € T.(D(By)),

where T, is the e-th enumeration operator, see [4]

Since N\ D(B;) is enumeration reducible to D(%By), the r.e. in D(B;) sets
coincide with the sets which are enumeration reducible to D(By).

The step from n to n + 1 follows easily by the Strong hierarchy theorem,
see [4].

3.4. Corollary. A set M C A is 0-admassible in (f,By) iff there ezists an
e € N such that for all z € dom(f)
[ Fl(z) = f(z) e M.
3.5. Finite parts and forcing. The conditions of the forcing are finite
mappings of N into A with some additional properties which we call finite parts.

We use §, 7, p to denote finite parts.
Let [0, g] be an initial segment of N.

3.6. Definition. A finite part & on [0, q] is an ordered triple (as, Hs, Ds) with
the following properties:

(1) as is a partial mapping of [0, ¢] into 4;
(2) Hs C[0,q);
(3) dom(as)U Hs = [0, g} and dom(as) N Hs = ;

(4) Ds is the diagram of a finite structure of the same relational type as 2 and
domain [0, q], and such that if 1,..., 24, € dom(as), then

(i,z1,...,%a,,€) € Ds <> Ri(as(z1),...,as(zq,)) = €.
Let A be the set of all finite parts.
3.7. Definition. Given finite parts § and 7, let

§C1 <> a5Car & Hs CH; & Ds C D;.

If (f,B;) is an enumeration, then let

6 C(f,By) as C f & HsNdom(f) =0 & Ds C D(*By).
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Let 6 € A.
If u € N, then § IF u iff u € Dy,
If E={u1,...,u,} is a finite subset of N, then let

bIFE <= lhu & ... & 6IF u,.

Now we are ready to define the forcing relation § I F*(z) for all e,z € N by
induction on n > 1. As before we shall denote by § I, E that every element u of
the finite set £ is in the form (i,n,e,z) and § It —*F7'(z).

3.8. Definition.
(i) 61k Fl(z) <= Fv({v,z) € W, & 6 I+ E,);
6k =Fl(z) <= VYp(p D6 = plf F}(z)).
(ii) 8 IF FP+(z) <= 3v((v,z) e W, & 6 IF, Ey);
Sk ~FP*l(z) <= Vp(p 2 6§ = p I FIt1(z)).
From the above definition follows immediately the monotonicity of the forcing,
1e. if 6 IF F'(z) and 6 C 7, then 7 IF F}(z).

3.9. Definition. Let Y C A. The enumeration (f,B;) meets Y if for some
seY,5Cf.

3.10. Definition. A subset Y C A is dense in the enumeration (f, By) if
(V8 C f)3r € Y)(6C 7).

3.11. Definition. Let F be a family of subsets of A. An enumeration (f, B)
is F-generic if whenever Y € F and Y is dense in (f,B;), then (f,B;) meets Y.

As usual, we have that for every countable family F of subsets of A and every
6 € A there exists an JF-generic enumeration (f, B;) such that f D 6.

Let Fo = {0}. For n > 1set Y, = {r: 7IF F}(z)} and let ¥, = (U, , Y";) U
g.n_l.

The following Truth lemma can be proved by induction on n:
3.12. Lemma. Let (f,B;) be an enumeration, n > 0. Then for alle,z € N:
(1) If (f,By) is Fn-generic, then
fEF(z) <= (386C f)(8IF F*(2)).
(2) If (f,By) is Fny1-generic, then
fEFM () & (36 C f)(6 F~F(2)).
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3.13. Definition. Let § C 7. Then 7/6 is the finite part (as, H, U(dom(a;)\
dom(as)), D;).

By 6 < 7 we shall denote that dom(as) = dom(a,) and § C 7.

3.14. Lemma.

(1) If § C 7, then 8 <X 7/8;

(2) If 8§ C 1 Cy, then /6 X 12/6;

(3) If 6 C 1 and 7/6 < p, then there ezists a finite part p’ such that v <X p' and
p'l6=p.

Proof. (3) Let 6 C 7 and 7/6 < p. Then 7/6§ = (as, Hr U (dom(a;) \
dom(as)), Dy). 7/8 < p implies p = (as, Hy U (dom(ar) \ dom(as)) U H', D,),
where D, C D, and H’ N (dom(a,)U H,) = 9.

Let p' = {ar, H; UH',D,). Then 7 X p' and p'/§ = (as, H, U (dom(ar) \
dom(as)) U H', D,) = p.

3.15. Stared forcing. We define a stared forcing relation 6 IF* F*(z) for all
n> 1, e,z € N by means of the following inductive definition:

3.16. Definition.

(i) 6 IF* Fl(z) <= 6IF F}(z);
§IF =Fl(z) <= Yp(p =6 = plf" Fi(z)).

(i) 61 Frti(z) <= 3v((v,z) € W & 6 IF}, Ey);
§IF* ~Frtl(z) <= Vp(p = 6§ = p I FP1(2)).

Here 6 I+ E, means, as before, that every element of E, is in the form
(i,n,e,z) and § IF* ~*F7(z).

From the definition above it follows immediately that the stared forcing is
monotone with respect to “<”,i.e. § It* F(z) & 6§ < 7= 7" F}(z).

3.17. Lemma. Let § C . Then for alle,z € N, n > 1,
(1) TIF FMz) < 7/81F" F}(z);
(2) TIF ~FMz) <= /61" ~F}(z).
Proof. The proof is by induction on n.
Since Dy = D, s, (1) holds for n = 1.
Suppose now that (1) is true for some n > 1.
(2) (=). Let 7 Ik ~F?(z). Assume that 7/8 |f* ~F7(z). Then there is a finite
part p > 7/6 such that p IF* F?(z). By Lemma 3.14 there exists a finite part p’

such that p’ > 7 and p'/6 = p. Then p'/6 It* F2(z) and by induction p’ IF F,}(z).
Clearly, p' D 7. A contradiction.
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(2) (¢=). Let 7/6 I+* ~F7(z). Assume that r If “Fl(z). Then there ex-
ists p O 7 such that p IF F7(z). By induction p/§ I-* F'(z). By Lemma 3.14
p/é = 1/6. A contradiction.

Now, using the respective definitions, we get immediately that

TiE FPt () <= Ik Fr(g),

3.18. Lemma. Let § be a finite part, n > 1, e,2 € N. Then
(1) 61k FMz) < §I+* Fl(z);
(2) Ar28)(rIF F2(z)) <= (3p = 8)(pIt" FP(2)).

Since 6/6 = 6, (1) follows from the previous lemma. By the same argument
61k =Fl(z) <= 6IF* =F"(z). From here (2) follows by contraposition.

4. REGULAR ENUMERATIONS

Given a finite part § defined on [0, q], we shall call ¢ the length of § and denote
it by |6]. If p < g, then by §[p we shall denote the restriction of § on [0, p], i.e.
6Tp = (as([0,p], Hs[[0, p], Ds[[0, p]). Clearly, 6[p 1s a finite part and §[p C 6.
Given finite parts 7, and 7, say that 7, is shorter than 7, if:

(a) Imf < [r2| or
(b) |m] = |m2] and the code of the finite set Dy, 1s less than the code of D,,.

Notice that “being shorter than” is a recursive relation and for every finite part §
it is a well ordering on the set {r[6 < 7}.

Let J;, be the sequence {X7, 1) X[, ...} of sets of finite parts, where
XP=0and X! = {r: 7 I+ Fiyo (1)} for n > 1.

The finite part 7 decides X if 7 € X or (Vo = 7)(p & X). Clearly, for every
6 and 7 there exists a 7 > 6 such that r decides X7'. By Lemma 3.18, if 7 decides
X and 7 C p, then p also decides X

Let

sy ]9 if (V7= 68)(r ¢ XP),

#n(i,6) = (the shortest T)(6 <7 & T € XP) otherwise.

Clearly, p1n(,6) decides X*. Notice also that the length of u,(i,6) depends only
on the length |6| of § and on its diagram Dj. Moreover, there exists a recursive in
0(™) function M, such that

Vi¥é(An (3, 18], Ds) = |un (3, 6)]).

4.1. Definition. Let é be a finite part on [0,¢]. Then & is n-regular if
0 € dom(as), and if gy < ¢; < ... < g, are the elements of dom(as), then:

(a) (Vi < r)(61(gi41 = 1) = pn(i, 81qs));
(b) b= /‘ﬂ(ra 6[%)’
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We shall denote the number r from the above definition by ||6]].

4.2. Lemma. Let 6 be an n-regular finite part, where dom(as) = {qo <
q1 < ...<qr}. Then for each i < r, §[(giy1 — 1) is n-regular.

4.3. Definition. An enumeration (f, B;) of U is called n-regular if for each
finite part 6 C f there exists an n-regular finite part 7 such that § C r C f.

4.4. Lemma. Let (f,B;) be an n-regular enumeration of A. Then for each
natural number r there exists an n-regular finite part § C f such that ||6]| = r.

Proof. Given an r, consider the first r+1 elements go < q1 < ... < ¢r of dom(f).
Let & be the shortest n-regular finite part such that {qo,...,¢,} C dom(as) and
6 C f. Assume that ||6]| > r. Then there exists an element g,4; of dom(as) such
that ¢, < ¢r41. By Lemma 4.2 §[(g,4+1 — 1) is n-regular. Clearly, 6[(g 4, — 1) is
shorter than 6 and {qo,...,¢-} C dom(a”(qr“_l)). The last contradicts the choice
of 6.

Recall the family &, . Notice that by Lemma 3.18 F, = F,,.

4.5. Proposition. Let (f,'B;) be an n-regular enumeration of A. Then
(f,Bs) 1s F-generic.

Proof. Skipping the trivial case n = 0, suppose that n > 1. We shall show
that (f,B;) is generic with respect to the family J,. Suppose that X" is dense in
(f,B;). We have to prove that (f B;) meets X[, i.e. there is a § C f such that
6 € X. By the previous lemma there exists an n-regular § C f such that ||6]| = .
Clearly, 6 decides X['. Assume that § ¢ X". Then ¢ It~ —'F(’:)o((i)l) and hence, by
Lemma 3.17, 6 I+ —nF(':)o((i)l). The last contradicts the density of X[.

4.6. Proposition. Let (f,By) be an n-regular enumeration of A. Then
dom(f) s AY ., relative 1o D(By).

Proof. We have the following recursive in D(B;) @ 0™) procedure, which lists
the elements of dom(f) in an increasing order.

We start by printing out 0. Suppose that the first » 4+ 1 elements gg,..., ¢,
of dom(f) are listed. Consider the finite part 6, C f on [0,¢,]. Using the oracle
D(B;), we can obtain the diagram Ds, . Let ¢r41 be the first element of dom(f)
greater than ¢,. Clearly, there exists an n-regular finite part 7 such that é, C 7
and ¢r41 € dom(a,). By Definition 4.1 ¢,41 = An(7,¢-, Ds,) + 1.

5. THE NORMAL FORM THEOREMS

In this section we shall obtain a normal form of the X0-admissible in all £2
enumerations of U sets for k£ < n. We start with the case k£ = n.

Let 6 be a finite part, z = |6| + 1 and s € A. By 6 * s we shall denote the finite
part (a’, Hs, D), where dom(a’) = dom(as) U {z}, as C o, &’(z) ~ 5, and D is
the appropriate extension of the diagram Dy.
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5.1. Theorem. Let M C A, n > 1, and M be a £0-admissible in all ) 34
enumerations of A set. Then there ezists a finite part § and a natural number e
such that for each s € A if z = |6 + 1, then

s€EM <= (3r 2 6*s)(r is (n — 1)-regular & 7I+* FP(z)). (5.1)

Proof. Assume the opposite. We shall construct an (n — 1)-regular enumera-
tion (f,B;) of A such that M is not admissible in it.

The construction of (f,B;) will be carried out by steps. On each step j we
shall define an (n — 1)-regular finite part é;, so that &; C é;4+1, and take f = Ueas,
and By to be the structure with diagram | J Ds;, .

On the even steps we shall ensure that f is onto A. On the odd steps we shall
ensure that M is not admissible in (f,B;).

Let tg,t;,...,t;,... be a fixed enumeration of the elements of A.

Let 8o be the shortest (n — 1)-regular finite part such that as,(0) = ¢,.

Step j = 2e + 1. Let £ = |65, + 1. By the assumption there exists an s € A
such that

~[s €M <= (37 D bg *s)(7 is (n — 1)-regular & 7 I-* Fl(z))].

We have two possibilities:

Case (1). s € M and (Y7 2 by, #5)(7 is (n ~ 1)-regular = 7 I}* F?(z)). In this
case let 07,4, be the shortest (n — 1)-regular finite part 7 such that 7 D 8,5, * s;

Case (ii). s ¢ M and (37 D 63, * 5)(7 is (n — 1)-regular and 7 IF* F"(z)). In
this case let ;.41 be the shortest such 7.

Step j = 2e+2. Let t be the first ¢; € A such that t ¢ range(as,,,,). Let 65049
be the shortest (n — 1)-regular finite part 7 such that 7 D §z¢4 *¢.

Clearly, the enumeration (f,B;) is (n — 1)-regular and hence dom(f) is £¢
relative to D(B;) and (f,B;) is F,_,-generic.

Towards a contradiction assume that M is £J-admissible in {f,®B;). Then
there exists an e € N such that for all z € dom(f)

flz)e M <= [k F(z).

Consider the stage j = 2e + 1 of the construction. Let & = |65,| + 1. Using the
Truth lemma (Lemma 3.12), we get that

f(z) €M <= (37)(02¢41 CTC f & 7IF F}(2)).

On the other hand, according to our construction this is not the case. So, M is not
T2 -admissible in (f, B;).

5.2. Theorem. Letk < n, M C A and let M be £2-admissible in all £0
enumerations of A. Then there ezisls a finite part 6 and a natural number e such
that for each s € A if z = |6|+ 1, then

SEM <= (Ir = éxs)(rIF* F(z)). (5.2)
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Proof. Assume the contrary. We shall construct an enumeration (f,B;) of A
with the following properties:

(1) (f,By) is Fn—_1-generic;
(2) dom(f) is £Y relative to D(By);
(3) the set M is not XP-admissible in (f,By).

The construction of the enumeration (f,B;) is very similar to that used in
the proof of the previous theorem. Again it will be carried out by steps. On steps
j = 3e + 1 we shall satisfy that (f,B;) is an F,_,-generic enumeration. On steps
j =3¢+ 2 — that M is not £-admissible in (f,B;). And on steps j = 3e + 3 we
shall ensure that f is a mapping onto A.

Let to,t1,...,t, ... be a fixed enumeration of the elements of A and let éo be
the shortest (n — 1)-regular finite part such that as,(0) = to.

Stﬂp ] =3e+ 1. Let 63e+1 — yn_l(e,ége).

Step j = 3e +2. Let * = |63.41|+ 1. According to the assumption there exists
an s € A such that

~[s€M < (Ir = b3eq1 xs) (T IF F¥(z))].

We have two possibilities:

Case (i). s € M and (V7 > b3c41 * s)(T IV Fk(z)).

Put 83,42 = 83e41 * 5;

Case (ii). s ¢ M and (37 = 83e41 * s)(7 IF° Fk(z)).

In this case let 83.42 be the shortest such 7.

Step j = 3e + 3. Find the first £ € A such that ¢ ¢ range(as,.,,). Let
63e+3 = 03e42 * L.

The enumeration (f,B/) is constructed as in Theorem 5.1,i.e. f ={Jas; and
D(B;) =UDs,.

Arguments very similar to those used in the previous section show that (f,By)
is F,_1-generic and dom(f) is A} in D(By).

Assume that M is £9-admissible in (f,By). Then there is an e € N such that
for all z € dom(f)

fEFiz) <= f(z) eM.

Consider the stage j = 3e+2 of our construction and let = |03¢41|+1. There
exists an s € A such that:

Case (i). s € M and (V7 = 83041 % s)(7 If* F¥(z)).

Since 83eq2 C f, f(z) € M. Then f | Ff(z). Clearly, (f,B;) is Fr-1-
generic. By Lemma 3.12 and Lemma 3.18 there exists a finite part 7 such that
S3e41 * 5 < 7 & TIF° F¥(z). A contradiction;

Case (ii). s € M and (31 > 83e41 *s)(7 I* F¥(z)). Since b3e42 C f, f(z) = 5.
Using again Lemma 3.12 and Lemma 3.18, we get f |= Ff(z). A contradiction.

87



6. THE PROOFS OF THEOREM 2.7 AND THEOREM 2.8

If a subset M of A is definable by a X} quantifier-free formula on 2, then it is
clear that M is £2-admissible in all enumerations of 2. 1t is easy to verify also that
if a set M is definable by a XJ existential formula on 2, then M is £0-admissible
in all X2 enumerations of .

The proofs of both theorems in the non-trivial directions make use of the
respective normal form theorems.

Suppose that the first order language L consists of the predicate letters
{Pi1,..., P} and let var be a recursive one to one mapping of the natural num-
bers onto the set of all variables.

6.1. Lemma. Lelt K,H,D be finite sets and K = {zy,...,2,}. Let Z; =
var(z),..., Zr = var(z,). There ezists a uniform effective way to define a AJ
quantifier-free formula Uk g p(Z1,...,2Z,) such that for all t,,...  t, € A

QHZHK'H'D(Zl/tl,...,Zr/tr) <= 36(dom(a6): K& Hs=H & Ds = D
& as(zi) ~ t;).

Proof. If KNH # 0 or K UH is not an initial segment [0,¢] or D is not
a diagram of a finite structure of the language £ with domain K U H, then set
g up = F. Otherwise, let {u;,...,u,} be all elements of D such that if u; =
(i,21,...,2q,,€),% € [L,1], then {z,,...,2,,} C K. For every such u; let L; =
=f Pi(var(zy),...,var(z,,)) and define g gy p = Li& ... &L,.

6.2. Corollary. There ezists a uniform effective way, given finite sets K, H, D
and E, to define a A quantifier-free formula llg g p g with free variables among
{var(z) : z € K} such that if K = {z1,...,2,} and var(z;) = Z;, then for all
ty,...,t, € A

thHK,H,D,E(Zl/tI,---,Zr/tr) — 3(5(d0m(ag)=]\"& Hs=H & Ds =D
&(Vi € [1, 7‘])(&5(2’,’) o~ ti) & 6 IF E))
Proof. Set HK,H,D,E =FifF Q D and let HK,H,D,E = HK,H,D otherwise.

6.3. Lemma. Let k > 0, 6§ = (as, Hs, Ds) be a finite part, dom(as) =
{z1,...,2z:} and as(21) ~ ty,...,a5(z,) ~ t.. Suppose that var(z;) = Z;. Then
there exists a uniform in dom(as), Hs, Ds effective way, given natural numbers e, z
and finite set E of natural numbers, to define:

1) A AY, . quantifier-free formula T* (Z1,...,2y) such that
k+1 dom(as),Hs,Ds,E

A= I‘gom(aé),m’DLE(Zl/tl,..A,Z,/tr) & b1} E;
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(2) A 22“ quantifier-free formula Oj:rrl\(ag),Hg,Dg,e,x(Zl""’Z") such that

U Ofdntae) Hopoec(Z1/t, o 2o Jt) <= 81" FfH(z);

(3) A XY, quantifier-free formula \Pﬁjr;(aé)'Ha)Dm,z(Zl, cv.yZr) such that

A= W::;(OJ)'HLDHJ(Zl/tI, o ZeJty) = (3 = 8)(r IF* FE(2));

(4) A T}, quantifier-free formula ¢§:;(05),H5,D5,e,z(zl’ ...y 2y ) such that
2A '= Qs:nl\(ag),Hg,Da,e,z(Zl/tl’ . Z,-/t,-) &= 6" —.F:+l(x)'

Proof. Induction on k. Using Corollary 6.2, we shall suppose that (1) is true
for k and proceed to prove (2), (3) and (4). After that we shall show the validity
of (1) for k+1. Let R.r = {v: (v,z) € We}. Following the definition of the stared
forcing, we get

®k+l _ V Pk
dom(as),Hs, D, e,z — dom(as),Hs , Ds,E.?
UGRc.r

k+1 — k41
Viom(as).He,Dsrex = \/ Haom(as),n,0 & @dom(aa),H,D.G,l"
HDHs ,DDDs

k+1 _ _“I’k+l
dom(ags),Hs Ds,e,z — dom{as),Hs,Ds,e,x’

So it remains to construct I' = Fs:nlq(aa),m,oo,E' Set I' = F if not all elements
u of E are of the form (i,k + 1,e,z),7 € {0,1}. Otherwise, for every element

w = (i,k+ lez) of E let L* = O}, , . if i = 0, and let
u — Hk+1 cpos _
LY = @dom(aa)‘HG‘Dé'e’r ifi=1 Put = A, g LY.

As a corollary we obtain the proof of Theorem 2.7. Indeed, suppose that
M C A 1<k < n, and M be L0-admissible in all L) enumerations. Using
Theorem 5.2, we obtain that there exist § and e such that if z = |§| + 1, then for

alls€ A
sEM <= (3r>= 6xs)(r I F¥(z)).

Let dom(as) = {z1,...,2-}, var(z) = Z;, var(z) = X. Denote by K the finite
set dom(as) U {z}. Put ¥ = ¥} o, .. Clearly, the variables of ¥ are among
{Z1,..., 2y, X}. Let as(z;) ~t;. Notice that asus(z) =~ s for all s € A. Then

SEM < AE=V(Z/ty,...,2:[tr, X]5).

Using Lemma 6.3 and the definition of the regular finite parts, one can easily
prove the following

6.4. Lemma. For every n > 0 there ezists a uniform effective way to con-
struct, given finite sets K = {z1,...,2.}, H and D, a finite disjunction Qi y p, of
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A2+1 quantifier-free formulas with variables among var(z,),...,var(z,) such that
if var(z;) = Z; and ty,...,t, are elements of A, then

Al Qx gp(Z1/ty,..., 2. [t;) <=> 36(6 is n-regular & dom(as) = K & Hs = H
& Ds = D & (Vi € [1,7])(as(z) = t:)).

Now we are ready to prove Theorem 2.8. Let n > 1, M C A. Suppose that M
is £2 admissible in all £ enumerations. By Theorem 5.1 there exist 6 and e such
that if z = |6/ + 1, then forall s € A

SEM < (31 D é*s)(ris (n— 1)regular & 7 I+ F'(z)).

Let dom(as) = {z1,...,2-} and as(z;) = t;. Let var(z) = Z; and var(z) = X.
Given any formula ® and finite set K = {y1 < ... < y,}, by I(y € K)® we shall
denote the formula 3var(y, ). ..3var(y,)®. Let K5 = dom(as) U {z}. Define

&(Z1,..., 2, X) = V 3 € K\ KU b O o).
KDKs,HDHs DD D5

Clearly, ® is a L2 existential formula and

Al ®(Z1/ty, ..., 20 [tr, X/s) <> (37 2 bxs)(1 is (n—1)-regular & 71" F(z)).

REFERENCES

1. Ash, C., J. Knight, M. Manasse and T. Slaman. Generic copies of countable struc-
tures. Ann. Pure Appl. Logic, 42, 1989, 195-205.

2. Chisholm, J. Effective model theory vs. recursive model theory. J. Symbolic Logic,
55, 1990, 1168-1191.

3. Lacombe, D. Deux generalizations de la notion de recursivite relative. C. R. de
I’Academie des Sciences de Paris, 258, 1964, 3410-3413.

4. Rogers, H. Theory of recursive functions and effective computability. McGraw-Hill
Book Company, N. Y., 1967.

5. Soskov, I. N. Computability by means of effectively definable schemes and defin-
ability via enumerations. Arch. Math. Logic, 29, 1990, 187-200.

Received on June 6, 1997
Department of Mathematics and Computer Science

Sofia University
Blvd. James Bourchier 5
1164 Sofia, Bulgaria

E-mail address: asoskova@fmi.uni-sofia.bg

90



