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1. INTRODUCTION

The theory of the singularly perturbed systems for ordinary differential equa-
tions is primarily due to the works of A. Tikhonov [1, 2] and N. Levinson (see [3,
19]) in the early 1950. The method and results of A. B. Vasil’eva [4, 5] and A. B.
Vasil’eva, V. F. Butuzov [6, 7] widely make use of the construction asymptotic so-
lution of a singularly perturbed differential systems. The questions connected with
asymptotic calculation of relaxational oscillation are considered in the monographs
(8, 9]. The method of regularization of singular perturbation is studied in [10]. A
method of separation of differential equations for obtaining asymptotic decompo-
sition similar to regularized decomposition is given in the papers [11,12]. In this
paper the behavior of the solution at € — 0 is considered for a linear boundary-value

problem
ex = Az +eA () +o(t), te(ad],0<e<, (1)

79



(z)=h, heR™, 2)

where the coefficients of the system (1) and the equality (2) are subordinate to the
conditions:

(H1) A is a constant (n X n)-matrix, ReX; < 0 (i = 1,n), A € o(A);

(H2) A;(t) 1s an (n x n)-matrix, A;(t) € C*[a,bd]; ¢ is an n-vector function,
p(t) € C*®|a,b];

(H3) !is a linear m-dimensional bounded functional

L =col(ly,...,lm), 1€ (C(la,b]) — R"R™).

The condition (H1) shows that det A # 0.
We consider the problem (1), (2) in the class of continuously differentiable
functions. Then the domain D(L,) of the operator

(Le)(t) = ei(t) — Az(t) — cAr(t)2(t)

consists of a continuously differentiable in [a, b] functions, satisfying the boundary
condition (2). At ¢ = 0 we obtain the degenerate equation Azo(t) + ¢(t) = 0,
which solution zo(t) = —A~'¢(t) for arbitrary ¢(t) € C*{a, b] does not belong to
the domain D(L.) of the operator L., since, in general, the condition I(zo) = h 1s
not fulfilled.

Let the equation (1) is solvable for arbitrary ¢ € C*°[a,b]. Then the dimension
of the kernel of the operator L. is equal to the dimension n of the system (1)
and the boundary-value problem (1), (2) is the Noetherian problem with index

m :ind[L¢, 1] = n—m # 0. It will be the Fredholm problem (ind[L,!] = 0) if
and only if m = n (see [13]).

We shall consider the case m # n. We use an asymptotlc method of the
boundary functions and construct an asymptotic series, satisfying the boundary-
value problem (1), (2) at det A # 0. The initial research in the case is made in
[14].

In the Fredholmian case (m = n) an asymptotic integration of boundary-value
problems for non-linear and weakly non-linear systems with two-point boundary
conditions is studied in [6,7] on the basis of the method of boundary functions, and
in [10] — on the basis of the regularization method.

The construction of an asymptotic solution of (1), (2) in the Notherian case
(m # n) is represented on the basis of generalized inverse matrices and projectors
[15-17, 13].

2. FORMALLY ASYMPTOTIC EXPANSION

We shall seek a formally asymptotic expansion of the solution of the problem
(1), (2) in the form of the series

r(t,e) = S lm(t) + (), =22, (3)

1=0 o
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where z;(t) and II;(7) are unknown n vectdr-functions. By II;(7) (see [6, 7]) we
denote the boundary functions in a neighbourhood of the point ¢ = a . They will
be constructed so that when 0 < € < £¢, the inequalities

L ()| < 7 exp(—aqT), (4)

where v; and a; are positive constants for i = 0,1,2,...and 7 > 0, hold in [a, b].
Formally, by substituting (3) in (1), for z;(t) we obtain the recurrent expres-
sions : L _
—A~ Sa(t)i 1= Os
i(t) = :
zi(t) { A Y(Lziy)(t), i=1,2,.., (5)

. . . d
where L is the differential operator Lz = p7hi Ai(t)z. The boundary functions

are solutions of the differential equations

d b—a

(7)) = Alli(7) + fi(r), 7€[0,n], n = -t (6)
where
0, i=0,
fi(r) = ° 1 o ;
) Z ‘qTTqA(lq)(a)Hi-l_q(T), 1= 1’2, . ( )
g=i-1 ,

We substitute (3) in the bouhdary condition (2). Then the coefficients of the
expansion (3) satisfy the boundary conditions

()3 W

We denote X(7) = exp(AT) to be the normal fundamental matrix of the solu-
d
tions of the linear system ﬁ =Az, T€[0,n); D) =1(X)=1 (X(L%-ﬂ)) is an

(m x n)-matrix.
Now consider two cases depending on the structure of the matrix D(¢).

2.1. Let D(e) = Do+ O (6’ exp (——-Zl—)), where @ > 0, s € N, Dg is an
(m x n)-constant matrix.
All the expressions €* exp (—'3) are exponentially small and it is possible to

reject them, because they are of higher order of vanishing than an arbitrary degree
of ¢.
Let the following condition be fulfilled:

(H4) rankDy = n; < min(m,n).
Denote by P and P* the matrix orthoprojectors

P:R" — ker(Dy), P*:R™ —ker(Dy), Dj=DT.
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By Df we denote the unique Moore-Penrose inverse (n x m) -matrix of the matrix
Dy [15-17, 13]. Let P; be a (d x m)-matrix with d = m — n; linear independent
rows from the matrix P*, and let P, be r = n ~ n; linear independent columns

from the matrix P.
Consider the system (6-8) for i = 0 . Then the boundary-value problem about

IIo(7) has the form

;;Ho(f) = Allg(r), I(Ilg) = h — I(zo). 9)

We substitute the general solution of the system (9) Io(r) = X(r)cg in the
boundary condition. Ignoring the exponentially small elements in the matrix D(e),
we obtain by the algebraic system

Doco = hy, (10)

where hg = H — I(zg), the n-vector co.
When the condition (H4) is fulfilled, the system (10) possesses a family of
solutions
co = P,-CS + Dg-ho

if and only if
P'ho=0 = Pjhy=0.

Substituting ¢g in Mo(7) = X(7)co, we obtain
Io(7) = Xo(7)ch + go(r), c€R, (11)

where
X+(7) = X(7)P; — (n x r)-matrix, go(T) = X(r)D(‘,"ho. (12)

We define the vector ¢ € R™ by obtaining II;(r). Consider the boundary-value
problem with respect to II; (7):

%nl(r) = All(r) + fi(r), 7€[0,n], K)=—I(z), (13)

where fi(r) = Ai(a)llp(7). Keeping in mind (11), (12), fi() will depend on the
unknown vector c¢j:

fi(r,eg) = Ai(a) X, (7)c + Ar(a)go(T).

We substitute the general solution
(1) = X(7)ey + /X(T)X"l(s)fl(s) ds (14)
0
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of the differential system (13) in the boundary condition and ignoring the exponen-
tial small elements in the matrix D(e), obtain the system with respect to ¢;:

Docy = hy(g), ¢ €R™, (15)°

where

)
hi(e) = —I(z1) — 1 /x ((')5‘ “) X~Y(s)fi(s,ch) ds
0

According to (H4), the system (15) has a solution
¢ = Prcf + Dfhi(e), c] €R",

if Pjhi(e) =0.
From the last equality and the form of h,(¢) we obtain

D(e)cy = Piba(e), (16)

where

D(e) = Pjl })X (-(-)—6:2) X~ Y(s)Ay(a) X, (s)ds |,

N ) "
bi(e) = 1 /X (()E— a) X~(s)A1(a)go(s)ds | —I(z1). (17)

We assume that D(¢) = Do + O (e” exp <?a))’ where « > 0, p € N, Dy is a

(d x r)-constant matrix, and after ignoring the exponentially small elements, the

system (16) takes the form -
Duch = Pibi(e). )

Let the following conditions be satisfied:
(H5) rankﬁo =r,
(H6) PgP;j=0, d=d-r,
where P~ : R? — ker(D, ). Then the system (18) is always solvable and

| ch = Dy Pibi(e). (19)
We substitute (19) in (11) and obtain the resultant expression for Ilg(7):
o(r) = X, (r)Dg Pibu(e) + 9o(7)- (20)
. n
Define the norm of the matrix B = [b;;] by means of the equality || B|| = max }_ |b;;].
1 J=1

Keeping in mind the representation b;(¢) from (17) and the structure of the matrix

83



X(7), it follows that there exists €9 and when 0 < € < g, the following inequalities
are fulfilled:

br(e)ll S car ca>0; [[Xo(e)l]l S crexp(=enT), ¢ >0, ar>0;

D¢ <2, e2>0; ||Pill<es c3>0;
llgo(7)|| < esexp(—aar), ¢5 >0, az>0.

Consequently, we can indicate positive constants 7p, Gy such that

Mo ()} < 70 exp(—foT),

that is the boundary function Ilg(7) decreases exponentially.
It is obvious that II;(7) (i = 1,2,...) will be determined sequentially.
Assume that the boundary functions II;(7) (1,7 — 2) are defined. Then the
vectors ¢; (0,7 - 2) are entirely defined. By means of II;(7) we determine the
vector ¢;_,, which participates in the boundary function II; _;:

Li-1(r) = Xe(T)eioy + 9i-a(7), iy ER, (21)
where g;-1(7) = gi—1(7, ¢l _q, ..., €p).
We substitute the general solution of the system (6):

T

L(r) = X(r)e: + / XX N fi(5, ¢y ) ds, L €RY, (22)
0

in (8) and obtain the algebraic system (ignoring the exponentially small elements
in D(e))

Doc; = hi(g,ci_y,...,¢p), (23)
where
hi(e,ci_y,...,¢c0)
¢)
==l /X ((); a) X~ Us)A1(a)Xr(s)ds | cl_y 4+ bile,cryy ... ch),  (24)
0

bi(e) = —l(=:)
() 1 1
~1 / X()X~1(s) [ 2. A @Micig(s) + As(@)gioa(s) | ds
0 g=1-1 ' .
From the solvability condition of the system (23)
Pihi(e,ci_y,...,c5) =0
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and (24) we get
D(e)ci_, = Pgbi(e).

Let the conditions (H5), (H6) be satisfied. Then
c_, = Dy Pibi(e). - (25)
We substitute (25) in (21) and obtain the resultant expression for II;_;(7):
Ii_y(7) = Xr(‘flﬁgéibi@) + gi-1(7), (26)

where

gi—1(7) = X(T)Db" hi—1(ci_q,...,¢5) + / X(T)X‘l(s)f,'_l(s, Ci_9y...,Co)ds.
0

Lemma 2.1. Let the matriz A salisfy the condition (H1), and let the vector
function f(t) € C[0,+00) and satisfy the inequality ||f(t)]] < c*exp(—a™t),
where t >0, ¢* > 0, a* > 0. Then there exist positive constants ¢ and v, so that

d : :
the system & _ Az + f(t) has a particular solution of the form

dt
+00
Z(t) = / K(t,s)f(s)ds,
0
satisfying the inequality
EO)] < e, £ >0, (27)

where

((tos) = X()X~(s), if0<s<t< oo,
TS = 0, if0<t<s<oo.

Proof. The fact that Z(¢) is a solution is verified directly. From the condition
(H1) it follows that || X (¢)X ~*(s)]] < cexp(—a(t—s)) when € > 0, @ > 0. We have

1 t
2O < [IXOX G ds < o™ [ om0 ds
0 0

2c*¢ e
If o < @ (or @ > @), then choosing ¢ = — ¢ C. >0 <c = 2 c_) and
’ a— o —
y<a*(y < E) we get (27). '
Let a* = @. Then ||z(t)|]| < ¢*cte™'. But llm te”® = (. Consequently,

there exist constants ¢ > 0, ¥ > 0, so that (27) is fulﬁlled fort>t >0 0O
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Theorem 2.1. Let D(e) = Do + O (s’ exp (—%)) and the conditions

(H1)-(H6) be satisfied. If (t) € C*®[a,b] and h € R™ satisfies the condition
Pj(h —l(z0)) = 0, the boundary-value problem (1), (2) has a unique formal ez-
pansion of the form (3). The coefficients of the expansion z;(t) and II;_1(7) have
the representations (5), (20), (26), respectively, and the boundary functions II;(1)
decrease exponentially.

Proof. From the above conclusions and the conditions of the theorem it follows
that really the coefficients of the expansion (3) for the boundary-value problem (1),
(2) have the representations (5), (20), (26). It will be proved that the functions
I;(r)(i = 0,1,...) decrease exponentially. This we have done for Mo(r). Let
the inequalities (4) be satisfied, that is ||[IIx(7)|] < vk exp(—ax7) for 7 > 0 and
k=1,7— 2. It is known that for §;_; < a = mkaxak, ci_ = mkax'yk we have

(ciam ™ 4+ eiy T+ i) exp(—aT) < ¢f_y exp(=fi-17).

Thus ||fi1(7)|| € ¢}, exp(=Bi—17) for 7 >0, where f;=;(r) are the functions
from (7). Using this inequality, Lemma 2.1 and the estimates |[b;(¢)|] < ¢; at
¢ € (0, €], from (26) we obtain

-1 (7)]| < vi-1exp(=ai-17), 720,
that is the boundary functions decrease exponentially. [0

Corollary 1. Let the conditions (H1)-(H3) be satisfied and rankDy = n; = n.
Then for any function ¢(t) € C*®[a,b] and for any h € R™, satisfying Pjh;(c) =
0,:=0,1,..., the boundary-value problem (1), (2) has an unique formally asymp-
totic expansion in the form (3). The coefficients zi(t) have the form (5), and the
boundary functions I1;(7) have the representations

I;(r) = X(7)Dgh; + /X(T)X'l(s)f,-(s) ds.
0

In this case P = 0, ¢; = Df hi(e) (i = 0,1,...), where h;(¢) = b;(¢), ho =
h — 1(170).

Remark 1. If m = n and det Dg # 0, then it is sufficient to replace D} with
Dy ''in Corollary 1. If m = n and rankDy < m = n, then all considerations in this
case coincide with the mentioned above ones. '

Remark 2. If m # n, rankDy = n; = m, then P* = ( and all systems
Dgc; = hi(e), 1 = 0,1,..., are always solvable. In this case we get the family of
boundary functions.

2.2. Let D(¢) = Do + Dye + Dae? + - - + Dye® + O(e? exp(—ae)), where D;
are (m x n)-constant matrices, > 0, ¢ € N.
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We reject the exponentially small elements in D(e) and introduce the (2s +
1)m x (s + 1)n-matrix

o DO E

Da Ds—l Dl
Ds D2

0

X D, |
We also introduce the (s+ 1)n-vector ¢; = [cio ¢iy - - c;,]T, where ¢;; are n-vectors
and the (25 + 1)m-vector b; = [bjo --- bis 0 -+ 0]7. '
(s41)m S

Let the following condition be fulfilled:
(H7) rank@Q = (s+ 1)n, ((2s + 1)m > (s + 1)n).
Then rankP; = 0, rankPy = d; = (2s + 1)m — (s + 1)n, where

P R(s+1)n — ker(Q), P; . R(2s+1)m - ker(Q"), Q- — QT~

The algebraic system
QC,‘ = b,‘ (28)

has the solution
¢i=Q%b; or cij =[Q%bi]n;, j=0,s (29)

if and only if P;b; = 0. So we obtain the conditions
(H8) Prybi=0,1=0,1,..,
where P, is a (dy x (2s + 1)m)-matrix, and [Q¥bi]n,, [@Fbiln,, ..., [@Tbi]s, are
the first n elements, the second n elements, ..., the last n elements of the (s+ 1)n-
vector Q1b;, respectively.

In this case we shall seek the solution of the system D(g)co = ho in the form

co = Coo + €co1 + - - - + € cos,
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where co; € R", j = 1,'s. We find the vectors co; from the system (28). From the
conditions (H5), (H6) and the equality (29) for i = 0 and IIo(7) we obtain

8

o(r) = X(r) Y& [Qboln,, (30)

7=0
where bg = [ho 0 --- 0]7. Obviously, the boundary function fulfills the requirement
lim Io(r) = 0.
Analogously, we find II;(7) from (14) and the system D(e)c; = h(¢), where
) 0 |
Y—a
Chy(e) = =l(z2) =1 /X (—_6—) X Ys)fi(s)ds |,  fi(r) = AL(a)To(7).

0

We seek ¢) in the form ¢; = ¢j0+ €c11 + - -+ €%¢4s.
Assume that after ignoring the exponentially small elements, h;(¢) = hyo +
ehi1 + -+ €*hy;. Then we obtain

() = X(r) Y& [Q*bila, + / X(r) X~ (s)fu(s) ds,
7=0 0

where by = [h1g -+ hy5 0 - O]T and lim II;(7) = 0.

T—+00

It is possible to prove (inductively) that the solution of the systems (6)—(8) for
an arbitrary ¢ and

)
hi(e) = —l(z;) — 1 /X(~)X'1(s)f,-(s) ds
0
= hjo + €hiy + - - -+ €* his + O(e? exp(—ae))

has the form
IL(r) = X(r) Y [Q by + [ X)X (9)fis) ds, (31)
j=0 0

where b; = [hig -~ his 0 --- 0]7.
For II;(7) the bound (4) is fulfilled.
So we have proved the following theorem:

Theorem 2.2. Let D(¢) = Do + Die + Dae? + -+ + Dye® + O(e? exp(—ac))
and the conditions (H1)—(H3), (H7), (H8) be satisfied. Then the solution of the
“boundary-value problem (1), (2) has an unique representation in the form (3). The
coefficients of the ezpansion are defined by the equalities (5), (30), (31).
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Remark 3. If rank Q < (s + 1)n, then we obtain ¢i with determination of the
boundary function IT;4+1(7).

Remark 4. If D(¢) = I(X) = l(eA)
= () + ¢ (ALZ) Fe2 (Az_.__((‘> -_0)2) i

—y

—a
1! 2!
=Do+e Dy +e Dz + -,

then we seek ¢; in the form ¢; = cjo+€ '¢i1 +- -+ From the structure of the matrix
X(7) it follows that lim II;(7) = 0.
T+ 00

3. A BOUND OF THE REMAINDER TERM OF THE ASYMPTOTIC SERIES

The solution of the boundary-value problem (1), (2) we seek in the form
z(t,e) = Xn(t,e) +"1E(t, €), (32)

where
n

Xa(t,e) = Z[z;(t) + H,‘(T)]Ei.
1=0 -
We shall proof that in [a,b], when € — 0, the function £(t,¢) fulfills the inequality
I(t,€)|]| < K, where K is a positive constant.
We substitute (32) in (1), (2), where z;(t) and II;(7) are defined in Section
9. After some transformations we obtain that the function (t,€) satisfies the
boundary-value problem ‘

e€(t,€) = AE(t,€) +eA1(t)E(L,€) + H(t,e), U(E(-,€)) =0, (33)

h
wnere 1

entl (Hl(t’E) + Hz(t,€)),

Hy(t,e) = —e" Azpyi(t), Ha(t,e) = "t Fy(t,€), (34)

Fi(t,e)=) (n . k)!A(ln'k)(a)T"‘kﬂk('r)
k=0

H(t,e) =

n n-—i
1

SN SR

n+l

+ (n i 1)Agnﬂ)(a + Ore)r™H! Ze—"ﬂ,-_l('r), 0<f<l1.

i=1
Since z;(t), i = 0,1,..., are continuous functions in [a,b], then ||z;(%)|| < m,
where n; are positive constants.
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So we have

< JJAlHzn+1 (@] < 1| A7 41 (35)

1
‘.&"‘THI(L 6)

Let

. 1 (n—k) (n+1)
K1 = max (ol 0@l AT Ve 0mol)

when 0 < 0 < 1 and t € [a,b], ||ILi(7)|| < pie™*", pi > 0, a; > 0 (i = 0,n) and
a = min(a; ), p = max(p;).

When ¢ € (0,€0), let denote ¢ = max (¢;), where ¢ = 1, ¢; = 1+ Z: ek
: i=0,n+1 k=1
n+1

=1,n,c Ze

(34) we obtam
|IF1(t, e)|l < Kilens1m™™ M +en™™™ + -+ 17 + co) pe™ @7

< Kpep[r™t 4. 414 1)e7o"
Let K3 = Kycp. There exists @, 0 < @ < @, such that (7"t 4 ... 4 74 1)e7 27 <

e or,
Consequently,

1

— 7 H2(t, )| = |[Fi(t,e)]| £ K3e™ %" < K3 = const.

Keeping in mind (35) and the last inequality, we have

I1H(t,e)l| <

Hl(t,s)

H2(t e)l L |Allnn41 + Kz =,

that is ||H(t,¢)|| < 7n, 7 > 0.
Let W(t,s,€) be a fundamental matrix for the homogeneous system

d
'&% = Af, W(,s,e)=FE,, E,— (nXx n)-unit matrix.

Lemma 3.1 [18, 19]. For the matriz W(t,s,c), whena<s<t<b 0<e<
o the ezponential bound

a(t —
W, < pexp (-222) (36)
.18 fulfilled, where « > 0, § > 0 are any constants.
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Lemma 3.2 [18, 19]. Any continuous solution of the system (33)' 1s a solution
of the system of integral equations

E(t,e) = W(t,a,e)é(a,e)+ / W(t, s,s)%[eAl(s)f(s,e) + H(s,€)] ds, (37)
and conversely.

ds ts uni-

t
Lemma 3.3 [18, 19]. When ¢ — 0, the integral / H%W(t,s,e)
a

formly bounded in the segment [a,b).

Lemma 3.3 reveals that there exists a constant M > 0 such that for ¢ — 0 and
t € [a,b] the inequality
t
1
~-Wi(t,s,
/ H . (t,s,€)
a
holds.

The system (37) will be solved by the method of successive approximations.
Let

ds< M

fo(t,é') = 0,
&i(t,e) = F(t,e) +/W(t,s,s)é[eAx(s)fj_l(s,e) + H(s,¢€)]ds (38)

be the Picard successive approximations, where F(t,e) = W(t, a,€)é(a,¢).

Theorem 3.1. Lel the conditions of Theorem 2.1 (or Theorem 2.2) be fulfilled.
Let B, h, h1, ha, ha, hy, €9 be positive constants such that

\W(t,a,e)l <B; ||F(te)ll <hi, where hy =2Bh, 0 < 2B < 1;

|A1(t)]| € ha, where t € [a,b];

=+
Do +” S h3;

“l(w)“ — 4“ "’ 4< 4 0 2M 2
Mn

if < h<2—(1—2ﬁ)h3h4

1-28 = h3h42f
dary-value problem (1), (2) has the representation (32), where £(t,¢€) satisfies the
inequality [|€(t,€)|] < 2h.  The vector §(a,c) is defined by the algebraic system

D(e)é(a,€) = g(€), where D(¢) = (W (-, a,€)) is an (m X n)-matriz,

hy, then the asymptotic solution of the boun-

()
o(e) = ~I / W(-,s,e)é[eAl(s)f(s,e) + H(s,e)]ds | . (39)
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Besides, z(t,€) approaches the degenerating system ate — 0 and t € (a,d].

Proof. Using (38), we shall prove that the system (37) has an unique continuous
solution, which does not leave the domain

Q={(t,6) [a<t<b, |l < 2h},

depending on an arbitrary vector £(a,¢).
By the equalities (38), for the first approximation we have

e - ol <.+ | [wiesr2] o oas < ho s vm

f0<e<epand g < , we obtain

1
2Mhq

ds | Ay (t)[] 115 -1 (t,€) — & —2(t, )]

1 = & -1l < E/t“W(t,s,s)%

< eMhy || 1 (t,€) — &-a(t,€)]| < g1 =&l 5=2,3,...

This reveals that in the segment [a, b], when ¢ is sufficiently small, the successive
approximations (38) are absolutely and uniformly convergent. We shall show that
the successive approximations do not leave the domain Q. We have

) |
h h h
lIEe(t, €)ll < j;llﬁj(i,é:) —&tellSh+S+55+ 4 a1 < 2h.

Let klim §k(t,e) = €(t, €) satisfy (37) identically. Then in the interval [a, b] for
—00

¢ — 0 the inequality ||€(t, €)|| < 2h is fulfilled.

Consequently, the system (37) has an unique continuos solution, which does
not leave the domain 2 and depends on an arbitrary vector £(a, ¢).

We define £(a,€) by the algebraic system

D(e)¢(a,e) = g(e), (40)

where 3(6) and g(¢) are the expressions from (39). The system (40) is obtained
substituting (¢, €) in the boundary condition I(€) = 0 of (33).

Let ﬁ(e) = ﬁo + 0 (6‘ exp (—%)), v > 0, s € N, where ﬁo 1s (m x n)-

constant matrix. Then if rankDg = n, for ¢ € (0, €0) the system (40) has an unique
solution '

£(a,e) = 3: g(¢)
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if and only if
Pjg(e) =0 and P} :R™— ker(D,).

The inequality ||¢(a, €)|] < 2h is fulfilled for £(a, ). Really,

lECa, &)l = Do Nl ll9(e)l

el ALl 1ECs, )l + [ H (s, €)l] ] ds

t
Sh3h4‘/“W(t,S,€)é

1 g, b1 2)
< hshaM (2¢hih < hshaM 2, - "7
< hghyg (6 1 +7])_ shg (22Mh22ﬂh + i )

< hhsha (2'6-'1 +1- 23)

232—(1—2ﬁ)h3h4 hy + 1_2ﬁ)=2h. []

< hhsh
. (h'z haha2f

4. EXAMPLE

We consider the two-poi'nt boundary-value problem

ei = Az + (), t€[0,1], I(z)=Mz(0)+ Ne(l)=h

where m:[zl],A:[:? 411] (t)“[t_l_’

T2

1 0 1 0 6
M=10 1] ~N=|010]|, h=|31].
0 1 6 0 25 |
-1 J3t+1 . :
If ¢ = 0, then zo(t) = —A 7 p(t) = 941 | It is obvious that I(zo) =

[5 31 25]T # h. Since X2 = —1 and the normal fundamental m

form X(t) = [ 1:t2t lj—tQt ] e~t, then D(e) = MX(0) + NX( ) has the

representation

atrix has the

= Do+ 0 (6_
where Dy = M and rankDy = 2.
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Dg'z

We obtain sequentially

1 0 0
0 1 |, A=

1 (01 —1], ho={100}", hy =[103333)7.
2 2

B b

In this case the conditions Pyh; =0, i =0, 1,..., are fulfilled.

According to Corollary 1, we obtain

co=DFho=[10)", ¢; = Dg hy = [10 337,

10+112r] .
€ .

() = X(reo = | 127 [ e, m)er = X0 = [ 154112

The asymptotic solution of the two-point boundary-value problem has the form
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1 2t
~1 4 t—1 P R
x(t,e):[_l 3][ ; ]+ tE e s

10 + 1122
-5 £ -k 2
+€ 3|t ¢ | e e | + 0E).
33 - 23-
£
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