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1. INTRODUCTION

In Y. Tagamlitzki’s paper [3] an axiomatization of the notion of segment is used
as a basis for an abstract approach to separation of convex sets. The axiomatization
looks as follows.

A set K is supposed to be given, and a subset ab of K is supposed to be put
into correspondence to any a and & in K in such a way that always ab = ba. By
definition, a/b = {z € K : a € bz}.} The following denotations are adopted for
any elements a and b of the set K and any its subsets A and B:

aB = J{ab:b€ B}, Ab=| [{ab:a€ A}, AB=| J{ab:a€ Abe B},

1 We use this denotation instead of § used in [3] (and, similarly, further for a/B, A/b, A/B).
Another denotational difference is that we shall designate a set inclusion by C, whereas Tagam-
litzki designates it by C.

73



o/B=|J{a/b:be B}, A/b=|J{a/b:a€ A}, A/B = ([{a/b:ae Abe B},

The two operations considered so far will be called multiplication and division,

respectively.
Two associativity laws are supposed to hold for any a, b, ¢ in K, namely,

(ab)e = a(be), a(b/c) C (ab)/c
(the first of these conditions allows freely using expressions of the form abe for
arbitrary a, b, ¢ in K).

Remark. After quite a time from the appearance of the paper [3] it became
known that a somewhat more restrictive but similar axiomatization of the notion
of segment had been given earlier by W. Prenowitz in [2]. It is easy to see that

a(b/c) C (ab)/e

for all a, b, c in K iff Prenowitz’ transposition law (cf. (2, pp. 4 and 7))

(a/b)N(c/d) # 0 = (ad) N (bc) # 0
holds for any a, b, ¢, d in K. Having this in mind, one sees that Prenowitz’s join
spaces from [2] coincide with the structures satisfying Tagamlitzki’s axioms plus the
additional ones (not required in [3]) that ab # 0, a/b # 0, aa = {a} and a/a = {a}
for any a, b in K. Therefore any join space is surely a model for Tagamlitzki’s
axiomatization. In particular, the elements of an arbitrary vector space K form
such a model if one sets

ab={pa+qb:p>0,¢>0,p+q=1}.
The converse is not true, since the other models indicated in (3] do not satisfy, in
general, the whole set of conditions in Prenowitz’ definition of join space. We should

like especially to mention as an example of such other model the one (indicated on
p. 173), where K is again a vector space, but we have

ab={Aa+ub: x>0, pu>0}

(the conditions aa = {a} and a/a = {a} are violated in this model for any non-zero
element of R).

To reduce the number of brackets, we accept the convention that multiplication
and division have a higher priority than N and U (thus we could omit the brackets
in Prenowitz’ transposition law mentioned above).

A subset C of K is called convez if the condition CC C C holds. A half-space
Is a non-empty convex subset S of K such that K\ S is also convex and non-empty.
The following separation theorem plays a central role in (3]:

Theorem 1.1 (Theorem 1 of [3]). Let abb C ab for any a,b in K.2 Then for
any two disjoint non-empty convezr subsets A and B of K there is a half-space that
contains A and does not meet B.

2 This condition is surely satisfied in join spaces, since then abb = a(bb) = ab. The model
mentioned at the end of the remark preceding the theorem also satisfies the condition in question,
and we again have the equality abb = ab in this model.
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As it became clear later, the above formulated result is an instance of a more
general separation theorem of J. W. Ellis published in [1]. Ellis’ approach is based
on a direct axiomatization of the notion of convex subset of a given set (without
axiomatizing the notion of segment), and it turns out that the family of all convex
subsets of K in the situation considered in the above theorem satisfies the assump-
tions of Ellis’ one. The present paper aims at showing that Tagamlitzki’s proof
actually establishes a result stronger than Theorem 1.1 and this result is no more
an instance of Ellis’ theorem. Namely, a reduction of the assumptions of Theorem
1.1 will be done in the next section without making essential changes in its prébf
from [3].

2. REDUCTION OF THE ASSUMPTIONS
OF TAGAMLITZKI’S SEPARATION THEOREM

We are going to formulate now the stronger result mentioned at the end of the
previous section.

First of all, we reduce the assumptions from the beginning of Section 1 by
omitting the first associativity law. For the reader’s convenience, we formulate now
what is remaining from those assumptions. Namely, we suppose in/the present
section a set K to be given and a subset ab of K to be put into correspondence to
any a and b in K in such a way that always the equality ab = ba and the inclusion
a(b/c) C (ab)/c hold, adopting the denotations introduced in Section 1 before the
formulation of the associativity laws. :

Clearly, the definition of convex set remains the same as in Section 1, but the
absence of the first associativity law obliges us now to write all brackets in the
expressions that are built up by more than one application of multiplication. In
particular, Theorem 1.1 does not make sense now without specifying the meaning
of its assumption that abb C ab for any a,bin K. (Does abb mean (ab)b or a(bb) ?)
The following modification of the theorem can be established with almost no change
in the proof of Theorem 1 from [3].

Theorem 2.1. Let (ab)b C a(bb) C ab for any a,b in K. Then for any two
disjoint non-empty convezr subsets A and B of K there is a half-space that contains
A and does not meet B.

To see the workability of the mentioned proof in the new situation considered
now, it is sufficient to note that there are only two steps in the proof needing a
revision: the first of them is in the transition from & € S/(zz) to £xNS # 0 (cf.
p. 174), where one has to apply now the inclusion £(zz) C €z, and the second one
is in proving that ((SS)/z)/z is a subset of (SS)/(zz) — to prove this inclusion
(used on p. 175), one should consider an arbitrary element ¢ of ((SS)/x)/x and
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apply the inclusion (€z)z C £(xz). Of course, as in the original proof one uses
many times the equivalence

BXNA#0& XNA/B#0,

where A, B, X can be arbitrary subsets of K .3

A further reduction of the assumptions is possible at the cost of a quite small
change that in fact even simplifies the proof. The change consists in using the set
(S/z)/x instead of the set S/(zxz). We shall formulate now a result obtainable
thanks to the admissibility of this change, and we shall present its proof following
Tagamlitzki’s one as close as possible, making only the necessary changes (except
for small differences in the denotations).

Theorem 2.2. Let (ab)b C ab for any a,b in K. Then for any two disjoint
non-empty conver subsets A and B of K there is a half-space that contains A and
does not meet B.

Proof. Let A and B be disjoint non-empty convex subsets of K. By Zorn’s
Lemma, there is some maximal convex subset S of K containing A and not inter-
secting B. We set 7= K\ S for short.

Let z be an arbitrary element of K. We shall firstly prove that

| (S/z)/z C S/z. (2.1)
In fact, let £ € (S/z)/x. Then ézNS/x # 0, and hence (z)z NS # 0. Making use

of the inclusion ({z)z C €z, we conclude that &2 NS # @, hence £ € S/z.
It is easy to see now that the set SU S/z is convex. Indeed, we have

(SUS/z)(SUS/z) = SSUS(S/z) U(5/2)S U (S/2)(S/z)
=SS US(S/z) U (S/x)(S/x) C SSU(SS)/zU((S/2)S)/z
C SSU(SS)/zU((SS)/x)/z C SUS/zU(S/z)/z C SUS/z

(the first two inclusions follow from the second associativity law, the convexity of
S implies the inclusion next to the last, and (2.1) is applied to obtain the last one).
Let us consider now the particular case when z € B. We shall show that S/z
does not meet B in this case. In fact, if S/a N B # 0, then SN zB # 0, hence
SO BB # 0, and from here, by the convexity of B, the false conclusion SN B #0
follows. So S/z does not meet B and therefore the set SU S /x also does not. By
the convexity of S U .S/z and the maximality of S, we get the inclusion S/z C S.
Thus we see that S/z NT = 0, hence ¢ S/T'. Since z can be any element of B,

it follows that
S/ITNB=40. | (2.2)

Consider now the convex set S U S/z, where z is an arbitrary element of T. By
(2.2), this convex set does not meet B and hence, by the maximality of S, the
inclusion S/z C S holds. Since z can be an arbitrary element of 7', we get the

3 This equivalence has been observed by Ivan Prodanov about 1962, but in fact it is indicated
earlier in {2] (cf. Theorem 5 of that paper).
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inclusion S/T C S. Consequently, S/TNT = @, therefore SNTT =0,ie. TTCT.
So the convexity of T' is established, and it remains to notice that S and T are
non-empty because AC Sand BCT. I

The improved versions Theorem 2.1 and Theorem 2.2 of Tagamlitzki’s Theorem
1 are not instances of the separation theorem from [1]. For any a, b in K let [a, b]
(the convez closure of the set {a,b}) be the intersection of all convex subsets of K
containing both a and b as elements. In order the separation theorem from [1] to
be applicable to the family G of the convex subsets of K, this family must satisfy
the following condition: for any set X belonging to G and any a in K the union of
all convex closures [a,z], where z € X, must belong to G too. We shall give now
an example showing the existence of cases when this condition is not satisfied, but
nevertheless the assumptions of Theorems 2.1-and 2.2 are fulfilled (of course, it is
sufficient to check only the stronger assumptions — those of Theorem 2.1).

Example. Let K consist of five distinct elements p1, p2, p3, pa, ps, and let
the multiplication in K be defined by the condition that z € yz iff some of the
three cases below iIs present:

(a) z€{yz}
(ﬁ) T = P3, {y,z}:{pl,p2};
(7) T = Ps, {ys Z} = {p3’p4}'

The commutativity of the multiplication is obvious. To check the validity of
the second associativity law, suppose a, b, ¢ are elements of K, and z is an element
of a(b/c). We shall prove that = belongs to (ab)/c. We have z € ay for some y such
that b € cy, and we must show that cz Nab # 0. If z € ay holds according to case
(a), i.e. z € {a,y}, then a € cz Nab in the case of z = a, and b € cz Nab in the
case of ¢ = y. The situation is similar if b € cy holds according to case (). Now
suppose that each of the statements z € ay and b € cy holds according to some
of the cases (8), (7). Since {a,y} N{c,y} # 0, it is not possible that one of the
both statements holds according to (3) and the other one holds according to (7).
Therefore z = b, hence the condition cz N ab # @ is satisfied again. We obviously
have bb = {b} for any b in K, therefore a(bb) = ab for any a, b in K. We shall prove
the inclusion (ab)b C a(bb) by proving that (ab)b C ab. Suppose z € (ab)b for some
a, b in K; we shall prove that z € ab. We have z € yb for some y € ab. But the
cases of ¢ € {y,b} or y € {a,b} are easy, and, on the other hand, it turns out to be
not possible that each of the statements z € yb and y € ab holds according to some
of the cases (8), (7). So we have shown that all assumptions of Theorems 2.1 and
2.2 are satisfied in this example. Let us now consider the convex set X = {p1,pa}
and the union of all convex closures [p,, z], where z € X. The union in question 1s

{PI,PZ,P.?} U {P27p4} = {PI,PZ»Pa,IM}a and lt’ iS not convex due to Ps € p3p4"

Remark. Theorem 2.2 remains true if the inclusion (ab)b C ab is replaced by
the weaker one (ab)b C abU{a,b}. To see this, it is sufficient to make the following
changes in the proof: ’
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e The sentence “Let = be an arbitrary element of K” must be replaced by “Let
x be an arbitrary element of 77.

e The inclusion (2.1) must become (S/z)/z C SU S/z.

e The third sentence after (2.1) must become “Making use of the inclusion
(Ex)z C ExU{E, z}, we conclude that NS #Qor € € S, hence £ € SUS/z”.

3. CONCLUDING REMARKS

- We think it is quite possible that in the time of writing [3] Professor Tagamlitzki
had already been aware of the possibility to prove a version of Theorem 1 in the
absence of the first associativity law. In our opinion, he could have the following
reasons not to mention this possibility in his paper:

e a lack of known interesting applications of such a generalization of the theo-
rem;

e the fact that the rest of the paper anyway needs the first associativity law
(Theorem 1 being mainly a tool for the considerations there);

e the lack of information about Ellis’ separation theorem at that time.

There is, however, a chance that a generalization of this kind could be possibly
applied in the future to some problems of interest, and also the other considerations
from [3] perhaps could be generalized in some way for the case of absent first asso-
ciativity law. If this happens, then the fact that Ellis’ theorem does not completely
cover the content of Tagamlitzki’s result will turn out to be more essential than it
could seem at the present moment.
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