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Let X = (B/Γ)′ be a smooth toroidal compactification of a quotient of the complex
2-ball B = PSU2,1/PS(U2 × U1) by a lattice Γ < PSU2,1, D := X \ (B/Γ) be the

toroidal compactifying divisor of X, ρ : X → Y be a finite composition of blow downs

to a minimal surface Y and E(ρ) be the exceptional divisor of ρ. The present article es-
tablishes a bijective correspondence between the finite unramified coverings of ordered

triples (X,D,E) and the finite unramified coverings of (ρ(X), ρ(D), ρ(E)). We say that
(X,D,E(ρ)) is saturated if all the unramified coverings f : (X′, D′, E′(ρ′))→ (X,D,E)

are isomorphisms, while (X,D,E(ρ)) is primitive exactly when any unramified cover-

ing f : (X,D,E(ρ)) → (f(X), f(D), f(E(ρ))) is an isomorphism. The covering rela-
tions among the smooth toroidal compactifications (B/Γ)′ are studied by Uludag’s [7],

Stover’s [6], Di Cerbo and Stover’s [2] and other articles.

In the case of a single blow up ρ = β : X = (B/Γ)′ → Y of finitely many points of Y ,

we show that there is an isomorphism Φ : Aut(Y, β(D)) → Aut(X,D) of the relative
automorphism groups and Aut(X,D) is a finite group. Moreover, when Y is an abelian

surface then any finite unramified covering f : (X,D,E(β)) → (f(X), f(D), f(E(β)))

factors through an Aut(X,D)-Galois covering. We discuss the saturation and the
primitiveness of X with Kodaira dimension κ(X) = −∞, as well as of X with K3 or

Enriques minimal model Y .
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1. UNRAMIFIED PULL BACK OF A SMOOTH COMPACTIFICATION

Lemma 1. Let M be a complex manifold and N be a complex analytic subva-
riety of M or an open subset of M .

(i) If f : M → f(M) is an unramified covering of degree d then f : N → f(N)
is an unramified covering of degree d exactly when f : M \N → f(M) \ f(N) is an
unramified covering of degree d.

(ii) Let us suppose that f : M → f(M) is a holomorphic map onto a complex
manifold, f(N) ∩ f(M \ N) = ∅ and f : N → f(N), f : M \ N → f(M \ N) are
unramified coverings of degree d. Then f : M → f(M) is an unramified covering
of degree d.

Proof. (i) Let X := N or X := M \N . Then f : X → f(X) is an unramified
covering of degree deg(f |X) = deg(f |M ) = d exactly when f−1(f(X)) = X. If so,
then the intersection f−1(f(M \X)) ∩X = ∅ is empty, whereas f−1(f(M \X)) =
M \X, the union f(M) = f(X)

∐
f(M \X) is disjoint and f : M \X → f(M \X) =

f(M) \ f(X) is an unramified covering of degree d.

(ii) The union f(M) = f(N)
∐
f(M \N) is disjoint, so that f−1(f(M \N)) =

M\N , f−1(f(N)) = N and f : M → f(M) is an unramified covering of degree d.�

Lemma 2. Let f : X → X ′ be an unramified covering of degree d of smooth
projective surfaces.

(i) Suppose that D =
k∐
j=1

Dj is a divisor on X with disjoint smooth irreducible

components Dj and f restricts to an unramified covering f : D → f(D) of degree
d. Then f(D) = ∪kj=1f(Dj) has smooth irreducible components f(Dj), f restricts
to unramified coverings f : Dj → f(Dj) for all 1 ≤ j ≤ k and f(Di) ∩ f(Dj) = ∅
for f(Di) 6≡ f(Dj).

In particular, Dj are smooth elliptic curves if and only if f(Dj) are smooth
elliptic curves.

(ii) If C ′ is a smooth irreducible rational curve on X ′ then the complete preim-

age f−1(C ′) =
d∐
i=1

Ci consists of d disjoint smooth irreducible rational curves Ci

and f restricts to isomorphisms f : Ci → C ′ for all 1 ≤ i ≤ d.

Proof. (i) The unramified covering f : D → f(D) is a local biholomorphism, so
that f(D) is a smooth divisor on X ′. Thus, all the irreducible components f(Dj)
of f(D) are smooth curves and f(Di)∩f(Dj) 6= ∅ requires f(Di) ≡ f(Dj). For any
1 ≤ i ≤ k let J(i) be the set of those 1 ≤ j ≤ k, for which f(Dj) ≡ f(Di). Then
there exists a subset I ⊆ {1, . . . , k} with

∐
i∈I

J(i) = {1, . . . , k} and f(D) =
∐
i∈I

f(Di).

By the very definition of J(i), there holds the inclusion
∐

j∈J(i)
Dj ⊆ f−1(f(Di)).
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Since f restricts to an unramified covering f : D → f(D) of degree d, any p ∈
f−1(f(Di)) belongs to Ds for some 1 ≤ s ≤ k. Then f(p) ∈ f(Di) specified that
s ∈ J(i), whereas f−1(f(Di)) ⊆

∐
j∈J(i)

Dj and f−1(f(Di)) =
∐

j∈J(i)
Dj . Thus, for

any i ∈ I the morphism f restricts to an unramified covering f :
∐

j∈J(i)
Dj → f(Di)

of degree d. By definition, any f(p) ∈ f(Di) with p ∈
∐

j∈J(i)
Dj has a trivializing

neighborhood U on f(Di), whose pull back f−1(U) =
∐

q∈f−1(p)

Vq is a disjoint union

of neighborhoods Vq of q ∈ f−1(p) on
∐

j∈J(i)
Dj with biholomorphic restrictions

f : Vq → U . For a sufficiently small U one can assume that Vq ⊂ Dj for q ∈ Dj .
That is why f restricts to unramified coverings f : Dj → f(Dj) = f(Di). In
particular, Dj are smooth elliptic curves exactly when f(Dj) are smooth elliptic
curves.

(ii) Let f−1(C ′) =
k∑
i=1

Ci be a union of k irreducible curves Ci,

di := deg [f |Ci : Ci → C ′] and Br(f |Ci) := {q ∈ C ′ |
∣∣f−1(q) ∩ Ci

∣∣ < di} be the
branch locus of f |Ci for 1 ≤ i ≤ k. Any Br(f |Ci) is a finite set, as well as the
intersection ∪1≤i<j≤kCi ∩ Cj of different irreducible components, so that

Σ :=
[
∪ki=1Br(f |Ci)

]
∪ [∪1≤i<j≤kf(Ci ∩ Cj)]

is a finite subset of C ′. For any q ∈ C ′\Σ one has f−1(q) =
k∐
i=1

f−1(q)∩Ci, whereas

d =
∣∣f−1(q)

∣∣ =

k∑
i=1

∣∣f−1(q) ∩ Ci
∣∣ =

k∑
i=1

di.

If qj ∈ Br(f |Cj ) then f−1(qj) = ∪ki=1f
−1(qj)∩Ci with

∣∣f−1(qj) ∩ Cj
∣∣ < dj , so that

d =
∣∣f−1(qj)

∣∣ ≤ k∑
i=1

∣∣f−1(qj) ∩ Ci
∣∣ < k∑

i=1

di = d.

This is absurd, justifying Br(f |Cj
) = ∅ for all 1 ≤ j ≤ k. Similarly, for any

p ∈ Ci ∩ Cj there holds

d =
∣∣f−1(p)

∣∣ < k∑
i=1

∣∣f−1(p) ∩ Ci
∣∣ =

k∑
i=1

di = d.

The contradiction shows that the irreducible components Ci of f−1(C ′) are disjoint.
The unramified coverings f |Ci

: Ci → C ′ of the smooth irreducible rational curve

C ′ are of degree di = 1, due to π1(C ′) = {1}. Therefore d =
k∑
i=1

di = k and
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f−1(C ′) =
d∐
i=1

Ci consists of d disjoint smooth irreducible rational curves with

biholomorphic restrictions f |Ci : Ci → C ′ for all 1 ≤ i ≤ d. �

A (−1)-curve Li on a smooth projective surface Y is a smooth irreducible
rational curve with self-intersection L2

i = −1. Throughout, we say that a smooth
projective surface Y is minimal if it does not contain a (−1)-curve. This is slightly
different from the contemporary viewpoint of the Minimal Model Program, which
considers a smooth projective surface Y to be minimal if its canonical divisor KY

is nef (i.e., KY .C ≥ 0 for all effective curves C ⊂ Y ). The numerical effectiveness
of KY excludes the existence of (−1)-curves on Y . If Y is of Kodaira dimension
κ(Y ) = −∞ then KY is not nef, regardless of the presence of (−1)-curves on Y .
That is the reason for exploiting the older, out of date notion of minimality of
a smooth projective surface, which requires the non-existence of (−1)-curves on
Y . By a theorem of Castelnuovo (Theorem V.5.7 [5]), for any smooth irreducible
projective surface X there is a birational morphism ρ : X → Y onto a minimal
smooth projective surface Y , which is a composition of blow downs of (−1)-curves.
If X is of Kodaira dimension κ(X) ≥ 0 then the minimal model Y of X is unique
(up to an isomorphism). This is not true when X is birational to a rational or a
ruled surface.

Lemma 3. (i) Let Bl : X1 → Y1 be a blow down of a (−1)-curve L1 ⊂ X1

and ϕ : Y2 → Y1 be an unramified covering of degree d. Then the fibered product
commutative diagram

X2 := X1 ×Y1 Y2 Y2

X1 Y1

?

f

-β

?

ϕ

-Bl

(1)

consists of an unramified covering f : X2 → X1 of degree d and the blow down

β : X2 → Y2 of the disjoint union f−1(L1) =
d∐
j=1

L1,j of the (−1)-curves L1,j.

(ii) Let ρ1 : Bl1 . . .Blr−1Blr : Tr := X1 → Y1 =: T0 be a composition of blow
downs Bli : Ti → Ti−1 of (−1)-curves Li ⊂ Ti and ϕ : Y2 → Y1 be an unramified
covering of degree d. Then the fibered product commutative diagrams

Si := Ti ×Ti−1 Si−1 Si−1

Ti Ti−1
?
ϕi

-βi

?
ϕi−1

-Bli

(2)
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fit into a commutative diagram

Sr . . . Si := Ti ×Ti−1
Si−1 Si−1 . . . S0 := Y2

Tr := X . . . Ti Ti−1 . . . T0 := Y1

?

f

?

ϕi

-βi

?

ϕi−1

?

ϕ=ϕ0

-Bli

(3)

and induce a fibered product commutative diagram

X2 = X1 ×Y1
Y2 Y2

X1 Y1

?

f

-ρ2

?

ϕ

-ρ1

(4)

with an unramified covering f : X2 → X1 of degree d and a composition ρ2 =

β1 . . . βr−1βr : X2 → Y2 of blow downs of ϕ−1i (Li) =
d∐
j=1

Li,j for all 1 ≤ i ≤ r.

Proof. (i) By the very definition of a blow down Bl : X1 → Y1 of L1 to
Bl(L1) = q1 ∈ Y1, one has X1 \ L1 = Y1 \ {q1}. Then

X2 := X1 ×Y1 Y2 = [(X1 \ L1)×Y1 Y2]
∐

[L1 ×Y1 Y2]

decomposes into the disjoint union of

(X1 \ L1)×Y1 Y2 = {(x1, y2) |x1 = Bl(x1) = ϕ(y2)} ' Y2 \ ϕ−1(q1) and

L1 ×Y1
Y2 = {(x1, y2) | q1 = Bl(x1) = ϕ(y2)} = L1 × ϕ−1(q1).

If ϕ−1(q1) = {p1,j | 1≤j≤d} then X2 is the blow up of Y2 at {p1,j | 1≤j≤ d}. Due
to Blf = ϕβ, the exceptional divisor of β is β−1 ({p1,j | 1 ≤ j ≤ d}) = β−1ϕ−1(q1) =

(ϕβ)−1(q1) = (Blf)−1(q1) = f−1Bl−1(q1) = f−1(L1) =
d∐
j=1

L1,j . According to

Corollary 17.7.3 (i) from Grothendieck’s [4], f : X2 → X1 is an unramified covering,
since ϕ : Y2 → Y1 is an unramified covering.

(ii) By an increasing induction on 1 ≤ i ≤ r, one applies (i) to the fibered
product commutative diagrams (2) and justifies (ii). �

Lemma 4. (i) In the notations from Lemma 3 (i) and the fibered product
commutative diagram (1), let D(2) be a (possibly reducible) divisor on X2, which
does not contain an irreducible component of the exceptional divisor of β and D(1) be
a (possibly reducible) divisor on X1, which does not contain the exceptional divisor
L1 of Bl. Then the restriction f : D(2) → D(1) is an unramified covering of degree
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d = deg[f : X2 → X1] if and only if ϕ : β(D(2)) → Bl(D(1)) is an unramified
covering of degree d.

(ii) In the notations from Lemma 3 (ii) and the fibered product commutative
diagram (4), let D(2) be a (possibly reducible) divisor on X2, which does not contain
an irreducible component of the exceptional divisor of ρ2 and D(1) be a (possibly
reducible) divisor on X1, which does not contain an irreducible component of the
exceptional divisor of ρ1. Then the restriction f : D(2) → D(1) is an unramified
covering of degree d if and only if the restriction ϕ : ρ2(D(2)) → ρ1(D(1)) is an
unramified covering of degree d.

Proof. (i) If f : D(2) → D(1) is an unramified covering of degree d then
f−1(D(1) ∩ L1) = f−1(D(1)) ∩ f−1(L1) = D(2) ∩ f−1(L1) and the restriction
f : D(1) ∩ f−1(L1) → D(1) ∩ L1 is an unramified covering of degree d. After

denoting f−1(L1) =
d∐
j=1

L1,j , β(L1,j) = p1,j and Bl(L1) = q1, one applies Lemma 1

(i), in order to conclude that

ϕ ≡ f : β(D(2))\{p1,j | 1 ≤ j ≤ d} ≡ D(2) \f−1(L1) −→ D(1) \L1 ≡ Bl(D(1))\{q1}

is an unramified covering of degree d. As a result, the morphism ϕ restricts to
ϕ : {p1,j | 1 ≤j≤d} → {q1}, so that

ϕ : β(D(2)) = β(D(2)) \ {p1,j | 1 ≤ j ≤ d}
∐
{p1,j | 1 ≤ j ≤ d} −→

−→
[
Bl(D(1)) \ {q1}

]∐
{q1} = Bl(D(1))

is an unramified covering of degree d by Lemma 1 (ii).

Conversely, assume that ϕ : β(D(2)) → Bl(D(1)) is an unramified covering of
degree d. Choose a sufficiently small neighborhood V of q1 = Bl(L1) on Y1, such

that ϕ−1(V ) =
d∐
j=1

Uj is a disjoint union of neighborhoods Uj of p1,j , 1 ≤ j ≤ d

on Y2 with biholomorphic restrictions ϕ : Uj → V of ϕ. Bearing in mind that
Bl1 : X1 → Y1 is the blow up of Y1 at q1, one decomposes

Bl(D(1)) =
[
Bl(D(1)) \ V

]∐[
Bl(D(1)) ∩ V

]
and

D(1) =
[
Bl(D(1)) \ V

]∐
Bl−1(Bl(D(1)) ∩ V ).

Similarly, β : X2 → Y2 is the blow up of Y2 at ϕ−1(q1) = {p1,j | 1 ≤ j ≤ d}, so that
there are decompositions

β(D(2)) =
[
β(D(2)) \ ϕ−1(V )

]∐[
β(D(2)) ∩ ϕ−1(V )

]
and

D(2) =
[
β(D(2)) \ ϕ−1(V )

]∐
β−1(β(D(2)) ∩ ϕ−1(V )).
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According to ϕ−1(Bl(D(1)) ∩ V ) = ϕ−1(Bl(D(1))) ∩ ϕ−1(V ) = β(D(2)) ∩ ϕ−1(V ),
the restriction ϕ : β(D(2)) ∩ ϕ−1(V ) → Bl(D(1)) ∩ V is an unramified covering of
degree d. Now, Lemma 1 (ii) applies to provide that

f ≡ ϕ : β(D(2)) \ ϕ−1(V ) −→ Bl(D(1)) \ V

is an unramified covering of degree d. According to Lemma 1 (ii), it sufficed to
show that

f : β−1(β(D(2)) ∩ ϕ−1(V )) −→ Bl−1(Bl(D(1)) ∩ V )

is an unramified covering of degree d, in order to conclude that f : D(2) → D(1) is
an unramified covering of degree d. To this end, note that

ϕ−1(Bl(D(1))∩V ) = β(D(2))∩ϕ−1(V ) = β(D(2))∩

 d∐
j=1

Uj

 =

d∐
j=1

[
β(D(2)) ∩ Uj

]
,

so that

ϕ :

d∐
j=1

[
β(D(2)) ∩ Uj

]
−→ Bl(D(1)) ∩ V

is an unramified covering of degree d. Thus, the biholomorphisms ϕ : Uj → V
restrict to biholomorphisms ϕ : β(D(2)) ∩ Uj → Bl(D(1)) ∩ V . According to
ϕ(p1,j)=q1, there arise biholomorphisms

ϕ : (β(D(2)) ∩ Uj) \ {p1,j} −→ (Bl(D(1)) ∩ V ) \ {q1}.

By the very definition of a blow up at a point, these induce biholomorphisms

f :
[
(β(D(2)) ∩ Uj) \ {p1,j}

]∐
L1,j −→

[
(Bl(D(1)) ∩ V ) \ {q1}

]∐
L1

for all 1 ≤ j ≤ d. Bearing in mind that

d∐
j=1

{[
(β(D(2)) ∩ Uj) \ {p1,j}

]∐
L1,j

}
= β−1(β(D(2)) ∩ ϕ−1(V )),

one concludes that ϕ induces an unramified covering

f : β−1(β(D(2)) ∩ ϕ−1(V )) −→ Bl−1(Bl(D(1)) ∩ V )

of degree d.

(ii) Along the commutative diagram (3), if f : D(2) → D(1) is an unramified
covering of degree d then by a decreasing induction on r ≥ i ≥ 1 and making use of
(i), one observes that ϕi : βi+1 . . . βr(D

(2)) → Bli+1 . . .Blr(D
(1)) is an unramified

covering of degree d, whereas ϕ : ρ2(D(2)) → ρ1(D(1)) is an unramified covering
of degree d. Conversely, suppose that ϕ : ρ2(D(2)) → ρ1(D(1)) is an unramified
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covering of degree d. Then by an increasing induction on 1 ≤ i ≤ r and making
use of (i), one concludes that

ϕi : βi+1 . . . βr(D
(2))→ Bli+1 . . .Blr(D

(1))

is an unramified covering of degree d. As a result, f : D(2) → D(1) is an unramified
covering of degree d. �

Corollary 5. Let X1 = (B/Γ1) be a smooth toroidal compactification, ρ1 :
X1 → Y1 be a composition of blow downs onto a minimal surface Y1, ϕ : Y2 → Y1
be an unramified covering of degree d and (4) be the defining commutative diagram
of the fibered product X2 = X1 ×Y1 Y2. Then:

(i) there is a subgroup Γ2 of Γ1 of index [Γ1 : Γ2] = d, such that X2 = (B/Γ2)′

is the toroidal compactification of B/Γ2;

(ii) f : X2 → X1 restricts to unramified coverings f : B/Γ2 → B/Γ1, respec-
tively, f : D(2) := X2 \ (B/Γ2)→ X1 \ (B/Γ1) =: D(1) of degree d;

(iii) the composition ρ2 : X2 → Y2 of blow downs maps onto a minimal surface
Y2;

(iv) ϕ restricts to an unramified covering ϕ : ρ2(D(2))→ ρ1(D(1)) of degree d.

Proof. By Lemma 3 (ii), the fibered product diagram (4) consists of an un-
ramified covering f : X2 → X1 of degree d and a composition ρ2 : X2 → Y2 of
blow downs. The surface Y2 is minimal. Otherwise any (−1)-curve L′i on Y2 maps
isomorphically onto a (−1)-curve ϕ(L′i) ⊂ Y1, according to Lemma 2 (ii). That
contradicts the minimality of Y1 and shows the minimality of Y2.

The unramified covering f : X2 → X1 = (B/Γ1)′ of degree d restricts to an
unramified covering f : f−1(B/Γ1) → B/Γ1 of degree d. The smoothness of B/Γ1

excludes the existence of isolated branch points of the Γ1-Galois covering ζ1 : B→
B/Γ1. However, ζ1 can ramify along divisors and B is not the usual universal cover of
the complex manifold B/Γ1. Nevertheless, B is the orbifold universal cover of B/Γ1

and the orbifold universal covering map ζ1 : B→ B/Γ1 factors through a (possibly
ramified) covering ζ2 : B → f−1(B/Γ1) and the covering f : f−1(B/Γ1) → B/Γ1,
i.e., ζ1 = fζ2. Since πorb

1 (B) = {1} is a normal subgroup of Γ2 := πorb
1 (f−1(B/Γ)),

the covering ζ2 is Galois and its Galois group Γ2 is a subgroup of Γ1 = πorb
1 (B/Γ1)

of index [Γ1 : Γ2] = d. In particular, f−1(B/Γ1) = B/Γ2. By Lemma 1 (i), f
restricts to an unramified covering f : D(2) := X2 \ (B/Γ2)→ X1 \ (B/Γ1) =: D(1)

of degree d of the toroidal compactifying divisor D(1) =
k∐
j=1

D
(1)
j of B/Γ1. Note that

for any 1 ≤ j ≤ k the restriction f : f−1(D
(1)
j ) → D

(1)
j is an unramified covering

of degree d, whereas a local biholomorphism. Therefore f−1(D
(1)
j ) = ∪rji=1D

(2)
j,i is

smooth and has disjoint smooth irreducible components D
(2)
j,i . As a result,

D(2) = f−1(D(1)) =

k∐
j=1

f−1(D
(1)
j ) =

k∐
j=1

rj∐
i=1

D
(2)
j,i
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has disjoint smooth irreducible components D
(2)
j,i . By assumption, D

(1)
j are smooth

elliptic curves, so that all D
(2)
j,i are smooth elliptic curves by Lemma 2 (i). That is

why X2 = (B/Γ2)′ is the toroidal compactification of B/Γ2. According to Lemma 4
(ii), ϕ : Y2 → Y1 restricts to an unramified covering ϕ : ρ2(D(2)) → ρ1(D(1)) of
degree d. �

Lemma 6. (i) Let f : X2 → X1 be an unramified covering of degree d of
smooth projective surfaces and Bl : X1 → Y1 be a blow down of a (−1)-curve L1 ⊂
X1. Then the Stein factorization ϕβ of Blf consists of the blow down β : X2 → Y2

of f−1(L1) =
d∐
j=1

L1,j and an unramified covering ϕ : Y2 → Y1 of degree d, so that

X2 = X1 ×Y1
Y2 is the fibered product of X1 and Y2 over Y1.

(ii) Let ρ1 = Bl1 . . .Blr : Tr := X1 → Y1 =: T0 be a composition of blow downs
of (−1)-curves Li ⊂ Ti and f : X2 → X1 be an unramified covering of degree
d. Then the Stein factorization ϕρ2 of ρ1f : X2 → Y1 closes the fibered product
commutative diagram (4) with the composition ρ2 = β1 . . . βr : Sr := X2 → Y2 :=

S0 of the blow downs βi : Si → Si−1 of ϕ−1i (Li) =
d∐
j=1

Li,j for all 1 ≤ i ≤ r and an

unramified covering ϕ : Y2 → Y1 of degree d.

Proof. (i) If Blf = ϕβ : X2 → Y1 is the Stein factorization of Blf and

q1 := Bl(L1) then (Blf)−1(q1) = f−1Bl−1(q1) = f−1(L1) =
d∐
j=1

L1,j has irre-

ducible components L1,j by Lemma 4. For any q ∈ Y1 \ {q1} one has (Blf)−1(q) =
f−1Bl−1(q) = f−1(q) of cardinality

∣∣f−1(q)
∣∣ = d. Therefore, the surjective mor-

phism β : X2 → Y2 with connected fibres is the blow down of L1,j , ∀1 ≤ j ≤ d.
According to Lemma 1 (i), the restriction f : X2 \ f−1(L1) → X1 \ L1 is an un-
ramified covering of degree d, since f : f−1(L1)→ L1 is an unramified covering of
degree d. In such a way, there arises a commutative diagram

X2 \ f−1(L1) Y2 \ βf−1(L1)

X1 \ L1 Y1 \ {q1}
?

f

-β=Id

?

ϕ

-Bl=Id

and ϕ : Y2 \ βf−1(L1) → Y1 \ {q1} is an unramified covering of degree d. If

p1,j := β(L1,j) then β−1ϕ−1(q1) = (ϕβ)−1(q1) = (Blf)−1(q1) =
d∐
j=1

L1,j reveals

that ϕ−1(q1) = {p1,j | 1 ≤ j ≤ d} consists of d points and ϕ : Y2 → Y1 is an
unramified covering of degree d. By Lemma 3 (i), the fibered product X ′2 :=
X1 ×Y1

Y2 is the blow up of Y2 at ϕ−1(q1) = {p1,j | 1 ≤ j ≤ d}, so that X ′2 = X2.

According to Grothendieck’s Corollary 17.7.3 (i) from [4], it suffices to show
that X ′2 = X2, in order to conclude that ϕ : Y2 → Y1 is an unramified covering of
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degree d. We have justified straightforwardly that ϕ : Y2 → Y1 is an unramified
covering of degree d, in order to use it towards the coincidence of X2 with the
fibered product X ′2 := X1 ×Y1 Y2.

(ii) is an immediate consequence of the fact that the composition of morphisms
with connected fibres has connected fibres. �

Corollary 7. Let f : X2 → X1 = (B/Γ1)′ be an unramified covering of
degree d of a smooth toroidal compactification X1 = (B/Γ1)′, ρ1 : X1 → Y1 be a
composition of blow downs onto a minimal surface Y1 and D(1) := X1 \ (B/Γ1) be
the toroidal compactifying divisor of B/Γ1. Then:

(i) there exist a composition ρ2 : X2 → Y2 of blow downs onto a minimal
surface Y2 and an unramified covering ϕ : Y2 → Y1 of degree d, which exhibits
X2 = X1 ×Y1

Y2 as a fibered product of X1 and Y2 over Y1;

(ii) there is a subgroup Γ2 < Γ1 of index [Γ1 : Γ2] = d, such that X2 = (B/Γ2)′

is the toroidal compactification of B/Γ2 and f restricts to unramified coverings
f : B/Γ2 → B/Γ1, f : D(2) := X2 \ (B/Γ2)→ X1 \ (B/Γ2) =: D(1) of degree d;

(iii) ϕ restricts to an unramified covering ϕ : ρ2(D(2))→ ρ1(D(1)) of degree d.

Proof. (i) is an immediate consequence of Lemma 6 (ii) and the fact that any
inramified cover Y2 of a minimal surface Y1 is minimal.

(ii) The unramified covering f : X2 → X1 = (B/Γ1)′ of degree d restricts
to an unramified covering f : f−1(B/Γ1) → B/Γ1 of degree d. As in the proof
of Corollary 5, there is a subgroup Γ2 < Γ1 of index [Γ1 : Γ2] = d, such that
X2 = (B/Γ2)′ is the toroidal compactification of B/Γ2 and f restricts to unramified
coverings f : B/Γ2 → B/Γ1, f : D(2) := X2 \ (B/Γ2) → X1 \ (B/Γ1) =: D(1) of
degree d.

(iii) is an immediate consequence of Lemma 4 (ii). �

Definition 8. A smooth toroidal compactification X1 = (B/Γ1)′ is saturated
if there is no unramified covering f : X2 = (B/Γ2)′ → (B/Γ1)′ = X1 of degree d,
which restricts to an unramified covering f : B/Γ2 → B/Γ1 of degree d.

Bearing in mind that the fundamental group of a smooth projective variety is
a birational invariant, one combines Corollary 5 with Corollary 7 and obtains the
following

Corollary 9. A smooth toroidal compactification X1 = (B/Γ1)′ is saturated if
and only if one and, therefore, any minimal model Y1 of X1 is simply connected.
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2. UNRAMIFIED PUSH FORWARD OF A SMOOTH COMPACTIFICATION

Let X2 be a smooth projective surface, β : X2 → Y2 be a blow down with

exceptional divisor E(β) =
d∐
s=1

L1,s and f : X2 → X1 be an unramified covering of

degree d, which restricts to an unramified covering f : E(β) → f(E(β)) of degree
d. According to Lemma 2 (ii), L1 := f(E(β)) is a (−1)-curve on X1. Then Lemma
6 (i) implies that there is a fibered product commutative diagram (1) with the blow
down Bl : X1 → Y1 of L1 and an unramified covering ϕ : Y2 → Y1 of degree d,
which shrinks β(E(β)) = {p1,j := β(L1,j) | 1 ≤ j ≤ d} to a point q1 ∈ Y1. We say
that ϕ is induced by f .

Suppose that ρ2 = β1 . . . βr : Sr := X2 → Y2 =: S0 is a composition of blow
downs

βi : Si := βi+1 . . . βr(Sr) −→ Si−1 := βi . . . βr(Sr) (5)

with exceptional divisors E(βi) =
d∐
s=1

Li,s for all 1 ≤ i ≤ r. By a decreasing

induction on r ≥ i ≥ 1, let us assume that there is a fibered product commutative
diagram

Sr Sr−1 . . . Si+1 Si

f(Sr) ϕr−1(Sr−1) . . . ϕi+1(Si+1) ϕi(Si)
?

f=ϕr

-βr

?

ϕr−1

?

ϕi+1

-βi+1

?

ϕi

-Blr -Bli+1

with fibered product squares Bljϕj = ϕj−1βj , such that ϕj restricts to an un-
ramified covering ϕj : E(βj) → Lj := ϕj(E(βj)) of degree d and ϕj−1 shrinks
the set βj(E(βj)) = {pj,s := βj(Lj,s) | 1 ≤ s ≤ d} to a point qj ∈ ϕj−1(Sj−1)
for all r ≥ j ≥ i + 1. If ϕi : Si → ϕi(Si) restricts to an unramified cover-
ing ϕi : E(βi) → Li := ϕi(E(βi)) of degree d then there is an unramified covering
ϕi−1 : Si−1 → ϕi−1(Si−1) of degree d, which shrinks βi(Eβi

) = {pi,s = βi(Li,s) | 1 ≤
s ≤ d} to a point qi ∈ Si−1 and closes the fibered product commutative diagram
ϕi−1βi = Bliϕi. Thus, if an unramified covering f : X2 → X1 of degree d induces

unramified coverings E(βi) =
d∐
s=1

Li,s → Li of degree d for all 1 ≤ i ≤ r then there

is an unramified covering ϕ := ϕ0 : Y2 = S0 → ϕ0(S0) =: Y1 of degree d, which
induces unramified coverings βi(E(βi)) = {pi,s := βi(Li,s) | 1 ≤ s ≤ d} → {qi} ⊂
ϕi−1(Si−1) of degree d for all 1 ≤ i ≤ r.

Conversely, assume that Y2 is a smooth projective surface, β : X2 → Y2 is

a blow down with exceptional divisor E(β) =
d∐
s=1

L1,s and ϕ : Y2 → Y1 is an

unramified covering of degree d, which shrinks β(E(β)) = {p1,s = β(L1,s) | 1 ≤
s ≤ d} to a point q1 ∈ Y1. According to Lemma 3 (i), there is a fibered product
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commutative diagram (1), where Bl : X1 → Y1 is the blow up of Y1 at q1 ∈ Y1
and f : X2 → X1 is an unramified covering of degree d, which restricts to an

unramified covering f : E(β) =
d∐
s=1

L1,s → L1 := Bl−1(q1) of degree d. Let

ρ2 = β1 . . . βr : Sr := X2 → Y2 =: S0 be a composition of blow downs (5) with

exceptional divisors E(βi) =
d∐
s=1

Li,s. By an increasing induction on 1 ≤ i ≤ r,

suppose that

Si Si−1 . . . S1 S0 = Y2

ϕi(Si) ϕi−1(Si−1) . . . ϕ1(S1) ϕ(Y2)
?

ϕi

-βi

?

ϕi−1

?

ϕ1

-β1

?

ϕ=ϕ0

-Bli -Bl1

is a fibered product commutative diagram with fibered product squares ϕj−1βj =
Bljϕj , such that ϕj−1 restricts to an unramified covering

ϕj−1 : βj(E(βj)) = {pj,s := βj(Lj,s) | 1 ≤ s ≤ d} −→ {qj} ⊂ ϕj−1(Sj−1)

of degree d and ϕj restricts to an unramified covering

ϕj : E(βj) =

d∐
s=1

Lj,s −→ ϕj(E(βj)) =: Lj

of degree d for all 1 ≤ j ≤ i. If ϕi restricts to an unramified covering

ϕi : βi+1(E(βi+1)) = {pi+1,s = βi+1(Li+1,s) | 1 ≤ s ≤ d} −→ {qi+1} ⊂ ϕi(Si)

of degree d then there is an unramified covering

ϕi+1 : Si+1 −→ ϕi+1(Si+1)

of degree d, which restricts to an unramified covering

ϕi+1 : E(βi+1) =

d∐
s=1

Li+1,s −→ Li+1 := ϕi+1(E(βi+1))

of degree d and closes the fibered product commutative diagram ϕiβi+1 = Bli+1ϕi+1

with the blow down Bli+1 : ϕi+1(Si+1) → ϕi(Si) of Li+1. In such a way, if ϕ :
Y2 → Y1 is an unramified covering of degree d, which induces unramified coverings

βi(E(βi)) = {pi,s := βi(Li,s) | 1 ≤ s ≤ d} −→ {qi} ⊂ ϕi−1(Si−1)

of degree d for all 1 ≤ i ≤ r then f := ϕr : X2 → f(X2) is an unramified covering

of degree d, which induces unramified coverings E(βi) =
d∐
s=1

Li,s → Li of degree d

for all 1 ≤ i ≤ r. The above considerations justify the following
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Lemma-Definition 10. Let X2, Y2 be smooth projective surfaces and

ρ2 = β1 . . . βr : Sr := X2 −→ Y2 =: S0

be a composition of blow downs (5) with exceptional divisors E(βi) for all 1 ≤ i ≤ r.
Then the following are equivalent:

(i) there is an unramified covering f : X2 → f(X2) of degree d, which induces

unramified coverings E(βi) =
d∐
s=1

Li,s → Li of degree d for all 1 ≤ i ≤ r;

(ii) there is an unramified covering ϕ : Y2 → ϕ(Y2) of degree d, which induces
unramified coverings βi(E(βi)) = {pi,s = βi(Li,s) | 1 ≤ s ≤ d} → {qi} ⊂ ϕi−1(Si−1)
of degree d for all 1 ≤ i ≤ r.

If there holds one and, therefore, any one of the aforementioned conditions
then there is a fibered product commutative diagram (4), where

ρ1 = Bl1 . . .Blr : X1 := ϕ(X2)→ ϕ(Y2) =: Y1

is the composition of blow downs Bli of Li for all 1 ≤ i ≤ r and we say that
f : X2 → f(X2) and ϕ : Y2 → ϕ(Y2) are compatible with ρ.

Corollary 11. Let X2 = (B/Γ2)′ be a smooth toroidal compactification and
ρ2 : X2 → Y2 be a composition of blow downs onto a minimal surface Y2. If there
is an unramified covering f : X2 = (B/Γ2)′ → f(X2) =: X1 of degree d, which is
compatible with ρ2 and restricts to an unramified covering f : B/Γ2 → f(B/Γ2) of
degree d then:

(i) there is a fibered product commutative diagram (4) with an unramified cover-
ing ϕ : Y2 → ϕ(Y2) =: Y1 of degree d and a composition of blow downs ρ1 : X1 → Y1
onto a minimal surface Y1;

(ii) there is a lattice Γ1 of Aut(B) = PU(2, 1), containing Γ2 as a subgroup of
index [Γ1 : Γ2] = d and such that X1 = (B/Γ1)′ is the toroidal compactification of
B/Γ1;

(iii) ϕ restricts to an unramified covering ϕ : ρ2(D(2))→ ρ1(D(1)) of degree d,
where D(j) := Xj \ (B/Γj) are the compactifying divisors of B/Γj, 1 ≤ j ≤ 2.

Proof. (i) is an immediate consequence of Lemma 10.

Towards (ii), let us note that the composition fζ2 : B→ f(B/Γ2) of the orbifold
universal covering ζ2 : B→ B/Γ2 with the unramified covering f : B/Γ2 → f(B/Γ2)
is Galois, since πorb

1 (B) = {1} is a normal subgroup of Γ1 := πorb
1 (f(B/Γ2)).

Moreover, πorb
1 (B/Γ2) = Γ2 is a subgroup of Γ1 of index [Γ1 : Γ2] = d and

f(B/Γ2) = B/Γ1. By Lemma 1 (i), f : X2 → X1 restricts to an unramified
covering f : D(2) = X2 \ (B/Γ2) → D(1) := X1 \ (B/Γ1) of degree d. The toroidal
compactifying divisor D(2) of B/Γ2 has disjoint smooth elliptic irreducible compo-
nents, so that Lemma 2 (i) applies to provide that D(1) consists of disjoint smooth
elliptic irreducible components and X1 = (B/Γ1)′ is the toroidal compactification
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of B/Γ1. According to Lemma 4 (ii), that suffices for ϕ : Y2 → Y1 to restrict to an
unramified covering ϕ : ρ2(D(2))→ ρ1(D(1)). �

Corollary 12. Let X2 = (B/Γ2)′ be a smooth toroidal compactification, D(2) :=
X2 \ (B/Γ2) be the compactifying divisor of B/Γ2 and ρ2 : X2 → Y2 be a composi-
tion of blow downs onto a minimal surface Y2. If ϕ : Y2 → ϕ(Y2) is an unramified
covering of degree d, which is compatible with ρ2 and restricts to an unramified
covering ϕ : ρ2(D(2))→ ϕρ2(D(2)) of degree d then:

(i) there is a fibered product commutative diagram (4) with an unramified
covering f : X2 → f(X2) =: X1 of degree d and a composition of blow downs
ρ1 : X1 → Y1 onto a minimal surface Y1;

(ii) there is a lattice Γ1 of Aut(B) = PU(2, 1), containing Γ2 as a subgroup of
index [Γ1 : Γ2] = d and such that X1 = (B/Γ1)′ is the toroidal compactification of
B/Γ1;

(iii) f restricts to an unramified covering f : B/Γ2 → B/Γ1 of degree d.

Proof. Lemma 10 justifies (i). According to Lemma 4 (ii), f restricts to an
unramified covering f : D(2) → f(D(2)) of degree d. Then Lemma 1 (i) applies to
provide that f : X2 \ D(2) = B/Γ2 → X1 \ f(D(2)) is an unramified covering of
degree d. The proof of Corollary 11 (ii) has established that this is sufficient for
the existence of a lattice Γ1 of Aut(B) = PU(2, 1), containing Γ2 as a subgroup
of index [Γ1 : Γ2] = d and such that X1 \ f(D(2)) = B/Γ1. That justifies (iii).
By assumption, D(2) consists of smooth elliptic irreducible components. Therefore
f(D(2)) has smooth elliptic irreducible components and X1 = (B/Γ1)

∐
f(D(2)) is

the toroidal compactification of B/Γ1. �

Definition 13. Let X = (B/Γ)′ be a smooth toroidal compactification. If
there is no unramified covering f : X → f(X) of degree d, which restricts to an
unramified covering f : B/Γ → f(B/Γ) of degree d and is compatible with some
composition of blow downs ρ : X → Y onto a minimal surface Y , we say that
X = (B/Γ)′ is primitive.

The Euler characteristic of a smooth toroidal compactification X = (B/Γ)′ is
a natural number e(X) = e(B/Γ). That is why there exists a primitive smooth
toroidal compactification X0 = B/Γ0 and a finite sequence

Xn := X Xn−1 . . . Xi Xi−1 . . . X1 X0
-fn -fi -f1

of unramified coverings fi : Xi = (B/Γi)′ → (B/Γi−1)′ = Xi−1 of degree di of
smooth toroidal compactifications Xj = (B/Γj)′, which restrict to unramified cov-
erings fi : B/Γi → B/Γi−1 of degree di and are compatible with some compositions
of blow downs ρi : Xi → Yi onto minimal surfaces Yi. Combining Corollary 11 with
Corollary 12, one obtains the following
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Corollary 14. Let X = (B/Γ)′ be a smooth toroidal compactification with
toroidal compactifying divisor D := X \ (B/Γ). Then X is primitive if and only if
no minimal model Y of X with a composition of blow downs ρ : X → Y admits an
unramified covering ϕ : Y → ϕ(Y ) of degree d > 1, which restricts to an unramified
covering ϕ : ρ(D)→ ϕρ(D) of degree d and is compatible with ρ.

Let us suppose that a smooth toroidal compactification X = (B/Γ)′ with
toroidal compactifying divisor D := X \ (B/Γ) admits a blow down β : X → Y
of n ∈ N smooth irreducible rational (−1)-curves onto a minimal surface Y and
there is an unramified covering ϕ : Y → ϕ(Y ) of degree d, which restricts to un-
ramified coverings ϕ : β(D) → ϕβ(D) and ϕ : β(E(β)) → ϕβ(E(β)) of degree d.

Then the Euler number of the smooth surface ϕ(Y ) is e(ϕ(Y )) = e(Y )
d ∈ Z and

the cardinality of ϕβ(E(β)) if |ϕβ(E(β))| = |β(E(β))|
d = n

d ∈ N, so that d ∈ N
divides e(Y ) and n = |β(E(β))|. As a result, d divides the greatest common divisor
GCD(|β(E(β))| , e(Y )).

Note that the compatibility of an unramified covering ϕ : Y → ϕ(Y ) with
β : X → Y reduces to ϕ−1(ϕβ(E(β)) = β(E(β)) and is detected on Y . When
ρ = β1 . . . βr : X → Y is a composition of r ≥ 2 blow downs, the compatibility of
an unramified covering ϕ : Y → ϕ(Y ) of degree d with ρ cannot be traced out on the
minimal model Y of X alone. Namely, if S0 := Y , T0 := ϕ(Y ) then in the notations
from the commutative diagram (3), the unramified covering ϕ1 : S1 → T1 of degree
d may restrict to an unramified covering ϕ1 : β2(E(β2))→ ϕ1β2(E(β2)) of degree d,
but ϕ0 := ϕ is not supposed to restrict to an unramified covering ϕ : β1β2(E(β2))→
ϕβ1β2(E(β2)) of degree d. More precisely, if an irreducible component L1,j of
E(β1) intersects β2(E(β2)) in at least two points then |β1β2(E(β2))| < d and ϕ :
β1β2(E(β2))→ ϕβ1β2(E(β2)) is of degree < d.

3. SATURATED AND PRIMITIVE SMOOTH COMPACTIFICATIONS OF
NON-POSITIVE KODAIRA DIMENSION

Definition 15. Let X = (B/Γ)′ and X0 = (B/Γ0)′ be smooth toroidal com-
pactification. We say that X dominates X0 and write X � X0 or X0 � X if there
exist a finite sequence of ball lattices

Γn := Γ < Γn−1 < . . . < Γi < Γi−1 < . . . < Γ1 < Γ0,

with smooth toroidal compactifications Xi = (B/Γi)′ of the corresponding ball
quotients B/Γi and a finite sequence of unramified coverings

Xn := X Xn−1 . . . Xi Xi−1 . . . X1 X0
-fn -fi -f1

of degree deg [fi : Xi → Xi−1] = [Γi−1 : Γi] = di ∈ N, which restrict to unramified
coverings fi : B/Γi → B/Γi−1 of degree di and are compatible with some com-
positions ρi = βi,1 . . . βi,ri : Xi → Yi of blow downs βi,j onto minimal surfaces
Yi.
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It is clear that a smooth toroidal compactification X = B/Γ is saturated if and
only if it is maximal with respect to the partial order �. Similarly, X is primitive
exactly when it is minimal with respect to �. Note that the partial order � on
the set S of the smooth toroidal compactifications X = (B/Γ)′ is artinian, i.e., any
subset So ⊆ S has a minimal element Xo = (B/Γo)′ ∈ So. The minimal X ∈ S are
exactly the primitive ones, but the minimal Xo ∈ So are not necessarily primitive,
since such Xo is not supposed to be a minimal element of S.

The present section discusses the saturated and the primitive smooth toroidal
compactifications X = (B/Γ)′ of Kodaira dimension κ(X) ≤ 0.

Proposition 16. If X = (B/Γ)′ is a smooth toroidal compactification of Ko-
daira dimension κ(X) = −∞ then X is a rational surface or X has a ruled minimal
model π : Y → E with an elliptic base E.

Any smooth rational X = (B/Γ)′ is both saturated and primitive.

There is no smooth saturated X = (B/Γ)′, whose minimal model is a ruled
surface π : Y → E with an elliptic base E.

Proof. (i) Let ρ : X = (B/Γ)′ → Y be a composition of blow downs onto a
minimal surface Y of κ(Y ) = −∞, Then Y = P2(C) is the complex projective plane
or π : Y → E is a ruled surface with a base E of genus g ∈ Z≥0. The toroidal

compactifying divisor D := X \ (B/Γ) =
k∐
j=1

Dj has disjoint smooth irreducible

elliptic components Dj . If g ≥ 2 then the morphisms πρ : Dj → E map to
points pj := πρ(Dj) ∈ E, so that ρ(Dj) ⊆ π−1(pj) for all 1 ≤ j ≤ k. The
exceptional divisor L of ρ : X → Y has finite image ρ(L) = {q1, . . . , qm} on Y and

ρ(L) ⊆
m∐
i=1

π−1(π(qi)). Therefore

Y ′ := Y \

[
m∐
i=1

π−1(π(qi))

]
⊆ Y \ ρ(L) ≡ X \ L

and ρ acts identically on Y ′. Moreover,

Y ′′ := Y ′ \

 k∐
j=1

π−1(pj)

 = Y \

( m∐
i=1

π−1(π(qi))

)∐ k∐
j=1

π−1(pj)

 ⊆ B/Γ.
However, Y ′′ contains (infinitely many) fibres π−1(e) ' P1(C), e ∈ E of π : Y → E
and that contradicts the Kobayashi hyperbolicity of B/Γ. In such a way, we have
shown that any minimal model Y of a smooth toroidal compactification X = (B/Γ)′

of κ(X) = −∞ is birational to P2(C) or to a minimal ruled surface π : Y → E with
an elliptic base E.

Any rational X = (B/Γ)′ is simply connected and does not admit finite un-
ramified coverings X1 → X of degree d > 1. That is why X is saturated. Let us
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suppose that f : X = (B/Γ)′ → X0 = (B/Γ0)′ is an unramified covering of degree
d > 1, which is compatible with some composition of blow downs ρ : X → Y onto a
minimal rational surface Y and restricts to an unramified covering f : B/Γ→ B/Γ0

of degree d. The Kodaira dimension is preserved under finite unramified coverings,
so that κ(X0) = κ(X) = −∞. The surface X0 is not simply connected, whereas
non-rational. Therefore, there is a composition ρ0 : X0 → Y0 of blow downs onto a
ruled surface π0 : Y0 → E0 with base E0 of genus g0 ∈ N. The surjective morphism
ρ0f : X = (B/Γ)′ → Y0 induces an embedding (ρ0f)∗ : H0,1(Y0) → H0,1(X). On
one hand, the irregularity of Y0 is h0,1(Y0) := dimCH

0,1(Y0) = go ∈ N. On the
other hand, the rational surface X has vanishing irregularity h0,1(X) = 0. That
contradicts the presence of a finite unramified covering f : X → X0 of degree
d > 1 and shows that any smooth rational toroidal compactification X = (B/Γ)′ is
primite.

Let X = (B/Γ)′ be a smooth toroidal compactification, whose minimal model
Y is a ruled surface π : Y → E with an elliptic base E. Since Y is birational to
P1(C) × E and the fundamental group is a birational invariant, one has π1(X) '
π1(Y ) ' π1(E) ' (Z2,+). In particular, Y is not simply connected. According to
Corollary 9, X cannot be saturated. �

According to the Enriques-Kodaira classification, there are four types of min-
imal smooth projective surfaces Y of Kodaira dimension κ(Y ) = 0. These are the
abelian and the bi-elliptic surfaces with universal cover C2, as well as the K3 and
the Enriques surfaces with K3 universal cover. If ϕ : Y2 → Y1 is a finite unramified
covering of smooth projective surfaces then the Kodaira dimension κ(Y1) = κ(Y2)

and the universal covers Ỹ1 = Ỹ2 coincide. Let Y2 be a smooth projective surface
with a fixed point free involution go : Y2 → Y2 and β : X2 → Y2 be the blow up of
Y2 at a 〈go〉-orbit {p1,1, p1,2 = go(p1,1)} ⊂ Y2. Then by the very definition of a blow
up, go induces a fixed point free involution g1 : X2 → X2, which leaves invariant
the exceptional divisor E(β) = L1,1

∐
L1,2, L1,i := β−1(p1,i) of β and there is a

fibered product commutative diagram (4) with a 〈go〉-Galois covering ϕ : Y2 → Y1,
a 〈g1〉-Galois covering f : X2 → X1 and the blow up Bl : X1 → Y1 of Y1 at
{q1} = ϕ({p1,1, p1,2}). Now, suppose that ρ2 = β1 . . . βr : Sr := X2 → Y2 =: S0

is a composition of blow downs with exceptional divisors E(βi) = Li,1
∐
Li,2 and

go : S0 → S0 is a fixed point free involution. By an increasing induction on
1 ≤ i ≤ r, if gi−1 : Si−1 → Si−1 is a fixed point free involution, which leaves invari-
ant βi(E(βi)) = {pi,1, pi,2} then there is a fixed point free involution gi : Si → Si,
which leaves invariant E(βi) = Li,1

∐
Li,2. In such a way, if a fixed point free

involution g0 : S0 → S0 induces isomorphisms Li,1 → Li,2 for all 1 ≤ i ≤ r then
there is a fixed point free involution gr : Sr → Sr and a fibered product commu-
tative diagram (4) with a 〈go〉-Galois covering ϕ : Y2 → Y1, a 〈gr〉-Galois covering
f : X2 → X1 and the composition ρ1 = Bl1 . . .Blr : X1 → Y1 of the blow downs of
E(βi)/〈gi〉 = Li ' P1(C). If go : S0 → S0 induces isomorphisms Li,1 → Li,2 of the
irreducible components of E(βi) = Li,1

∐
Li,2 for all 1 ≤ i ≤ r, we say that go is

compatible with ρ2 = β1 . . . βr.
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Proposition 17. Let X = (B/Γ)′ be a smooth toroidal compactification, D :=
X \ (B/Γ) be the toroidal compactifying divisor of B/Γ and ρ = β1 . . . βr : X → Y
be a composition of blow downs onto a K3 surface Y . Then:

(i) X is a saturated compactification;

(ii) X is non-primitive exactly when there is a fixed point free involution go :
Y → Y , which is compatible with ρ and leaves invariant ρ(D);

(iii) if X is non-primitive then there is a fibered product commutative diagram

X Y

X0 Y0

?

f

-ρ

?

ϕ

-ρ0

with a primitive smooth toroidal compactification X0 = (B/Γ0)′, a composition of
blow downs ρ0 : X0 → Y0 onto a minimal Enriques surface Y0 and unramified
double covers f : X → X0, ϕ : Y → Y0.

Proof. (i) is an immediate consequence of π1(Y ) = {1}, according to Corol-
lary 9.

(ii) and (iii) follow from Corollary 14 and the fact that a minimal projective
surface Y0 admits an unramified covering ϕ : Y → Y0 by a K3 surface Y if and
only if Y0 is the quotient of Y by a fixed point free involution go : Y → Y . Such
Y0 = Y/〈go〉 are called minimal Enriques surfaces and do not admit unramified
coverings ϕ0 : Y0 → ϕ0(Y0) of degree > 1. �

Proposition 18. Let X = (B/Γ)′ be a smooth toroidal compactification and
ρ : β1 . . . βr : X → Y be a composition of blow downs onto a minimal Enriques
surface Y . Then:

(i) X is a primitive compactification;

(ii) X is not saturated;

(iii) there is an unramified double cover f : X1 = B/Γ1 → B/Γ = X by a
saturated smooth toroidal compactification X1 = (B/Γ1)′ with K3 minimal model
Y1.

Proof. (i) is due to the lack of an unramified covering ϕ : Y → ϕ(Y ) of degree
d > 1.

(ii) follows from π1(Y ) = (Z2,+) 6= {1}.
(iii) is an immediate consequence of the Enriques-Kodaira classification of the

smooth projective surfaces. �

Let X = (B/Γ)′ be a smooth toroidal compactification with abelian or bi-
elliptic minimal model Y . According to Theorem 1.3 from Di Cerbo and Stover’s
article [3], X can be obtained from Y by blow up β : X → Y of n ∈ N points
p1, . . . , pn ∈ Y .
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Proposition 19. Let X = (B/Γ)′ be a smooth toroidal compactification with
a blow down β : X → Y onto a minimal surface Y with exceptional divisor E(β) =
n∐
i=1

Li and D := X \ (B/Γ) be the toroidal compactifying divisor of B/Γ. Then:

(i) β transforms E(β) onto the singular locus β(E(β)) = β(D)sing of β(D) ⊂
Y ;

(ii) X is non-primitive if and only if there is an unramified covering ϕ : Y →
ϕ(Y ) of degree d > 1, which restricts to an unramified covering ϕ : β(D)→ ϕβ(D)
of degree d;

(iii) the relative automorphism group Aut(Y, β(D)) = Aut(Y, β(D), β(D)sing)
admits an isomorphism

Φ : Aut(Y, β(D)) −→ Aut(X,D)

with the relative automorphism group Aut(X,D) = Aut(X,D,E(β));

(iv) go ∈ Aut(Y, β(D) is fixed point free if and only if it corresponds to a fixed
point free g = Φ(go) ∈ Aut(X,D).

Proof. (i) If D =
k∐
j=1

Dj has irreducible components Dj then the singular locus

of β(D) is

β(D)sing =
[
∪kj=1β(Dj)

sing
]
∪ [∪1≤i<j≤kβ(Di) ∩ β(Dj)] .

Since Dj are smooth irreducible elliptic curves, β(D)sing ⊆ β(E(β)). Conversely,

any (−1)-curve Li on X = (B/Γ)′ intersects D =
k∐
j=1

Dj in at least three points,

due to the Kobayashi hyperbolicity of B/Γ. In fact, |Li ∩ F | ≥ 4, according to
Theorem 1.1 (2) from Di Cerbo and Stover’s article [3]. Therefore, the multiplicity
of β(Li) = pi with respect to β(D) is ≥ 4 and pi ∈ β(D)sing. That justifies
β(E(β)) ⊆ β(D)sing and β(E(β)) = β(D)sing.

(ii) By Corollary 14 and (i), X = (B/Γ)′ is non-primitive if and only if there is
an unramified covering ϕ : Y → ϕ(Y ) of degree d > 1, which restricts to unramified
coverings ϕ : β(D) → ϕβ(D) and ϕ : β(D)sing → β(D)sing of degree d. Let us
observe that any unramified covering ϕ : β(D) → ϕβ(D) of degree d restricts to
an unramified covering ϕ : β(D)sing → β(D)sing of degree d, as far as the local
biholomorphism ϕ : β(D) → ϕβ(D) preserves the multiplicities of the points with
respect to β(D) and β(D)sing consists of the points of β(D) of multiplicity ≥ 2.

(iii) If a holomorphic automorphism go : Y → Y restricts to a holomorphic
automorphism go : β(D)→ β(D) then go preserves the multiplicities of the points
with respect to β(D) and β(D)sing is 〈go〉-invariant. That justifies Aut(Y, β(D)) ≤
Aut(Y, β(D), β(D)sing) and Aut(Y, β(D)) = Aut(Y, β(D), β(D)sing).

In order to show the existence of a group isomorphism

Φ : Aut(Y, β(D), β(D)sing) −→ Aut(X,D,E(β)),
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let us pick a go ∈ Aut(Y, β(D), β(D)sing). Then X \ E(β) = Y \ β(E(β)) = Y \
β(D)sing is acted by Φ(go)|X\E(β) := go|Y \β(D)sing . By the definition of a blow up at
a point, the bijection go : β(D)sing → β(D)sing with go(β(L1,i)) = β(L1,j) induces
isomorphisms Φ(go) : L1,i → L1,j and provides an element Φ(go) ∈ Aut(X,E(β)).
After observing that Φ(go)(D \ E(β)) = go(β(D) \ β(D)sing) = β(D) \ β(D)sing =
D \ E(β), one concludes that Φ(go) transforms the Zariski closure D of D \ E(β)
onto itself and Φ(go) ∈ Aut(D).

The correspondence Φ is a group homomorphism since go and Φ(go) coincide
on Zariski open subsets of Y , respectively, X. Towards the bijectiveness of Φ, let
g ∈ Aut(X,D,E(β)) and note that Y \ β(D)sing = X \ E(β). That allows us to
define φ−1(g)|Y \β(D)sing := g|X\E(β). The isomorphism g : E(β) → E(β) of the
exceptional divisor E(β) of β induces a permutation Φ−1(g) : β(D)sing → β(D)sing

of the finite set β(D)sing and provides an automorphism Φ−1(g) ∈ Aut(Y, β(D)sing).
Bearing in mind that Φ−1(g)(β(D) \ β(D)sing) = g(D \ E(β)) = D \ E(β) =
β(D) \ β(D)sing, one concludes that Φ−1(g) ∈ Aut(β(D)) is an automorphism of
the Zariski closure β(D) of β(D) \ β(D)sing = β(D)smooth.

Note that any automorphism g ∈ Aut(X,D) acts on the set of the smooth
irreducible rational curves on X. Moreover, g preserves the self-intersection num-

ber of such a curve and 〈g〉 acts on the set E(β) =
n∐
i=1

Li of the (−1)-curves

on X. Thus, g ∈ Aut(X,D,E(β)) and Aut(X,D) ⊆ Aut(X,D,E(β)), whereas
Aut(X,D,E(β)) = Aut(X,D).

(iv) If g ∈ Aut(X,D) has no fixed point onX then go := Φ−1(g) ∈ Aut(Y, β(D))
restricts to go|Y \β(E(β)) = g|X\E(β) without fixed points. The assumption go(pi) =
pi = Bl(Li) for some 1 ≤ i ≤ n implies that g restricts to an automorphism
g : Li → Li. Any biholomorphism g ∈ Aut(Li) = Aut(P1(C)) = PGL(2,C) of the
projective line Li = P1(C) is a fractional linear transformation and has two fixed
points, counted with their multiplicities. That contradicts the lack of fixed points of
g on X and implies that the associated automorphism go = Φ−1(g) ∈ Aut(Y, β(D))
has no fixed points on Y .

Conversely, if go ∈ Aut(Y, β(D)) has no fixed points on Y and g := Φ(go)
then the restriction g|X\E(β) = go|Y \β(β) has no fixed points. If g(x) = x for some

x ∈ E(β) =
n∐
i=1

Li then x ∈ Li for some 1 ≤ i ≤ n and g(Li) = Li. As a result,

go fixes pi = β(Li) ∈ Y , which is absurd. In such a way, any fixed point free
go ∈ Aut(Y, β(D)) corresponds to a fixed point free g = Φ(go) ∈ Aut(X,D). �

Proposition 20. Let X = (B/Γ)′ be a smooth toroidal compactification with
toroidal compactifying divisor D := X \ (B/Γ) and a blow down β : X → Y of
n ∈ N smooth irreducible rational (−1)-curves. Then Aut(X,D) is a finite group.

Proof. By Proposition 19 (iii), Aut(X,D) = Aut(X,D,E(β)). Any g ∈

Aut(X,D) acts on D =
k∐
j=1

Dj and induces a permutation of the smooth elliptic
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irreducible components D1, . . ., Dk of D. In such a way, there arises a representa-
tion

Σ1 : Aut(X,D) −→ Sym(D1, . . . , Dk) = Sym(k).

The image of Σ1 in the finite group Sym(k) is a finite group, so that it suffices
to show the finiteness of ker(Σ1), in order to conclude that Aut(X,D) is a finite
group. Similarly, Aut(X,D) = Aut(X,D,E(β)) acts on the exceptional divisor

E(β) =
n∐
i=1

Li of β : X → Y and defines a representation

Σ2 : Aut(X,D) −→ Sym(L1, . . . , Ln) = Sym(n).

Since Σ2(ker(Σ1)) is a finite group, it suffices to show that G := ker(Σ2) ∩ ker(Σ1)
is a finite group. For any 1 ≤ i ≤ n, 1 ≤ j ≤ k and g ∈ G, the finite set Li ∩Dj

is transformed into itself, according to g(Li ∩ Dj) ⊆ g(Li) ∩ g(Dj) = Li ∩ Dj .
Therefore, there is a representation

Σi,j : G −→ Sym(Li ∩Dj).

The image Σi,j(G) is a finite group, while the kernel Ki,j := ker(Σi,j) fixes any point
p ∈ Li ∩Dj and acts on Dj . It is well known that the holomorphic automorphisms
Autp(Dj) of an elliptic curves Dj , which fix a point p ∈ Dj , form a cyclic group of
order 2, 4 or 6. Therefore, Ki,j ≤ Autp(D), G, ker(Σ1) and Aut(X,D) are finite
groups. �

Definition 21. A smooth toroidal compactification X = (B/Γ)′ with a blow
down β : X → Y of n ∈ N smooth irreducible rational (−1)-curves onto a minimal
surface Y is Galois non-primitive if there is a fixed point free automorphism g ∈
Aut(X,D) \ {IdX}.

Any Galois non-primitive X = (B/Γ)′ is non-primitive, because the 〈g〉-Galois
covering ζ : X → ζ(X) = X/〈g〉 is unramified and restricts to unramified coverings

ζ : B/Γ→ ζ(B/Γ) and ζ : E(β) =
n∐
i=1

Li → ζ(E(β)) of degree |〈g〉| = ord(g).

Note that the presence of an unramified covering ϕ : Y → ϕ(Y ) implies the

coincidence Ỹ = ϕ̃(Y ) of the universal cover Ỹ of Y with the universal cover ϕ̃(Y )
of ϕ(Y ). The fundamental group π1(ϕ(Y )) of ϕ(Y ) acts on Ỹ by biholomorphic
automorphisms without fixed points and contains the fundamental group π1(Y ) of
Y as a subgroup of index [π1(ϕ(Y )) : π1(Y )] = d.

Proposition 22. Let X = (B/Γ)′ be a smooth toroidal compactification with
toroidal compactifying divisor D := X \ (B/Γ), β : X → Y be a blow down of n ∈ N
smooth irreducible rational (−1)-curves to a minimal surface Y and N(π1(Y )) be
the normalizer of the fundamental group π1(Y ) of Y in the biholomorphism group
Aut(Ỹ ) of the universal cover Ỹ of Y . Then X is Galois non-primitive if and only if
there exist a natural divisor d > 1 of GCD(

∣∣β(D)sing
∣∣ , e(Y )) ∈ N and an unramified

covering ϕ : Y → ϕ(Y ) of degree d, such that π1(ϕ(Y )) ∩ N(π1(Y ))  π1(Y ) and
ϕ : β(D)→ ϕβ(D) is an unramified covering of degree d.

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53–77. 73



Proof. If X = (B/Γ)′ is Galois non-primitive then there exists a fixed point
free biholomorphism g ∈ Aut(X,D)\{IdX} of X. By Proposition 19(iv), g induces
a fixed point free biholomorphism go = Φ−1(g) ∈ Aut(Y, β(D)) \ {IdY } of Y . The
element go of the finite group Aut(Y, β(D)) is of finite order d ∈ N \ {1} and the
〈go〉-Galois coverings ζ : Y → Y/〈go〉, ζ : β(D) → ζβ(D) are unramified and of
degree d. The automorphism go of Y lifts to an automorphism σ ∈ Aut(Ỹ ) of the
universal cover Ỹ of Y , which normalizes π1(Y ) and belongs to

π1(ζ(Y )) = π1(Y/〈go〉) = π1

(
(Ỹ /π1(Y ))/〈σπ1(Y )〉

)
= π1

(
Ỹ /〈σ, π1(Y )〉

)
= 〈σ, π1(Y )〉.

Conversely, suppose that ϕ : Y → ϕ(Y ) is an unramified covering of degree
d > 1, which restricts to an unramified covering ϕ : β(D)→ ϕβ(D) of degree d and
there exists σ ∈ [π1(ϕ(Y )) ∩ N(π1(Y ))] \ π1(Y ). Then go := σπ1(Y ) ∈ Aut(Y ) =
N(π1(Y ))/π1(Y ) is a non-identical biholomorphism go : Y → Y . Since 〈σ, π1(Y )〉
is a subgroup of π1(ϕ(Y )), the unramified covering ϕ : Y → ϕ(Y ) factors through
the 〈go〉-Galois covering ζ : Y → Y/〈go〉 and a covering ϕo : Y/〈go〉 → ϕ(Y ) along
the commutative diagram

Y Y/〈go〉

ϕ(Y )

@
@

@
@R

ϕ

-ζ

?

ϕo (6)

The finite coverings ζ : Y → Y/〈go〉 and ϕo : Y/〈go〉 → ϕ(Y ) are unramified,
because their composition ϕ = ϕoζ : Y → ϕ(Y ) is unramified. That is why
go has no fixed points on Y . If β(D) ⊂ Y is not 〈go〉-invariant then there is
an orbit Orb〈go〉(yo) ⊂ Y of some yo ∈ β(D) which intersects both β(D) and
Y \ β(D). Therefore, ζ : β(D) → ζβ(D) has a fibre ζ−1(ζ(yo)) of cardinality∣∣ζ−1(ζ(yo))

∣∣ < deg(ζ) = |〈go〉| = ord(go) and ζ : β(D) → ζβ(D) is ramified. As a
result, the composition ϕ = ϕoζ : β(D) → ϕβ(D) is ramified. The contradiction
shows the 〈go〉-invariance of β(D). According to Proposition 19 (iv), the fixed
point free go ∈ Aut(Y, β(D)) \ {IdY } corresponds to a fixed point free g = Φ(go) ∈
Aut(X,D) \ {IdX} and X is Galois non-primitive. �

Definition 23. A covering ϕ : Y → ϕ(Y ) by a smooth projective surface Y has
Galois factorization if there exist go ∈ Aut(Y )\{IdY } and a covering ϕo : Y/〈go〉 →
ϕ(Y ), such that ϕ = ϕoζ factors through the 〈go〉-Galois covering ζ : Y → Y/〈go〉
and a covering ϕo along the commutative diagram (6).

Now, Proposition 22 can be reformulated in the form of the following
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Corollary 24. Let X = (B/Γ)′ be a non-primitive smooth toroidal compacti-
fication with toroidal compactifying divisor D := X \ (B/Γ), β : X → Y be a blow
down of n ∈ N smooth irreducible rational (−1)-curves onto a minimal surface Y
and ϕ : Y → ϕ(Y ) be an unramified covering of degree d, which restricts to an un-
ramified covering ϕ : β(D)→ ϕβ(D) of degree d. Then X is Galois non-primitive
if and only if ϕ admits a Galois factorization.

Corollary 25. (i) Let X = (B/Γ)′ be a smooth toroidal compactification with
abelian minimal model Y . Then X is not saturated and X is non-primitive if and
only if it is Galois non-primitive.

(ii) If X = (B/Γ)′ is a smooth toroidal compactification with bi-elliptic minimal
model Y then X is not saturated.

Proof. (i) Any abelian surface Y has non-trivial fundamental group π1(Y ) '
(Z4,+). According to Corollary 9, that suffices for a smooth toroidal compactifi-
cation X = (B/Γ)′ with abelian minimal model Y to be non-saturated.

By Theorem 1.3 from Di Cerbo and Stover’s article [3], if a smooth toroidal
compactification X = (B/Γ)′ has abelian minimal model Y then there is a blow
down β : X → Y of n ∈ N smooth irreducible rational (−1)-curves on X onto
Y . Such X is non-primitive if and only if there exists an unramified covering
ϕ : Y → ϕ(Y ) of degree d > 1, which restricts to an unramified covering ϕ : β(D)→
ϕβ(D) of degree d. Since Y and ϕ(Y ) have one and the same universal cover

ϕ̃(Y ) = Ỹ = C2 and one and the same Kodaira dimension κ(ϕ(Y )) = κ(Y ) = 0,
the minimal smooth irreducible projective surface ϕ(Y ) is abelian or bi-elliptic.

If ϕ(Y ) is an abelian surface then its fundamental group π1(ϕ(Y )) ' (Z4,+)
is abelian and π1(Y ) ' (Z4,+) is a normal subgroup of π1(ϕ(Y )). As a result,
ϕ : Y → ϕ(Y ) is a π1(ϕ(Y ))/π1(Y )-Galois covering and Y is Galois non-primitive.

Let us suppose that ϕ(Y ) is a bi-elliptic surface. According to Bagnera-de
Franchis classification of the bi-elliptic surfaces from [1], there is an abelian surface
A and a cyclic subgroup 〈g〉 ≤ Aut(A) of order d ∈ {2, 3, 4, 6} with a non-translation
generator g ∈ Aut(A), such that ϕ(Y ) = A/〈g〉. Let AffLin(C) := T (C2)oGL(2,C)

be the group of the affine linear transformations of C2 = Ỹ = ϕ̃(Y ) = Ã and

L : AffLin(C2) −→ GL(2,C)

be the group homomorphism, associating to σ ∈ AffLin(C2) its linear part L(σ) ∈
GL(2,C). Then the fundamental group of A is the maximal translation subgroup

π1(A) = π1(ϕ(Y )) ∩ ker(L)

of π1(ϕ(Y )). The translation subgroup π1(Y ) ≤ π1(ϕ(Y )) ∩ ker(L) of π1(ϕ(Y )) is
contained in π1(A) and the unramified covering ϕ : Y → ϕ(Y ) factors through
unramified coverings ϕ1 : Y → A and ϕ2 : A → ϕ(Y ), along the commutative
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diagram

Y A

ϕ(Y )

@
@
@R

ϕ

-ϕ1

?
ϕ2 .

The covering ϕ1 : Y → A is π1(A)/π1(Y )-Galois, so that ϕ = ϕ2ϕ1 is a Galois
factorization of ϕ for π1(Y ) � π1(A). In the case of π1(Y ) = π1(A), there is an
isomorphism Y ' C2/π1(Y ) ' C2/π1(A) = A and the covering ϕ : Y ' A →
ϕ(Y ) = A/〈g〉 is 〈g〉-Galois. Thus, X is Galois non-primitive and a co-abelian
smooth toroidal compactification X = (B/Γ)′ is non-primitive if and only if it is
Galois non-primitive.

(ii) The fundamental group π1(Y ) of a bi-elliptic surface Y is subject to an
exact sequence

1 π1(Y ) ∩ ker(L) π1(Y ) 〈g〉 1- - - -

with a non-translation cyclic subgroup 〈g〉 of Aut
(
C2/π1(Y ) ∩ ker(L)

)
= Aut(Ao)

of order 2, 3, 4 or 6. In particular, Y is not simply connected and a smooth toroidal
compactification X = (B/Γ)′ with bi-elliptic minimal model Y is not saturated. �
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