ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 106

ANNUAL OF SOFIA UNIVERSITY "ST. KLIMENT OHRIDSKI"

FACULTY OF MATHEMATICS AND INFORMATICS Volume 106 $\,$

SATURATED AND PRIMITIVE SMOOTH COMPACTIFICATIONS OF BALL QUOTIENTS

P. G. BESHKOV, A. K. KASPARYAN, G. K. SANKARAN

Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification of a quotient of the complex 2-ball $\mathbb{B} = \mathrm{PSU}_{2,1}/\mathrm{PS}(U_2 \times U_1)$ by a lattice $\Gamma < \mathrm{PSU}_{2,1}$, $D := X \setminus (\mathbb{B}/\Gamma)$ be the toroidal compactifying divisor of X, $\rho : X \to Y$ be a finite composition of blow downs to a minimal surface Y and $E(\rho)$ be the exceptional divisor of ρ . The present article establishes a bijective correspondence between the finite unramified coverings of ordered triples (X, D, E) and the finite unramified coverings of $(\rho(X), \rho(D), \rho(E))$. We say that $(X, D, E(\rho))$ is saturated if all the unramified coverings $f : (X', D', E'(\rho')) \to (X, D, E)$ are isomorphisms, while $(X, D, E(\rho))$ is primitive exactly when any unramified covering $f : (X, D, E(\rho)) \to (f(X), f(D), f(E(\rho)))$ is an isomorphism. The covering relations among the smooth toroidal compactifications $(\mathbb{B}/\Gamma)'$ are studied by Uludag's [7], Stover's [6], Di Cerbo and Stover's [2] and other articles.

In the case of a single blow up $\rho = \beta : X = (\mathbb{B}/\Gamma)' \to Y$ of finitely many points of Y, we show that there is an isomorphism $\Phi : \operatorname{Aut}(Y,\beta(D)) \to \operatorname{Aut}(X,D)$ of the relative automorphism groups and $\operatorname{Aut}(X,D)$ is a finite group. Moreover, when Y is an abelian surface then any finite unramified covering $f : (X, D, E(\beta)) \to (f(X), f(D), f(E(\beta)))$ factors through an $\operatorname{Aut}(X, D)$ -Galois covering. We discuss the saturation and the primitiveness of X with Kodaira dimension $\kappa(X) = -\infty$, as well as of X with K3 or Enriques minimal model Y.

Keywords: Smooth toroidal compactifications of quotients of the complex 2-ball, unramified coverings.

2010 Math. Subject Classification: Primary: 14M27; Secondary: 14J25, 51H30.

Lemma 1. Let M be a complex manifold and N be a complex analytic subvariety of M or an open subset of M.

(i) If $f: M \to f(M)$ is an unramified covering of degree d then $f: N \to f(N)$ is an unramified covering of degree d exactly when $f: M \setminus N \to f(M) \setminus f(N)$ is an unramified covering of degree d.

(ii) Let us suppose that $f: M \to f(M)$ is a holomorphic map onto a complex manifold, $f(N) \cap f(M \setminus N) = \emptyset$ and $f: N \to f(N)$, $f: M \setminus N \to f(M \setminus N)$ are unramified coverings of degree d. Then $f: M \to f(M)$ is an unramified covering of degree d.

Proof. (i) Let X := N or $X := M \setminus N$. Then $f : X \to f(X)$ is an unramified covering of degree $\deg(f|_X) = \deg(f|_M) = d$ exactly when $f^{-1}(f(X)) = X$. If so, then the intersection $f^{-1}(f(M \setminus X)) \cap X = \emptyset$ is empty, whereas $f^{-1}(f(M \setminus X)) = M \setminus X$, the union $f(M) = f(X) \coprod f(M \setminus X)$ is disjoint and $f : M \setminus X \to f(M \setminus X) = f(M) \setminus f(X)$ is an unramified covering of degree d.

(ii) The union $f(M) = f(N) \coprod f(M \setminus N)$ is disjoint, so that $f^{-1}(f(M \setminus N)) = M \setminus N$, $f^{-1}(f(N)) = N$ and $f : M \to f(M)$ is an unramified covering of degree $d.\Box$

Lemma 2. Let $f : X \to X'$ be an unramified covering of degree d of smooth projective surfaces.

(i) Suppose that $D = \prod_{j=1}^{k} D_j$ is a divisor on X with disjoint smooth irreducible components D_j and f restricts to an unramified covering $f: D \to f(D)$ of degree d. Then $f(D) = \bigcup_{j=1}^{k} f(D_j)$ has smooth irreducible components $f(D_j)$, f restricts to unramified coverings $f: D_j \to f(D_j)$ for all $1 \le j \le k$ and $f(D_i) \cap f(D_j) = \emptyset$ for $f(D_i) \not\equiv f(D_j)$.

In particular, D_j are smooth elliptic curves if and only if $f(D_j)$ are smooth elliptic curves.

(ii) If C' is a smooth irreducible rational curve on X' then the complete preimage $f^{-1}(C') = \prod_{i=1}^{d} C_i$ consists of d disjoint smooth irreducible rational curves C_i and f restricts to isomorphisms $f: C_i \to C'$ for all $1 \le i \le d$.

Proof. (i) The unramified covering $f: D \to f(D)$ is a local biholomorphism, so that f(D) is a smooth divisor on X'. Thus, all the irreducible components $f(D_j)$ of f(D) are smooth curves and $f(D_i) \cap f(D_j) \neq \emptyset$ requires $f(D_i) \equiv f(D_j)$. For any $1 \leq i \leq k$ let J(i) be the set of those $1 \leq j \leq k$, for which $f(D_j) \equiv f(D_i)$. Then there exists a subset $I \subseteq \{1, \ldots, k\}$ with $\coprod_{i \in I} J(i) = \{1, \ldots, k\}$ and $f(D) = \coprod_{i \in I} f(D_i)$. By the very definition of J(i), there holds the inclusion $\coprod_{j \in J(i)} D_j \subseteq f^{-1}(f(D_i))$.

Since f restricts to an unramified covering $f: D \to f(D)$ of degree d, any $p \in f^{-1}(f(D_i))$ belongs to D_s for some $1 \leq s \leq k$. Then $f(p) \in f(D_i)$ specified that $s \in J(i)$, whereas $f^{-1}(f(D_i)) \subseteq \coprod_{j \in J(i)} D_j$ and $f^{-1}(f(D_i)) = \coprod_{j \in J(i)} D_j$. Thus, for any $i \in I$ the morphism f restricts to an unramified covering $f: \coprod_{j \in J(i)} D_j \to f(D_i)$ of degree d. By definition, any $f(p) \in f(D_i)$ with $p \in \coprod_{q \in f^{-1}(p)} D_j$ has a trivializing neighborhood U on $f(D_i)$, whose pull back $f^{-1}(U) = \coprod_{q \in f^{-1}(p)} V_q$ is a disjoint union of neighborhoods V_q of $q \in f^{-1}(p)$ on $\coprod_{j \in J(i)} D_j$ with biholomorphic restrictions $f: V_q \to U$. For a sufficiently small U one can assume that $V_q \subset D_j$ for $q \in D_j$. That is why f restricts to unramified coverings $f: D_j \to f(D_j) = f(D_i)$. In particular, D_j are smooth elliptic curves exactly when $f(D_j)$ are smooth elliptic curves.

(ii) Let $f^{-1}(C') = \sum_{i=1}^{k} C_i$ be a union of k irreducible curves C_i , $d_i := \deg[f|_{C_i} : C_i \to C']$ and $\operatorname{Br}(f|_{C_i}) := \{q \in C' \mid |f^{-1}(q) \cap C_i| < d_i\}$ be the branch locus of $f|_{C_i}$ for $1 \leq i \leq k$. Any $\operatorname{Br}(f|_{C_i})$ is a finite set, as well as the intersection $\bigcup_{1 \leq i < j \leq k} C_i \cap C_j$ of different irreducible components, so that

$$\Sigma := \left[\bigcup_{i=1}^{k} \operatorname{Br}(f|_{C_i}) \right] \cup \left[\bigcup_{1 \le i < j \le k} f(C_i \cap C_j) \right]$$

is a finite subset of C'. For any $q \in C' \setminus \Sigma$ one has $f^{-1}(q) = \prod_{i=1}^{k} f^{-1}(q) \cap C_i$, whereas

$$d = \left| f^{-1}(q) \right| = \sum_{i=1}^{k} \left| f^{-1}(q) \cap C_i \right| = \sum_{i=1}^{k} d_i$$

If $q_j \in Br(f|_{C_j})$ then $f^{-1}(q_j) = \bigcup_{i=1}^k f^{-1}(q_j) \cap C_i$ with $|f^{-1}(q_j) \cap C_j| < d_j$, so that

$$d = \left| f^{-1}(q_j) \right| \le \sum_{i=1}^k \left| f^{-1}(q_j) \cap C_i \right| < \sum_{i=1}^k d_i = d.$$

This is absurd, justifying $Br(f|_{C_j}) = \emptyset$ for all $1 \le j \le k$. Similarly, for any $p \in C_i \cap C_j$ there holds

$$d = |f^{-1}(p)| < \sum_{i=1}^{k} |f^{-1}(p) \cap C_i| = \sum_{i=1}^{k} d_i = d_i$$

The contradiction shows that the irreducible components C_i of $f^{-1}(C')$ are disjoint. The unramified coverings $f|_{C_i} : C_i \to C'$ of the smooth irreducible rational curve C' are of degree $d_i = 1$, due to $\pi_1(C') = \{1\}$. Therefore $d = \sum_{i=1}^k d_i = k$ and

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53-77.

 $f^{-1}(C') = \prod_{i=1}^{d} C_i$ consists of d disjoint smooth irreducible rational curves with biholomorphic restrictions $f|_{C_i} : C_i \to C'$ for all $1 \le i \le d$.

A (-1)-curve L_i on a smooth projective surface Y is a smooth irreducible rational curve with self-intersection $L_i^2 = -1$. Throughout, we say that a smooth projective surface Y is minimal if it does not contain a (-1)-curve. This is slightly different from the contemporary viewpoint of the Minimal Model Program, which considers a smooth projective surface Y to be minimal if its canonical divisor K_Y is nef (i.e., $K_Y C \geq 0$ for all effective curves $C \subset Y$). The numerical effectiveness of K_Y excludes the existence of (-1)-curves on Y. If Y is of Kodaira dimension $\kappa(Y) = -\infty$ then K_Y is not nef, regardless of the presence of (-1)-curves on Y. That is the reason for exploiting the older, out of date notion of minimality of a smooth projective surface, which requires the non-existence of (-1)-curves on Y. By a theorem of Castelnuovo (Theorem V.5.7 [5]), for any smooth irreducible projective surface X there is a birational morphism $\rho: X \to Y$ onto a minimal smooth projective surface Y, which is a composition of blow downs of (-1)-curves. If X is of Kodaira dimension $\kappa(X) \geq 0$ then the minimal model Y of X is unique (up to an isomorphism). This is not true when X is birational to a rational or a ruled surface.

Lemma 3. (i) Let $Bl : X_1 \to Y_1$ be a blow down of a (-1)-curve $L_1 \subset X_1$ and $\varphi : Y_2 \to Y_1$ be an unramified covering of degree d. Then the fibered product commutative diagram

consists of an unramified covering $f : X_2 \to X_1$ of degree d and the blow down $\beta : X_2 \to Y_2$ of the disjoint union $f^{-1}(L_1) = \coprod_{j=1}^d L_{1,j}$ of the (-1)-curves $L_{1,j}$.

(ii) Let $\rho_1 : Bl_1 \dots Bl_{r-1}Bl_r : T_r := X_1 \to Y_1 =: T_0$ be a composition of blow downs $Bl_i : T_i \to T_{i-1}$ of (-1)-curves $L_i \subset T_i$ and $\varphi : Y_2 \to Y_1$ be an unramified covering of degree d. Then the fibered product commutative diagrams

fit into a commutative diagram

$$S_{r} \qquad \dots S_{i} := T_{i} \times_{T_{i-1}} S_{i-1} \xrightarrow{\beta_{i}} S_{i-1} \qquad \dots S_{0} := Y_{2}$$

$$\downarrow f \qquad \qquad \downarrow \varphi_{i} \qquad \qquad \downarrow \varphi_{i-1} \qquad \qquad \downarrow \varphi = \varphi_{0} \qquad (3)$$

$$T_{r} := X \qquad \dots T_{i} \xrightarrow{\text{Bl}_{i}} T_{i-1} \qquad \dots T_{0} := Y_{1}$$

and induce a fibered product commutative diagram

with an unramified covering $f : X_2 \to X_1$ of degree d and a composition $\rho_2 = \beta_1 \dots \beta_{r-1}\beta_r : X_2 \to Y_2$ of blow downs of $\varphi_i^{-1}(L_i) = \prod_{j=1}^d L_{i,j}$ for all $1 \le i \le r$.

Proof. (i) By the very definition of a blow down Bl : $X_1 \to Y_1$ of L_1 to $Bl(L_1) = q_1 \in Y_1$, one has $X_1 \setminus L_1 = Y_1 \setminus \{q_1\}$. Then

$$X_2 := X_1 \times_{Y_1} Y_2 = [(X_1 \setminus L_1) \times_{Y_1} Y_2] \coprod [L_1 \times_{Y_1} Y_2]$$

decomposes into the disjoint union of

$$(X_1 \setminus L_1) \times_{Y_1} Y_2 = \{ (x_1, y_2) \mid x_1 = \operatorname{Bl}(x_1) = \varphi(y_2) \} \simeq Y_2 \setminus \varphi^{-1}(q_1) \text{ and}$$
$$L_1 \times_{Y_1} Y_2 = \{ (x_1, y_2) \mid q_1 = \operatorname{Bl}(x_1) = \varphi(y_2) \} = L_1 \times \varphi^{-1}(q_1).$$

If $\varphi^{-1}(q_1) = \{p_{1,j} \mid 1 \le j \le d\}$ then X_2 is the blow up of Y_2 at $\{p_{1,j} \mid 1 \le j \le d\}$. Due to $\operatorname{Bl} f = \varphi \beta$, the exceptional divisor of β is $\beta^{-1}(\{p_{1,j} \mid 1 \le j \le d\}) = \beta^{-1}\varphi^{-1}(q_1) = (\varphi \beta)^{-1}(q_1) = (\operatorname{Bl} f)^{-1}(q_1) = f^{-1}\operatorname{Bl}^{-1}(q_1) = f^{-1}(L_1) = \prod_{j=1}^d L_{1,j}$. According to Corollary 17.7.3 (i) from Grothendieck's [4], $f : X_2 \to X_1$ is an unramified covering, since $\varphi : Y_2 \to Y_1$ is an unramified covering.

(ii) By an increasing induction on $1 \leq i \leq r$, one applies (i) to the fibered product commutative diagrams (2) and justifies (ii).

Lemma 4. (i) In the notations from Lemma 3 (i) and the fibered product commutative diagram (1), let $D^{(2)}$ be a (possibly reducible) divisor on X_2 , which does not contain an irreducible component of the exceptional divisor of β and $D^{(1)}$ be a (possibly reducible) divisor on X_1 , which does not contain the exceptional divisor L_1 of Bl. Then the restriction $f: D^{(2)} \to D^{(1)}$ is an unramified covering of degree

57

 $d = \deg[f : X_2 \to X_1]$ if and only if $\varphi : \beta(D^{(2)}) \to \operatorname{Bl}(D^{(1)})$ is an unramified covering of degree d.

(ii) In the notations from Lemma 3 (ii) and the fibered product commutative diagram (4), let $D^{(2)}$ be a (possibly reducible) divisor on X_2 , which does not contain an irreducible component of the exceptional divisor of ρ_2 and $D^{(1)}$ be a (possibly reducible) divisor on X_1 , which does not contain an irreducible component of the exceptional divisor of ρ_1 . Then the restriction $f: D^{(2)} \to D^{(1)}$ is an unramified covering of degree d if and only if the restriction $\varphi: \rho_2(D^{(2)}) \to \rho_1(D^{(1)})$ is an unramified covering of degree d.

Proof. (i) If $f: D^{(2)} \to D^{(1)}$ is an unramified covering of degree d then $f^{-1}(D^{(1)} \cap L_1) = f^{-1}(D^{(1)}) \cap f^{-1}(L_1) = D^{(2)} \cap f^{-1}(L_1)$ and the restriction $f: D^{(1)} \cap f^{-1}(L_1) \to D^{(1)} \cap L_1$ is an unramified covering of degree d. After denoting $f^{-1}(L_1) = \prod_{j=1}^d L_{1,j}, \beta(L_{1,j}) = p_{1,j}$ and $\operatorname{Bl}(L_1) = q_1$, one applies Lemma 1 (i), in order to conclude that

$$\varphi \equiv f : \beta(D^{(2)}) \setminus \{p_{1,j} \mid 1 \le j \le d\} \equiv D^{(2)} \setminus f^{-1}(L_1) \longrightarrow D^{(1)} \setminus L_1 \equiv \operatorname{Bl}(D^{(1)}) \setminus \{q_1\}$$

is an unramified covering of degree d. As a result, the morphism φ restricts to $\varphi : \{p_{1,j} \mid 1 \leq j \leq d\} \to \{q_1\}$, so that

$$\varphi:\beta(D^{(2)}) = \beta(D^{(2)}) \setminus \{p_{1,j} \mid 1 \le j \le d\} \coprod \{p_{1,j} \mid 1 \le j \le d\} \longrightarrow$$
$$\longrightarrow \left[\operatorname{Bl}(D^{(1)}) \setminus \{q_1\}\right] \coprod \{q_1\} = \operatorname{Bl}(D^{(1)})$$

is an unramified covering of degree d by Lemma 1 (ii).

Conversely, assume that $\varphi : \beta(D^{(2)}) \to \operatorname{Bl}(D^{(1)})$ is an unramified covering of degree d. Choose a sufficiently small neighborhood V of $q_1 = \operatorname{Bl}(L_1)$ on Y_1 , such that $\varphi^{-1}(V) = \prod_{j=1}^d U_j$ is a disjoint union of neighborhoods U_j of $p_{1,j}$, $1 \leq j \leq d$ on Y_2 with biholomorphic restrictions $\varphi : U_j \to V$ of φ . Bearing in mind that $\operatorname{Bl}_1 : X_1 \to Y_1$ is the blow up of Y_1 at q_1 , one decomposes

$$Bl(D^{(1)}) = \left[Bl(D^{(1)}) \setminus V\right] \coprod \left[Bl(D^{(1)}) \cap V\right] \quad \text{and}$$
$$D^{(1)} = \left[Bl(D^{(1)}) \setminus V\right] \coprod Bl^{-1}(Bl(D^{(1)}) \cap V).$$

Similarly, $\beta : X_2 \to Y_2$ is the blow up of Y_2 at $\varphi^{-1}(q_1) = \{p_{1,j} \mid 1 \le j \le d\}$, so that there are decompositions

$$\beta(D^{(2)}) = \left[\beta(D^{(2)}) \setminus \varphi^{-1}(V)\right] \coprod \left[\beta(D^{(2)}) \cap \varphi^{-1}(V)\right] \quad \text{and}$$
$$D^{(2)} = \left[\beta(D^{(2)}) \setminus \varphi^{-1}(V)\right] \coprod \beta^{-1}(\beta(D^{(2)}) \cap \varphi^{-1}(V)).$$

According to $\varphi^{-1}(\operatorname{Bl}(D^{(1)}) \cap V) = \varphi^{-1}(\operatorname{Bl}(D^{(1)})) \cap \varphi^{-1}(V) = \beta(D^{(2)}) \cap \varphi^{-1}(V)$, the restriction $\varphi : \beta(D^{(2)}) \cap \varphi^{-1}(V) \to \operatorname{Bl}(D^{(1)}) \cap V$ is an unramified covering of degree *d*. Now, Lemma 1 (ii) applies to provide that

$$f \equiv \varphi : \beta(D^{(2)}) \setminus \varphi^{-1}(V) \longrightarrow \operatorname{Bl}(D^{(1)}) \setminus V$$

is an unramified covering of degree d. According to Lemma 1 (ii), it sufficed to show that

$$f:\beta^{-1}(\beta(D^{(2)})\cap\varphi^{-1}(V))\longrightarrow \mathrm{Bl}^{-1}(\mathrm{Bl}(D^{(1)})\cap V)$$

is an unramified covering of degree d, in order to conclude that $f: D^{(2)} \to D^{(1)}$ is an unramified covering of degree d. To this end, note that

$$\varphi^{-1}(\mathrm{Bl}(D^{(1)})\cap V) = \beta(D^{(2)})\cap\varphi^{-1}(V) = \beta(D^{(2)})\cap\left(\prod_{j=1}^{d} U_j\right) = \prod_{j=1}^{d} \left[\beta(D^{(2)})\cap U_j\right],$$

so that

$$\varphi : \prod_{j=1}^{d} \left[\beta(D^{(2)}) \cap U_j \right] \longrightarrow \operatorname{Bl}(D^{(1)}) \cap V$$

is an unramified covering of degree d. Thus, the biholomorphisms $\varphi : U_j \to V$ restrict to biholomorphisms $\varphi : \beta(D^{(2)}) \cap U_j \to \operatorname{Bl}(D^{(1)}) \cap V$. According to $\varphi(p_{1,j}) = q_1$, there arise biholomorphisms

$$\varphi: (\beta(D^{(2)}) \cap U_j) \setminus \{p_{1,j}\} \longrightarrow (\mathrm{Bl}(D^{(1)}) \cap V) \setminus \{q_1\}.$$

By the very definition of a blow up at a point, these induce biholomorphisms

$$f: \left[(\beta(D^{(2)}) \cap U_j) \setminus \{p_{1,j}\} \right] \coprod L_{1,j} \longrightarrow \left[(\operatorname{Bl}(D^{(1)}) \cap V) \setminus \{q_1\} \right] \coprod L_1$$

for all $1 \leq j \leq d$. Bearing in mind that

$$\prod_{j=1}^{d} \left\{ \left[(\beta(D^{(2)}) \cap U_j) \setminus \{p_{1,j}\} \right] \coprod L_{1,j} \right\} = \beta^{-1}(\beta(D^{(2)}) \cap \varphi^{-1}(V)),$$

one concludes that φ induces an unramified covering

$$f: \beta^{-1}(\beta(D^{(2)}) \cap \varphi^{-1}(V)) \longrightarrow \operatorname{Bl}^{-1}(\operatorname{Bl}(D^{(1)}) \cap V)$$

of degree d.

(ii) Along the commutative diagram (3), if $f: D^{(2)} \to D^{(1)}$ is an unramified covering of degree d then by a decreasing induction on $r \ge i \ge 1$ and making use of (i), one observes that $\varphi_i: \beta_{i+1} \dots \beta_r(D^{(2)}) \to \operatorname{Bl}_{i+1} \dots \operatorname{Bl}_r(D^{(1)})$ is an unramified covering of degree d, whereas $\varphi: \rho_2(D^{(2)}) \to \rho_1(D^{(1)})$ is an unramified covering of degree d. Conversely, suppose that $\varphi: \rho_2(D^{(2)}) \to \rho_1(D^{(1)})$ is an unramified

covering of degree d. Then by an increasing induction on $1 \le i \le r$ and making use of (i), one concludes that

$$\varphi_i: \beta_{i+1} \dots \beta_r(D^{(2)}) \to \operatorname{Bl}_{i+1} \dots \operatorname{Bl}_r(D^{(1)})$$

is an unramified covering of degree d. As a result, $f: D^{(2)} \to D^{(1)}$ is an unramified covering of degree d.

Corollary 5. Let $X_1 = (\mathbb{B}/\Gamma_1)$ be a smooth toroidal compactification, $\rho_1 : X_1 \to Y_1$ be a composition of blow downs onto a minimal surface $Y_1, \varphi : Y_2 \to Y_1$ be an unramified covering of degree d and (4) be the defining commutative diagram of the fibered product $X_2 = X_1 \times_{Y_1} Y_2$. Then:

(i) there is a subgroup Γ_2 of Γ_1 of index $[\Gamma_1 : \Gamma_2] = d$, such that $X_2 = (\mathbb{B}/\Gamma_2)'$ is the toroidal compactification of \mathbb{B}/Γ_2 ;

(ii) $f: X_2 \to X_1$ restricts to unramified coverings $f: \mathbb{B}/\Gamma_2 \to \mathbb{B}/\Gamma_1$, respectively, $f: D^{(2)} := X_2 \setminus (\mathbb{B}/\Gamma_2) \to X_1 \setminus (\mathbb{B}/\Gamma_1) =: D^{(1)}$ of degree d;

(iii) the composition $\rho_2: X_2 \to Y_2$ of blow downs maps onto a minimal surface Y_2 ;

(iv) φ restricts to an unramified covering $\varphi : \rho_2(D^{(2)}) \to \rho_1(D^{(1)})$ of degree d.

Proof. By Lemma 3 (ii), the fibered product diagram (4) consists of an unramified covering $f: X_2 \to X_1$ of degree d and a composition $\rho_2: X_2 \to Y_2$ of blow downs. The surface Y_2 is minimal. Otherwise any (-1)-curve L'_i on Y_2 maps isomorphically onto a (-1)-curve $\varphi(L'_i) \subset Y_1$, according to Lemma 2 (ii). That contradicts the minimality of Y_1 and shows the minimality of Y_2 .

The unramified covering $f: X_2 \to X_1 = (\mathbb{B}/\Gamma_1)'$ of degree d restricts to an unramified covering $f: f^{-1}(\mathbb{B}/\Gamma_1) \to \mathbb{B}/\Gamma_1$ of degree d. The smoothness of \mathbb{B}/Γ_1 excludes the existence of isolated branch points of the Γ_1 -Galois covering $\zeta_1: \mathbb{B} \to \mathbb{B}/\Gamma_1$. However, ζ_1 can ramify along divisors and \mathbb{B} is not the usual universal cover of the complex manifold \mathbb{B}/Γ_1 . Nevertheless, \mathbb{B} is the orbifold universal cover of \mathbb{B}/Γ_1 and the orbifold universal covering map $\zeta_1: \mathbb{B} \to \mathbb{B}/\Gamma_1$ factors through a (possibly ramified) covering $\zeta_2: \mathbb{B} \to f^{-1}(\mathbb{B}/\Gamma_1)$ and the covering $f: f^{-1}(\mathbb{B}/\Gamma_1) \to \mathbb{B}/\Gamma_1$, i.e., $\zeta_1 = f\zeta_2$. Since $\pi_1^{\text{orb}}(\mathbb{B}) = \{1\}$ is a normal subgroup of $\Gamma_2 := \pi_1^{\text{orb}}(f^{-1}(\mathbb{B}/\Gamma_1))$, the covering ζ_2 is Galois and its Galois group Γ_2 is a subgroup of $\Gamma_1 = \pi_1^{\text{orb}}(\mathbb{B}/\Gamma_1)$ of index $[\Gamma_1:\Gamma_2] = d$. In particular, $f^{-1}(\mathbb{B}/\Gamma_1) = \mathbb{B}/\Gamma_2$. By Lemma 1 (i), frestricts to an unramified covering $f: D^{(2)} := X_2 \setminus (\mathbb{B}/\Gamma_2) \to X_1 \setminus (\mathbb{B}/\Gamma_1) =: D^{(1)}$ of degree d of the toroidal compactifying divisor $D^{(1)} = \prod_{j=1}^k D_j^{(1)}$ of \mathbb{B}/Γ_1 . Note that for any $1 \leq j \leq k$ the restriction $f: f^{-1}(D_j^{(1)}) \to D_j^{(1)}$ is an unramified covering of degree d, whereas a local biholomorphism. Therefore $f^{-1}(D_j^{(1)}) = \bigcup_{i=1}^{r_j} D_{j,i}^{(2)}$ is smooth and has disjoint smooth irreducible components $D_{j,i}^{(2)}$. As a result,

$$D^{(2)} = f^{-1}(D^{(1)}) = \prod_{j=1}^{k} f^{-1}(D_j^{(1)}) = \prod_{j=1}^{k} \prod_{i=1}^{r_j} D_{j,i}^{(2)}$$

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53-77.

has disjoint smooth irreducible components $D_{j,i}^{(2)}$. By assumption, $D_j^{(1)}$ are smooth elliptic curves, so that all $D_{j,i}^{(2)}$ are smooth elliptic curves by Lemma 2 (i). That is why $X_2 = (\mathbb{B}/\Gamma_2)'$ is the toroidal compactification of \mathbb{B}/Γ_2 . According to Lemma 4 (ii), $\varphi : Y_2 \to Y_1$ restricts to an unramified covering $\varphi : \rho_2(D^{(2)}) \to \rho_1(D^{(1)})$ of degree d.

Lemma 6. (i) Let $f : X_2 \to X_1$ be an unramified covering of degree d of smooth projective surfaces and $\operatorname{Bl} : X_1 \to Y_1$ be a blow down of a (-1)-curve $L_1 \subset X_1$. Then the Stein factorization $\varphi\beta$ of $\operatorname{Bl} f$ consists of the blow down $\beta : X_2 \to Y_2$ of $f^{-1}(L_1) = \prod_{j=1}^d L_{1,j}$ and an unramified covering $\varphi : Y_2 \to Y_1$ of degree d, so that $X_2 = X_1 \times_{Y_1} Y_2$ is the fibered product of X_1 and Y_2 over Y_1 .

(ii) Let $\rho_1 = \text{Bl}_1 \dots \text{Bl}_r : T_r := X_1 \to Y_1 =: T_0$ be a composition of blow downs of (-1)-curves $L_i \subset T_i$ and $f : X_2 \to X_1$ be an unramified covering of degree d. Then the Stein factorization $\varphi \rho_2$ of $\rho_1 f : X_2 \to Y_1$ closes the fibered product commutative diagram (4) with the composition $\rho_2 = \beta_1 \dots \beta_r : S_r := X_2 \to Y_2 :=$ S_0 of the blow downs $\beta_i : S_i \to S_{i-1}$ of $\varphi_i^{-1}(L_i) = \coprod_{j=1}^d L_{i,j}$ for all $1 \leq i \leq r$ and an unramified covering $\varphi : Y_2 \to Y_1$ of degree d.

Proof. (i) If $\operatorname{Bl} f = \varphi\beta : X_2 \to Y_1$ is the Stein factorization of $\operatorname{Bl} f$ and $q_1 := \operatorname{Bl}(L_1)$ then $(\operatorname{Bl} f)^{-1}(q_1) = f^{-1}\operatorname{Bl}^{-1}(q_1) = f^{-1}(L_1) = \prod_{j=1}^d L_{1,j}$ has irreducible components $L_{1,j}$ by Lemma 4. For any $q \in Y_1 \setminus \{q_1\}$ one has $(\operatorname{Bl} f)^{-1}(q) = f^{-1}\operatorname{Bl}^{-1}(q) = f^{-1}(q)$ of cardinality $|f^{-1}(q)| = d$. Therefore, the surjective morphism $\beta : X_2 \to Y_2$ with connected fibres is the blow down of $L_{1,j}, \forall 1 \leq j \leq d$. According to Lemma 1 (i), the restriction $f : X_2 \setminus f^{-1}(L_1) \to X_1 \setminus L_1$ is an unramified covering of degree d, since $f : f^{-1}(L_1) \to L_1$ is an unramified covering of degree d. In such a way, there arises a commutative diagram

and $\varphi : Y_2 \setminus \beta f^{-1}(L_1) \to Y_1 \setminus \{q_1\}$ is an unramified covering of degree d. If $p_{1,j} := \beta(L_{1,j})$ then $\beta^{-1}\varphi^{-1}(q_1) = (\varphi\beta)^{-1}(q_1) = (\operatorname{Bl} f)^{-1}(q_1) = \prod_{j=1}^d L_{1,j}$ reveals that $\varphi^{-1}(q_1) = \{p_{1,j} \mid 1 \leq j \leq d\}$ consists of d points and $\varphi : Y_2 \to Y_1$ is an unramified covering of degree d. By Lemma 3 (i), the fibered product $X'_2 := X_1 \times_{Y_1} Y_2$ is the blow up of Y_2 at $\varphi^{-1}(q_1) = \{p_{1,j} \mid 1 \leq j \leq d\}$, so that $X'_2 = X_2$.

According to Grothendieck's Corollary 17.7.3 (i) from [4], it suffices to show that $X'_2 = X_2$, in order to conclude that $\varphi : Y_2 \to Y_1$ is an unramified covering of

degree d. We have justified straightforwardly that $\varphi : Y_2 \to Y_1$ is an unramified covering of degree d, in order to use it towards the coincidence of X_2 with the fibered product $X'_2 := X_1 \times_{Y_1} Y_2$.

(ii) is an immediate consequence of the fact that the composition of morphisms with connected fibres has connected fibres. $\hfill\square$

Corollary 7. Let $f : X_2 \to X_1 = (\mathbb{B}/\Gamma_1)'$ be an unramified covering of degree d of a smooth toroidal compactification $X_1 = (\mathbb{B}/\Gamma_1)'$, $\rho_1 : X_1 \to Y_1$ be a composition of blow downs onto a minimal surface Y_1 and $D^{(1)} := X_1 \setminus (\mathbb{B}/\Gamma_1)$ be the toroidal compactifying divisor of \mathbb{B}/Γ_1 . Then:

(i) there exist a composition $\rho_2 : X_2 \to Y_2$ of blow downs onto a minimal surface Y_2 and an unramified covering $\varphi : Y_2 \to Y_1$ of degree d, which exhibits $X_2 = X_1 \times_{Y_1} Y_2$ as a fibered product of X_1 and Y_2 over Y_1 ;

(ii) there is a subgroup $\Gamma_2 < \Gamma_1$ of index $[\Gamma_1 : \Gamma_2] = d$, such that $X_2 = (\mathbb{B}/\Gamma_2)'$ is the toroidal compactification of \mathbb{B}/Γ_2 and f restricts to unramified coverings $f : \mathbb{B}/\Gamma_2 \to \mathbb{B}/\Gamma_1, f : D^{(2)} := X_2 \setminus (\mathbb{B}/\Gamma_2) \to X_1 \setminus (\mathbb{B}/\Gamma_2) =: D^{(1)}$ of degree d;

(iii) φ restricts to an unramified covering $\varphi : \rho_2(D^{(2)}) \to \rho_1(D^{(1)})$ of degree d.

Proof. (i) is an immediate consequence of Lemma 6 (ii) and the fact that any inramified cover Y_2 of a minimal surface Y_1 is minimal.

(ii) The unramified covering $f : X_2 \to X_1 = (\mathbb{B}/\Gamma_1)'$ of degree d restricts to an unramified covering $f : f^{-1}(\mathbb{B}/\Gamma_1) \to \mathbb{B}/\Gamma_1$ of degree d. As in the proof of Corollary 5, there is a subgroup $\Gamma_2 < \Gamma_1$ of index $[\Gamma_1 : \Gamma_2] = d$, such that $X_2 = (\mathbb{B}/\Gamma_2)'$ is the toroidal compactification of \mathbb{B}/Γ_2 and f restricts to unramified coverings $f : \mathbb{B}/\Gamma_2 \to \mathbb{B}/\Gamma_1, f : D^{(2)} := X_2 \setminus (\mathbb{B}/\Gamma_2) \to X_1 \setminus (\mathbb{B}/\Gamma_1) =: D^{(1)}$ of degree d.

(iii) is an immediate consequence of Lemma 4 (ii).

Definition 8. A smooth toroidal compactification $X_1 = (\mathbb{B}/\Gamma_1)'$ is saturated if there is no unramified covering $f: X_2 = (\mathbb{B}/\Gamma_2)' \to (\mathbb{B}/\Gamma_1)' = X_1$ of degree d, which restricts to an unramified covering $f: \mathbb{B}/\Gamma_2 \to \mathbb{B}/\Gamma_1$ of degree d.

Bearing in mind that the fundamental group of a smooth projective variety is a birational invariant, one combines Corollary 5 with Corollary 7 and obtains the following

Corollary 9. A smooth toroidal compactification $X_1 = (\mathbb{B}/\Gamma_1)'$ is saturated if and only if one and, therefore, any minimal model Y_1 of X_1 is simply connected.

2. UNRAMIFIED PUSH FORWARD OF A SMOOTH COMPACTIFICATION

Let X_2 be a smooth projective surface, $\beta : X_2 \to Y_2$ be a blow down with exceptional divisor $E(\beta) = \coprod_{s=1}^d L_{1,s}$ and $f : X_2 \to X_1$ be an unramified covering of degree d, which restricts to an unramified covering $f : E(\beta) \to f(E(\beta))$ of degree d. According to Lemma 2 (ii), $L_1 := f(E(\beta))$ is a (-1)-curve on X_1 . Then Lemma 6 (i) implies that there is a fibered product commutative diagram (1) with the blow down Bl : $X_1 \to Y_1$ of L_1 and an unramified covering $\varphi : Y_2 \to Y_1$ of degree d, which shrinks $\beta(E(\beta)) = \{p_{1,j} := \beta(L_{1,j}) \mid 1 \le j \le d\}$ to a point $q_1 \in Y_1$. We say that φ is induced by f.

Suppose that $\rho_2 = \beta_1 \dots \beta_r : S_r := X_2 \to Y_2 =: S_0$ is a composition of blow downs

$$\beta_i : S_i := \beta_{i+1} \dots \beta_r(S_r) \longrightarrow S_{i-1} := \beta_i \dots \beta_r(S_r)$$
(5)

with exceptional divisors $E(\beta_i) = \prod_{s=1}^d L_{i,s}$ for all $1 \leq i \leq r$. By a decreasing induction on $r \geq i \geq 1$, let us assume that there is a fibered product commutative diagram

with fibered product squares $\operatorname{Bl}_{j}\varphi_{j} = \varphi_{j-1}\beta_{j}$, such that φ_{j} restricts to an unramified covering $\varphi_{j} : E(\beta_{j}) \to L_{j} := \varphi_{j}(E(\beta_{j}))$ of degree d and φ_{j-1} shrinks the set $\beta_{j}(E(\beta_{j})) = \{p_{j,s} := \beta_{j}(L_{j,s}) | 1 \leq s \leq d\}$ to a point $q_{j} \in \varphi_{j-1}(S_{j-1})$ for all $r \geq j \geq i+1$. If $\varphi_{i} : S_{i} \to \varphi_{i}(S_{i})$ restricts to an unramified covering $\varphi_{i} : E(\beta_{i}) \to L_{i} := \varphi_{i}(E(\beta_{i}))$ of degree d then there is an unramified covering $\varphi_{i-1} : S_{i-1} \to \varphi_{i-1}(S_{i-1})$ of degree d, which shrinks $\beta_{i}(E_{\beta_{i}}) = \{p_{i,s} = \beta_{i}(L_{i,s}) | 1 \leq s \leq d\}$ to a point $q_{i} \in S_{i-1}$ and closes the fibered product commutative diagram $\varphi_{i-1}\beta_{i} = \operatorname{Bl}_{i}\varphi_{i}$. Thus, if an unramified covering $f : X_{2} \to X_{1}$ of degree d induces unramified covering $\varphi := \varphi_{0} : Y_{2} = S_{0} \to \varphi_{0}(S_{0}) =: Y_{1}$ of degree d, which induces unramified coverings $\beta_{i}(E(\beta_{i})) = \{p_{i,s} := \beta_{i}(L_{i,s}) | 1 \leq s \leq d\} \to \{q_{i}\} \subset \varphi_{i-1}(S_{i-1})$ of degree d for all $1 \leq i \leq r$ then there is an unramified covering $\varphi := \varphi_{0} : Y_{2} = S_{0} \to \varphi_{0}(S_{0}) =: Y_{1}$ of degree d, which induces unramified covering $\beta_{i}(E(\beta_{i})) = \{p_{i,s} := \beta_{i}(L_{i,s}) | 1 \leq s \leq d\} \to \{q_{i}\} \subset \varphi_{i-1}(S_{i-1})$ of degree d for all $1 \leq i \leq r$.

Conversely, assume that Y_2 is a smooth projective surface, $\beta : X_2 \to Y_2$ is a blow down with exceptional divisor $E(\beta) = \coprod_{s=1}^d L_{1,s}$ and $\varphi : Y_2 \to Y_1$ is an unramified covering of degree d, which shrinks $\beta(E(\beta)) = \{p_{1,s} = \beta(L_{1,s}) | 1 \le s \le d\}$ to a point $q_1 \in Y_1$. According to Lemma 3 (i), there is a fibered product

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53-77.

commutative diagram (1), where Bl : $X_1 \to Y_1$ is the blow up of Y_1 at $q_1 \in Y_1$ and $f : X_2 \to X_1$ is an unramified covering of degree d, which restricts to an unramified covering $f : E(\beta) = \prod_{s=1}^{d} L_{1,s} \to L_1 := Bl^{-1}(q_1)$ of degree d. Let $\rho_2 = \beta_1 \dots \beta_r : S_r := X_2 \to Y_2 =: S_0$ be a composition of blow downs (5) with exceptional divisors $E(\beta_i) = \prod_{s=1}^{d} L_{i,s}$. By an increasing induction on $1 \le i \le r$, suppose that

$$S_{i} \xrightarrow{\beta_{i}} S_{i-1} \qquad \dots S_{1} \xrightarrow{\beta_{1}} S_{0} = Y_{2}$$

$$\varphi_{i} \downarrow \qquad \varphi_{i-1} \downarrow \qquad \varphi_{1} \downarrow \qquad \varphi_{2} = \varphi_{0} \downarrow$$

$$\varphi_{i}(S_{i}) \xrightarrow{\operatorname{Bl}_{i}} \varphi_{i-1}(S_{i-1}) \qquad \dots \varphi_{1}(S_{1}) \xrightarrow{\operatorname{Bl}_{1}} \varphi(Y_{2})$$

is a fibered product commutative diagram with fibered product squares $\varphi_{j-1}\beta_j = Bl_j\varphi_j$, such that φ_{j-1} restricts to an unramified covering

$$\varphi_{j-1}:\beta_j(E(\beta_j))=\{p_{j,s}:=\beta_j(L_{j,s})\,|\,1\le s\le d\}\longrightarrow \{q_j\}\subset \varphi_{j-1}(S_{j-1})$$

of degree d and φ_j restricts to an unramified covering

$$\varphi_j : E(\beta_j) = \prod_{s=1}^d L_{j,s} \longrightarrow \varphi_j(E(\beta_j)) =: L_j$$

of degree d for all $1 \leq j \leq i$. If φ_i restricts to an unramified covering

$$\varphi_i : \beta_{i+1}(E(\beta_{i+1})) = \{ p_{i+1,s} = \beta_{i+1}(L_{i+1,s}) \mid 1 \le s \le d \} \longrightarrow \{ q_{i+1} \} \subset \varphi_i(S_i)$$

of degree d then there is an unramified covering

64

$$\varphi_{i+1}: S_{i+1} \longrightarrow \varphi_{i+1}(S_{i+1})$$

of degree d, which restricts to an unramified covering

$$\varphi_{i+1}: E(\beta_{i+1}) = \prod_{s=1}^d L_{i+1,s} \longrightarrow L_{i+1} := \varphi_{i+1}(E(\beta_{i+1}))$$

of degree d and closes the fibered product commutative diagram $\varphi_i\beta_{i+1} = \text{Bl}_{i+1}\varphi_{i+1}$ with the blow down $\text{Bl}_{i+1} : \varphi_{i+1}(S_{i+1}) \to \varphi_i(S_i)$ of L_{i+1} . In such a way, if $\varphi : Y_2 \to Y_1$ is an unramified covering of degree d, which induces unramified coverings

$$\beta_i(E(\beta_i)) = \{p_{i,s} := \beta_i(L_{i,s}) \mid 1 \le s \le d\} \longrightarrow \{q_i\} \subset \varphi_{i-1}(S_{i-1})$$

of degree d for all $1 \leq i \leq r$ then $f := \varphi_r : X_2 \to f(X_2)$ is an unramified covering of degree d, which induces unramified coverings $E(\beta_i) = \coprod_{s=1}^d L_{i,s} \to L_i$ of degree dfor all $1 \leq i \leq r$. The above considerations justify the following

Lemma-Definition 10. Let X_2 , Y_2 be smooth projective surfaces and

$$\rho_2 = \beta_1 \dots \beta_r : S_r := X_2 \longrightarrow Y_2 =: S_0$$

be a composition of blow downs (5) with exceptional divisors $E(\beta_i)$ for all $1 \le i \le r$. Then the following are equivalent:

(i) there is an unramified covering $f: X_2 \to f(X_2)$ of degree d, which induces unramified coverings $E(\beta_i) = \prod_{i=1}^d L_{i,s} \to L_i$ of degree d for all $1 \le i \le r$;

(ii) there is an unramified covering $\varphi: Y_2 \to \varphi(Y_2)$ of degree d, which induces unramified coverings $\beta_i(E(\beta_i)) = \{p_{i,s} = \beta_i(L_{i,s}) \mid 1 \le s \le d\} \to \{q_i\} \subset \varphi_{i-1}(S_{i-1})$ of degree d for all $1 \le i \le r$.

If there holds one and, therefore, any one of the aforementioned conditions then there is a fibered product commutative diagram (4), where

$$\rho_1 = \operatorname{Bl}_1 \ldots \operatorname{Bl}_r : X_1 := \varphi(X_2) \to \varphi(Y_2) =: Y_1$$

is the composition of blow downs Bl_i of L_i for all $1 \leq i \leq r$ and we say that $f: X_2 \to f(X_2)$ and $\varphi: Y_2 \to \varphi(Y_2)$ are compatible with ρ .

Corollary 11. Let $X_2 = (\mathbb{B}/\Gamma_2)'$ be a smooth toroidal compactification and $\rho_2 : X_2 \to Y_2$ be a composition of blow downs onto a minimal surface Y_2 . If there is an unramified covering $f : X_2 = (\mathbb{B}/\Gamma_2)' \to f(X_2) =: X_1$ of degree d, which is compatible with ρ_2 and restricts to an unramified covering $f : \mathbb{B}/\Gamma_2 \to f(\mathbb{B}/\Gamma_2)$ of degree d then:

(i) there is a fibered product commutative diagram (4) with an unramified covering $\varphi: Y_2 \to \varphi(Y_2) =: Y_1$ of degree d and a composition of blow downs $\rho_1: X_1 \to Y_1$ onto a minimal surface Y_1 ;

(ii) there is a lattice Γ_1 of $\operatorname{Aut}(\mathbb{B}) = PU(2,1)$, containing Γ_2 as a subgroup of index $[\Gamma_1 : \Gamma_2] = d$ and such that $X_1 = (\mathbb{B}/\Gamma_1)'$ is the toroidal compactification of \mathbb{B}/Γ_1 ;

(iii) φ restricts to an unramified covering $\varphi : \rho_2(D^{(2)}) \to \rho_1(D^{(1)})$ of degree d, where $D^{(j)} := X_j \setminus (\mathbb{B}/\Gamma_j)$ are the compactifying divisors of \mathbb{B}/Γ_j , $1 \le j \le 2$.

Proof. (i) is an immediate consequence of Lemma 10.

Towards (ii), let us note that the composition $f\zeta_2 : \mathbb{B} \to f(\mathbb{B}/\Gamma_2)$ of the orbifold universal covering $\zeta_2 : \mathbb{B} \to \mathbb{B}/\Gamma_2$ with the unramified covering $f : \mathbb{B}/\Gamma_2 \to f(\mathbb{B}/\Gamma_2)$ is Galois, since $\pi_1^{\mathrm{orb}}(\mathbb{B}) = \{1\}$ is a normal subgroup of $\Gamma_1 := \pi_1^{\mathrm{orb}}(f(\mathbb{B}/\Gamma_2))$. Moreover, $\pi_1^{\mathrm{orb}}(\mathbb{B}/\Gamma_2) = \Gamma_2$ is a subgroup of Γ_1 of index $[\Gamma_1 : \Gamma_2] = d$ and $f(\mathbb{B}/\Gamma_2) = \mathbb{B}/\Gamma_1$. By Lemma 1 (i), $f : X_2 \to X_1$ restricts to an unramified covering $f : D^{(2)} = X_2 \setminus (\mathbb{B}/\Gamma_2) \to D^{(1)} := X_1 \setminus (\mathbb{B}/\Gamma_1)$ of degree d. The toroidal compactifying divisor $D^{(2)}$ of \mathbb{B}/Γ_2 has disjoint smooth elliptic irreducible components, so that Lemma 2 (i) applies to provide that $D^{(1)}$ consists of disjoint smooth elliptic irreducible components and $X_1 = (\mathbb{B}/\Gamma_1)'$ is the toroidal compactification

65

of \mathbb{B}/Γ_1 . According to Lemma 4 (ii), that suffices for $\varphi: Y_2 \to Y_1$ to restrict to an unramified covering $\varphi: \rho_2(D^{(2)}) \to \rho_1(D^{(1)})$.

Corollary 12. Let $X_2 = (\mathbb{B}/\Gamma_2)'$ be a smooth toroidal compactification, $D^{(2)} := X_2 \setminus (\mathbb{B}/\Gamma_2)$ be the compactifying divisor of \mathbb{B}/Γ_2 and $\rho_2 : X_2 \to Y_2$ be a composition of blow downs onto a minimal surface Y_2 . If $\varphi : Y_2 \to \varphi(Y_2)$ is an unramified covering of degree d, which is compatible with ρ_2 and restricts to an unramified covering $\varphi : \rho_2(D^{(2)}) \to \varphi \rho_2(D^{(2)})$ of degree d then:

(i) there is a fibered product commutative diagram (4) with an unramified covering $f : X_2 \to f(X_2) =: X_1$ of degree d and a composition of blow downs $\rho_1 : X_1 \to Y_1$ onto a minimal surface Y_1 ;

(ii) there is a lattice Γ_1 of $\operatorname{Aut}(\mathbb{B}) = PU(2,1)$, containing Γ_2 as a subgroup of index $[\Gamma_1 : \Gamma_2] = d$ and such that $X_1 = (\mathbb{B}/\Gamma_1)'$ is the toroidal compactification of \mathbb{B}/Γ_1 ;

(iii) f restricts to an unramified covering $f : \mathbb{B}/\Gamma_2 \to \mathbb{B}/\Gamma_1$ of degree d.

Proof. Lemma 10 justifies (i). According to Lemma 4 (ii), f restricts to an unramified covering $f: D^{(2)} \to f(D^{(2)})$ of degree d. Then Lemma 1 (i) applies to provide that $f: X_2 \setminus D^{(2)} = \mathbb{B}/\Gamma_2 \to X_1 \setminus f(D^{(2)})$ is an unramified covering of degree d. The proof of Corollary 11 (ii) has established that this is sufficient for the existence of a lattice Γ_1 of $\operatorname{Aut}(\mathbb{B}) = PU(2,1)$, containing Γ_2 as a subgroup of index $[\Gamma_1:\Gamma_2] = d$ and such that $X_1 \setminus f(D^{(2)}) = \mathbb{B}/\Gamma_1$. That justifies (iii). By assumption, $D^{(2)}$ consists of smooth elliptic irreducible components. Therefore $f(D^{(2)})$ has smooth elliptic irreducible components and $X_1 = (\mathbb{B}/\Gamma_1) \coprod f(D^{(2)})$ is the toroidal compactification of \mathbb{B}/Γ_1 .

Definition 13. Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification. If there is no unramified covering $f : X \to f(X)$ of degree d, which restricts to an unramified covering $f : \mathbb{B}/\Gamma \to f(\mathbb{B}/\Gamma)$ of degree d and is compatible with some composition of blow downs $\rho : X \to Y$ onto a minimal surface Y, we say that $X = (\mathbb{B}/\Gamma)'$ is primitive.

The Euler characteristic of a smooth toroidal compactification $X = (\mathbb{B}/\Gamma)'$ is a natural number $e(X) = e(\mathbb{B}/\Gamma)$. That is why there exists a primitive smooth toroidal compactification $X_0 = \overline{\mathbb{B}}/\Gamma_0$ and a finite sequence

$$X_n := X \xrightarrow{f_n} X_{n-1} \qquad \dots X_i \xrightarrow{f_i} X_{i-1} \dots \qquad X_1 \xrightarrow{f_1} X_0$$

of unramified coverings $f_i : X_i = (\mathbb{B}/\Gamma_i)' \to (\mathbb{B}/\Gamma_{i-1})' = X_{i-1}$ of degree d_i of smooth toroidal compactifications $X_j = (\mathbb{B}/\Gamma_j)'$, which restrict to unramified coverings $f_i : \mathbb{B}/\Gamma_i \to \mathbb{B}/\Gamma_{i-1}$ of degree d_i and are compatible with some compositions of blow downs $\rho_i : X_i \to Y_i$ onto minimal surfaces Y_i . Combining Corollary 11 with Corollary 12, one obtains the following

Corollary 14. Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification with toroidal compactifying divisor $D := X \setminus (\mathbb{B}/\Gamma)$. Then X is primitive if and only if no minimal model Y of X with a composition of blow downs $\rho : X \to Y$ admits an unramified covering $\varphi : Y \to \varphi(Y)$ of degree d > 1, which restricts to an unramified covering $\varphi : \rho(D) \to \varphi\rho(D)$ of degree d and is compatible with ρ .

Let us suppose that a smooth toroidal compactification $X = (\mathbb{B}/\Gamma)'$ with toroidal compactifying divisor $D := X \setminus (\mathbb{B}/\Gamma)$ admits a blow down $\beta : X \to Y$ of $n \in \mathbb{N}$ smooth irreducible rational (-1)-curves onto a minimal surface Y and there is an unramified covering $\varphi : Y \to \varphi(Y)$ of degree d, which restricts to unramified coverings $\varphi : \beta(D) \to \varphi\beta(D)$ and $\varphi : \beta(E(\beta)) \to \varphi\beta(E(\beta))$ of degree d. Then the Euler number of the smooth surface $\varphi(Y)$ is $e(\varphi(Y)) = \frac{e(Y)}{d} \in \mathbb{Z}$ and the cardinality of $\varphi\beta(E(\beta))$ if $|\varphi\beta(E(\beta))| = \frac{|\beta(E(\beta))|}{d} = \frac{n}{d} \in \mathbb{N}$, so that $d \in \mathbb{N}$ divides e(Y) and $n = |\beta(E(\beta))|$. As a result, d divides the greatest common divisor $\text{GCD}(|\beta(E(\beta))|, e(Y)).$

Note that the compatibility of an unramified covering $\varphi : Y \to \varphi(Y)$ with $\beta : X \to Y$ reduces to $\varphi^{-1}(\varphi\beta(E(\beta)) = \beta(E(\beta))$ and is detected on Y. When $\rho = \beta_1 \dots \beta_r : X \to Y$ is a composition of $r \geq 2$ blow downs, the compatibility of an unramified covering $\varphi : Y \to \varphi(Y)$ of degree d with ρ cannot be traced out on the minimal model Y of X alone. Namely, if $S_0 := Y, T_0 := \varphi(Y)$ then in the notations from the commutative diagram (3), the unramified covering $\varphi_1 : S_1 \to T_1$ of degree d may restrict to an unramified covering $\varphi_1 : \beta_2(E(\beta_2)) \to \varphi_1\beta_2(E(\beta_2))$ of degree d. More precisely, if an irreducible component $L_{1,j}$ of $E(\beta_1)$ intersects $\beta_2(E(\beta_2))$ in at least two points then $|\beta_1\beta_2(E(\beta_2))| < d$ and $\varphi : \beta_1\beta_2(E(\beta_2)) \to \varphi_1\beta_2(E(\beta_2))| < d$ and φ .

3. SATURATED AND PRIMITIVE SMOOTH COMPACTIFICATIONS OF NON-POSITIVE KODAIRA DIMENSION

Definition 15. Let $X = (\mathbb{B}/\Gamma)'$ and $X_0 = (\mathbb{B}/\Gamma_0)'$ be smooth toroidal compactification. We say that X dominates X_0 and write $X \succeq X_0$ or $X_0 \preceq X$ if there exist a finite sequence of ball lattices

$$\Gamma_n := \Gamma < \Gamma_{n-1} < \ldots < \Gamma_i < \Gamma_{i-1} < \ldots < \Gamma_1 < \Gamma_0,$$

with smooth toroidal compactifications $X_i = (\mathbb{B}/\Gamma_i)'$ of the corresponding ball quotients \mathbb{B}/Γ_i and a finite sequence of unramified coverings

$$X_n := X \xrightarrow{f_n} X_{n-1} \qquad \dots X_i \xrightarrow{f_i} X_{i-1} \dots \qquad X_1 \xrightarrow{f_1} X_0$$

of degree deg $[f_i : X_i \to X_{i-1}] = [\Gamma_{i-1} : \Gamma_i] = d_i \in \mathbb{N}$, which restrict to unramified coverings $f_i : \mathbb{B}/\Gamma_i \to \mathbb{B}/\Gamma_{i-1}$ of degree d_i and are compatible with some compositions $\rho_i = \beta_{i,1} \dots \beta_{i,r_i} : X_i \to Y_i$ of blow downs $\beta_{i,j}$ onto minimal surfaces Y_i .

It is clear that a smooth toroidal compactification $X = \overline{\mathbb{B}/\Gamma}$ is saturated if and only if it is maximal with respect to the partial order \succeq . Similarly, X is primitive exactly when it is minimal with respect to \succeq . Note that the partial order \succeq on the set S of the smooth toroidal compactifications $X = (\mathbb{B}/\Gamma)'$ is artinian, i.e., any subset $S_o \subseteq S$ has a minimal element $X_o = (\mathbb{B}/\Gamma_o)' \in S_o$. The minimal $X \in S$ are exactly the primitive ones, but the minimal $X_o \in S_o$ are not necessarily primitive, since such X_o is not supposed to be a minimal element of S.

The present section discusses the saturated and the primitive smooth toroidal compactifications $X = (\mathbb{B}/\Gamma)'$ of Kodaira dimension $\kappa(X) \leq 0$.

Proposition 16. If $X = (\mathbb{B}/\Gamma)'$ is a smooth toroidal compactification of Kodaira dimension $\kappa(X) = -\infty$ then X is a rational surface or X has a ruled minimal model $\pi: Y \to E$ with an elliptic base E.

Any smooth rational $X = (\mathbb{B}/\Gamma)'$ is both saturated and primitive.

There is no smooth saturated $X = (\mathbb{B}/\Gamma)'$, whose minimal model is a ruled surface $\pi : Y \to E$ with an elliptic base E.

Proof. (i) Let $\rho : X = (\mathbb{B}/\Gamma)' \to Y$ be a composition of blow downs onto a minimal surface Y of $\kappa(Y) = -\infty$, Then $Y = \mathbb{P}^2(\mathbb{C})$ is the complex projective plane or $\pi : Y \to E$ is a ruled surface with a base E of genus $g \in \mathbb{Z}^{\geq 0}$. The toroidal compactifying divisor $D := X \setminus (\mathbb{B}/\Gamma) = \prod_{j=1}^{k} D_j$ has disjoint smooth irreducible elliptic components D_j . If $g \geq 2$ then the morphisms $\pi\rho : D_j \to E$ map to points $p_j := \pi\rho(D_j) \in E$, so that $\rho(D_j) \subseteq \pi^{-1}(p_j)$ for all $1 \leq j \leq k$. The exceptional divisor L of $\rho : X \to Y$ has finite image $\rho(L) = \{q_1, \ldots, q_m\}$ on Y and $\rho(L) \subseteq \prod_{i=1}^{m} \pi^{-1}(\pi(q_i))$. Therefore

$$Y' := Y \setminus \left[\prod_{i=1}^m \pi^{-1}(\pi(q_i)) \right] \subseteq Y \setminus \rho(L) \equiv X \setminus L$$

and ρ acts identically on Y'. Moreover,

$$Y'' := Y' \setminus \left[\prod_{j=1}^k \pi^{-1}(p_j) \right] = Y \setminus \left[\left(\prod_{i=1}^m \pi^{-1}(\pi(q_i)) \right) \prod \left(\prod_{j=1}^k \pi^{-1}(p_j) \right) \right] \subseteq \mathbb{B}/\Gamma.$$

However, Y'' contains (infinitely many) fibres $\pi^{-1}(e) \simeq \mathbb{P}^1(\mathbb{C})$, $e \in E$ of $\pi : Y \to E$ and that contradicts the Kobayashi hyperbolicity of \mathbb{B}/Γ . In such a way, we have shown that any minimal model Y of a smooth toroidal compactification $X = (\mathbb{B}/\Gamma)'$ of $\kappa(X) = -\infty$ is birational to $\mathbb{P}^2(\mathbb{C})$ or to a minimal ruled surface $\pi : Y \to E$ with an elliptic base E.

Any rational $X = (\mathbb{B}/\Gamma)'$ is simply connected and does not admit finite unramified coverings $X_1 \to X$ of degree d > 1. That is why X is saturated. Let us

suppose that $f: X = (\mathbb{B}/\Gamma)' \to X_0 = (\mathbb{B}/\Gamma_0)'$ is an unramified covering of degree d > 1, which is compatible with some composition of blow downs $\rho: X \to Y$ onto a minimal rational surface Y and restricts to an unramified covering $f: \mathbb{B}/\Gamma \to \mathbb{B}/\Gamma_0$ of degree d. The Kodaira dimension is preserved under finite unramified coverings, so that $\kappa(X_0) = \kappa(X) = -\infty$. The surface X_0 is not simply connected, whereas non-rational. Therefore, there is a composition $\rho_0: X_0 \to Y_0$ of blow downs onto a ruled surface $\pi_0: Y_0 \to E_0$ with base E_0 of genus $g_0 \in \mathbb{N}$. The surjective morphism $\rho_0 f: X = (\mathbb{B}/\Gamma)' \to Y_0$ induces an embedding $(\rho_0 f)^*: H^{0,1}(Y_0) \to H^{0,1}(X)$. On one hand, the irregularity of Y_0 is $h^{0,1}(Y_0) := \dim_{\mathbb{C}} H^{0,1}(Y_0) = g_o \in \mathbb{N}$. On the other hand, the rational surface X has vanishing irregularity $h^{0,1}(X) = 0$. That contradicts the presence of a finite unramified covering $f: X \to X_0$ of degree d > 1 and shows that any smooth rational toroidal compactification $X = (\mathbb{B}/\Gamma)'$ is primite.

Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification, whose minimal model Y is a ruled surface $\pi : Y \to E$ with an elliptic base E. Since Y is birational to $\mathbb{P}^1(\mathbb{C}) \times E$ and the fundamental group is a birational invariant, one has $\pi_1(X) \simeq \pi_1(Y) \simeq \pi_1(E) \simeq (\mathbb{Z}^2, +)$. In particular, Y is not simply connected. According to Corollary 9, X cannot be saturated. \Box

According to the Enriques-Kodaira classification, there are four types of minimal smooth projective surfaces Y of Kodaira dimension $\kappa(Y) = 0$. These are the abelian and the bi-elliptic surfaces with universal cover \mathbb{C}^2 , as well as the K3 and the Enriques surfaces with K3 universal cover. If $\varphi: Y_2 \to Y_1$ is a finite unramified covering of smooth projective surfaces then the Kodaira dimension $\kappa(Y_1) = \kappa(Y_2)$ and the universal covers $\widetilde{Y}_1 = \widetilde{Y}_2$ coincide. Let Y_2 be a smooth projective surface with a fixed point free involution $g_o: Y_2 \to Y_2$ and $\beta: X_2 \to Y_2$ be the blow up of Y_2 at a $\langle g_o \rangle$ -orbit $\{p_{1,1}, p_{1,2} = g_o(p_{1,1})\} \subset Y_2$. Then by the very definition of a blow up, g_o induces a fixed point free involution $g_1: X_2 \to X_2$, which leaves invariant the exceptional divisor $E(\beta) = L_{1,1} \coprod L_{1,2}, \ L_{1,i} := \beta^{-1}(p_{1,i})$ of β and there is a fibered product commutative diagram (4) with a $\langle g_o \rangle$ -Galois covering $\varphi : Y_2 \to Y_1$, a $\langle g_1 \rangle$ -Galois covering $f : X_2 \to X_1$ and the blow up Bl : $X_1 \to Y_1$ of Y_1 at $\{q_1\} = \varphi(\{p_{1,1}, p_{1,2}\})$. Now, suppose that $\rho_2 = \beta_1 \dots \beta_r : S_r := X_2 \to Y_2 =: S_0$ is a composition of blow downs with exceptional divisors $E(\beta_i) = L_{i,1} \coprod L_{i,2}$ and $g_o: S_0 \to S_0$ is a fixed point free involution. By an increasing induction on $1 \leq i \leq r$, if $g_{i-1}: S_{i-1} \to S_{i-1}$ is a fixed point free involution, which leaves invariant $\beta_i(E(\beta_i)) = \{p_{i,1}, p_{i,2}\}$ then there is a fixed point free involution $g_i : S_i \to S_i$, which leaves invariant $E(\beta_i) = L_{i,1} \coprod L_{i,2}$. In such a way, if a fixed point free involution $g_0: S_0 \to S_0$ induces isomorphisms $L_{i,1} \to L_{i,2}$ for all $1 \leq i \leq r$ then there is a fixed point free involution $g_r: S_r \to S_r$ and a fibered product commutative diagram (4) with a $\langle g_o \rangle$ -Galois covering $\varphi : Y_2 \to Y_1$, a $\langle g_r \rangle$ -Galois covering $f: X_2 \to X_1$ and the composition $\rho_1 = Bl_1 \dots Bl_r: X_1 \to Y_1$ of the blow downs of $E(\beta_i)/\langle g_i \rangle = L_i \simeq \mathbb{P}^1(\mathbb{C})$. If $g_o: S_0 \to S_0$ induces isomorphisms $L_{i,1} \to L_{i,2}$ of the irreducible components of $E(\beta_i) = L_{i,1} \prod L_{i,2}$ for all $1 \leq i \leq r$, we say that g_o is compatible with $\rho_2 = \beta_1 \dots \beta_r$.

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53–77.

Proposition 17. Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification, $D := X \setminus (\mathbb{B}/\Gamma)$ be the toroidal compactifying divisor of \mathbb{B}/Γ and $\rho = \beta_1 \dots \beta_r : X \to Y$ be a composition of blow downs onto a K3 surface Y. Then:

(i) X is a saturated compactification;

(ii) X is non-primitive exactly when there is a fixed point free involution $g_o: Y \to Y$, which is compatible with ρ and leaves invariant $\rho(D)$;

(iii) if X is non-primitive then there is a fibered product commutative diagram

with a primitive smooth toroidal compactification $X_0 = (\mathbb{B}/\Gamma_0)'$, a composition of blow downs $\rho_0 : X_0 \to Y_0$ onto a minimal Enriques surface Y_0 and unramified double covers $f : X \to X_0$, $\varphi : Y \to Y_0$.

Proof. (i) is an immediate consequence of $\pi_1(Y) = \{1\}$, according to Corollary 9.

(ii) and (iii) follow from Corollary 14 and the fact that a minimal projective surface Y_0 admits an unramified covering $\varphi : Y \to Y_0$ by a K3 surface Y if and only if Y_0 is the quotient of Y by a fixed point free involution $g_o : Y \to Y$. Such $Y_0 = Y/\langle g_o \rangle$ are called minimal Enriques surfaces and do not admit unramified coverings $\varphi_0 : Y_0 \to \varphi_0(Y_0)$ of degree > 1.

Proposition 18. Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification and $\rho : \beta_1 \dots \beta_r : X \to Y$ be a composition of blow downs onto a minimal Enriques surface Y. Then:

(i) X is a primitive compactification;

(ii) X is not saturated;

(iii) there is an unramified double cover $f : X_1 = \overline{\mathbb{B}/\Gamma_1} \to \overline{\mathbb{B}/\Gamma} = X$ by a saturated smooth toroidal compactification $X_1 = (\mathbb{B}/\Gamma_1)'$ with K3 minimal model Y_1 .

Proof. (i) is due to the lack of an unramified covering $\varphi: Y \to \varphi(Y)$ of degree d > 1.

(ii) follows from $\pi_1(Y) = (\mathbb{Z}_2, +) \neq \{1\}.$

(iii) is an immediate consequence of the Enriques-Kodaira classification of the smooth projective surfaces. $\hfill\square$

Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification with abelian or bielliptic minimal model Y. According to Theorem 1.3 from Di Cerbo and Stover's article [3], X can be obtained from Y by blow up $\beta : X \to Y$ of $n \in \mathbb{N}$ points $p_1, \ldots, p_n \in Y$.

Proposition 19. Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification with a blow down $\beta : X \to Y$ onto a minimal surface Y with exceptional divisor $E(\beta) = \frac{1}{n}$

 $\coprod_{i=1}^{n} L_i \text{ and } D := X \setminus (\mathbb{B}/\Gamma) \text{ be the toroidal compactifying divisor of } \mathbb{B}/\Gamma. \text{ Then:}$

(i) β transforms $E(\beta)$ onto the singular locus $\beta(E(\beta)) = \beta(D)^{\text{sing}}$ of $\beta(D) \subset Y$;

(ii) X is non-primitive if and only if there is an unramified covering $\varphi : Y \to \varphi(Y)$ of degree d > 1, which restricts to an unramified covering $\varphi : \beta(D) \to \varphi\beta(D)$ of degree d;

(iii) the relative automorphism group $\operatorname{Aut}(Y,\beta(D)) = \operatorname{Aut}(Y,\beta(D),\beta(D)^{\operatorname{sing}})$ admits an isomorphism

$$\Phi: \operatorname{Aut}(Y,\beta(D)) \longrightarrow \operatorname{Aut}(X,D)$$

with the relative automorphism group $Aut(X, D) = Aut(X, D, E(\beta));$

(iv) $g_o \in \operatorname{Aut}(Y, \beta(D))$ is fixed point free if and only if it corresponds to a fixed point free $g = \Phi(g_o) \in \operatorname{Aut}(X, D)$.

Proof. (i) If $D = \prod_{j=1}^{k} D_j$ has irreducible components D_j then the singular locus of $\beta(D)$ is

$$\beta(D)^{\operatorname{sing}} = \left[\cup_{j=1}^k \beta(D_j)^{\operatorname{sing}} \right] \cup \left[\cup_{1 \le i < j \le k} \beta(D_i) \cap \beta(D_j) \right].$$

Since D_j are smooth irreducible elliptic curves, $\beta(D)^{\text{sing}} \subseteq \beta(E(\beta))$. Conversely, any (-1)-curve L_i on $X = (\mathbb{B}/\Gamma)'$ intersects $D = \prod_{j=1}^k D_j$ in at least three points, due to the Kobayashi hyperbolicity of \mathbb{B}/Γ . In fact, $|L_i \cap F| \ge 4$, according to Theorem 1.1 (2) from Di Cerbo and Stover's article [3]. Therefore, the multiplicity of $\beta(L_i) = p_i$ with respect to $\beta(D)$ is ≥ 4 and $p_i \in \beta(D)^{\text{sing}}$. That justifies $\beta(E(\beta)) \subseteq \beta(D)^{\text{sing}}$ and $\beta(E(\beta)) = \beta(D)^{\text{sing}}$.

(ii) By Corollary 14 and (i), $X = (\mathbb{B}/\Gamma)'$ is non-primitive if and only if there is an unramified covering $\varphi : Y \to \varphi(Y)$ of degree d > 1, which restricts to unramified coverings $\varphi : \beta(D) \to \varphi\beta(D)$ and $\varphi : \beta(D)^{\text{sing}} \to \beta(D)^{\text{sing}}$ of degree d. Let us observe that any unramified covering $\varphi : \beta(D) \to \varphi\beta(D)$ of degree d restricts to an unramified covering $\varphi : \beta(D)^{\text{sing}} \to \beta(D)^{\text{sing}}$ of degree d, as far as the local biholomorphism $\varphi : \beta(D) \to \varphi\beta(D)$ preserves the multiplicities of the points with respect to $\beta(D)$ and $\beta(D)^{\text{sing}}$ consists of the points of $\beta(D)$ of multiplicity ≥ 2 .

(iii) If a holomorphic automorphism $g_o: Y \to Y$ restricts to a holomorphic automorphism $g_o: \beta(D) \to \beta(D)$ then g_o preserves the multiplicities of the points with respect to $\beta(D)$ and $\beta(D)^{\text{sing}}$ is $\langle g_o \rangle$ -invariant. That justifies $\operatorname{Aut}(Y, \beta(D)) \leq$ $\operatorname{Aut}(Y, \beta(D), \beta(D)^{\text{sing}})$ and $\operatorname{Aut}(Y, \beta(D)) = \operatorname{Aut}(Y, \beta(D), \beta(D)^{\text{sing}})$.

In order to show the existence of a group isomorphism

 $\Phi: \operatorname{Aut}(Y, \beta(D), \beta(D)^{\operatorname{sing}}) \longrightarrow \operatorname{Aut}(X, D, E(\beta)),$

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53-77.

let us pick a $g_o \in \operatorname{Aut}(Y,\beta(D),\beta(D)^{\operatorname{sing}})$. Then $X \setminus E(\beta) = Y \setminus \beta(E(\beta)) = Y \setminus \beta(D)^{\operatorname{sing}}$ is acted by $\Phi(g_o)|_{X \setminus E(\beta)} := g_o|_{Y \setminus \beta(D)^{\operatorname{sing}}}$. By the definition of a blow up at a point, the bijection $g_o : \beta(D)^{\operatorname{sing}} \to \beta(D)^{\operatorname{sing}}$ with $g_o(\beta(L_{1,i})) = \beta(L_{1,j})$ induces isomorphisms $\Phi(g_o) : L_{1,i} \to L_{1,j}$ and provides an element $\Phi(g_o) \in \operatorname{Aut}(X, E(\beta))$. After observing that $\Phi(g_o)(D \setminus E(\beta)) = g_o(\beta(D) \setminus \beta(D)^{\operatorname{sing}}) = \beta(D) \setminus \beta(D)^{\operatorname{sing}} = D \setminus E(\beta)$, one concludes that $\Phi(g_o)$ transforms the Zariski closure D of $D \setminus E(\beta)$ onto itself and $\Phi(g_o) \in \operatorname{Aut}(D)$.

The correspondence Φ is a group homomorphism since g_o and $\Phi(g_o)$ coincide on Zariski open subsets of Y, respectively, X. Towards the bijectiveness of Φ , let $g \in \operatorname{Aut}(X, D, E(\beta))$ and note that $Y \setminus \beta(D)^{\operatorname{sing}} = X \setminus E(\beta)$. That allows us to define $\phi^{-1}(g)|_{Y \setminus \beta(D)^{\operatorname{sing}}} := g|_{X \setminus E(\beta)}$. The isomorphism $g : E(\beta) \to E(\beta)$ of the exceptional divisor $E(\beta)$ of β induces a permutation $\Phi^{-1}(g) : \beta(D)^{\operatorname{sing}} \to \beta(D)^{\operatorname{sing}}$ of the finite set $\beta(D)^{\operatorname{sing}}$ and provides an automorphism $\Phi^{-1}(g) \in \operatorname{Aut}(Y, \beta(D)^{\operatorname{sing}})$. Bearing in mind that $\Phi^{-1}(g)(\beta(D) \setminus \beta(D)^{\operatorname{sing}}) = g(D \setminus E(\beta)) = D \setminus E(\beta) =$ $\beta(D) \setminus \beta(D)^{\operatorname{sing}}$, one concludes that $\Phi^{-1}(g) \in \operatorname{Aut}(\beta(D))$ is an automorphism of the Zariski closure $\beta(D)$ of $\beta(D) \setminus \beta(D)^{\operatorname{sing}} = \beta(D)^{\operatorname{smooth}}$.

Note that any automorphism $g \in \operatorname{Aut}(X, D)$ acts on the set of the smooth irreducible rational curves on X. Moreover, g preserves the self-intersection number of such a curve and $\langle g \rangle$ acts on the set $E(\beta) = \prod_{i=1}^{n} L_i$ of the (-1)-curves on X. Thus, $g \in \operatorname{Aut}(X, D, E(\beta))$ and $\operatorname{Aut}(X, D) \subseteq \operatorname{Aut}(X, D, E(\beta))$, whereas $\operatorname{Aut}(X, D, E(\beta)) = \operatorname{Aut}(X, D)$.

(iv) If $g \in \operatorname{Aut}(X, D)$ has no fixed point on X then $g_o := \Phi^{-1}(g) \in \operatorname{Aut}(Y, \beta(D))$ restricts to $g_o|_{Y \setminus \beta(E(\beta))} = g|_{X \setminus E(\beta)}$ without fixed points. The assumption $g_o(p_i) = p_i = \operatorname{Bl}(L_i)$ for some $1 \leq i \leq n$ implies that g restricts to an automorphism $g : L_i \to L_i$. Any biholomorphism $g \in \operatorname{Aut}(L_i) = \operatorname{Aut}(\mathbb{P}^1(\mathbb{C})) = PGL(2, \mathbb{C})$ of the projective line $L_i = \mathbb{P}^1(\mathbb{C})$ is a fractional linear transformation and has two fixed points, counted with their multiplicities. That contradicts the lack of fixed points of g on X and implies that the associated automorphism $g_o = \Phi^{-1}(g) \in \operatorname{Aut}(Y, \beta(D))$ has no fixed points on Y.

Conversely, if $g_o \in \operatorname{Aut}(Y, \beta(D))$ has no fixed points on Y and $g := \Phi(g_o)$ then the restriction $g|_{X \setminus E(\beta)} = g_o|_{Y \setminus \beta(\beta)}$ has no fixed points. If g(x) = x for some $x \in E(\beta) = \prod_{i=1}^n L_i$ then $x \in L_i$ for some $1 \le i \le n$ and $g(L_i) = L_i$. As a result, g_o fixes $p_i = \beta(L_i) \in Y$, which is absurd. In such a way, any fixed point free $g_o \in \operatorname{Aut}(Y, \beta(D))$ corresponds to a fixed point free $g = \Phi(g_o) \in \operatorname{Aut}(X, D)$. \Box

Proposition 20. Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification with toroidal compactifying divisor $D := X \setminus (\mathbb{B}/\Gamma)$ and a blow down $\beta : X \to Y$ of $n \in \mathbb{N}$ smooth irreducible rational (-1)-curves. Then $\operatorname{Aut}(X, D)$ is a finite group.

Proof. By Proposition 19 (iii), $\operatorname{Aut}(X, D) = \operatorname{Aut}(X, D, E(\beta))$. Any $g \in \operatorname{Aut}(X, D)$ acts on $D = \coprod_{j=1}^{k} D_j$ and induces a permutation of the smooth elliptic

irreducible components D_1, \ldots, D_k of D. In such a way, there arises a representation

$$\Sigma_1 : \operatorname{Aut}(X, D) \longrightarrow \operatorname{Sym}(D_1, \dots, D_k) = \operatorname{Sym}(k).$$

The image of Σ_1 in the finite group Sym(k) is a finite group, so that it suffices to show the finiteness of ker(Σ_1), in order to conclude that Aut(X, D) is a finite group. Similarly, $\operatorname{Aut}(X, D) = \operatorname{Aut}(X, D, E(\beta))$ acts on the exceptional divisor $E(\beta) = \prod_{i=1}^{n} L_i$ of $\beta: X \to Y$ and defines a representation

$$\Sigma_2$$
: Aut $(X, D) \longrightarrow$ Sym $(L_1, \dots, L_n) =$ Sym (n)

Since $\Sigma_2(\ker(\Sigma_1))$ is a finite group, it suffices to show that $G := \ker(\Sigma_2) \cap \ker(\Sigma_1)$ is a finite group. For any $1 \leq i \leq n, 1 \leq j \leq k$ and $g \in G$, the finite set $L_i \cap D_j$ is transformed into itself, according to $g(L_i \cap D_j) \subseteq g(L_i) \cap g(D_j) = L_i \cap D_j$. Therefore, there is a representation

$$\Sigma_{i,j}: G \longrightarrow \operatorname{Sym}(L_i \cap D_j).$$

The image $\Sigma_{i,j}(G)$ is a finite group, while the kernel $K_{i,j} := \ker(\Sigma_{i,j})$ fixes any point $p \in L_i \cap D_j$ and acts on D_j . It is well known that the holomorphic automorphisms $\operatorname{Aut}_p(D_j)$ of an elliptic curves D_j , which fix a point $p \in D_j$, form a cyclic group of order 2, 4 or 6. Therefore, $K_{i,j} \leq \operatorname{Aut}_p(D), G, \operatorname{ker}(\Sigma_1)$ and $\operatorname{Aut}(X, D)$ are finite groups.

Definition 21. A smooth toroidal compactification $X = (\mathbb{B}/\Gamma)'$ with a blow down $\beta: X \to Y$ of $n \in \mathbb{N}$ smooth irreducible rational (-1)-curves onto a minimal surface Y is Galois non-primitive if there is a fixed point free automorphism $q \in$ $\operatorname{Aut}(X,D)\setminus {\operatorname{Id}_X}.$

Any Galois non-primitive $X = (\mathbb{B}/\Gamma)'$ is non-primitive, because the $\langle g \rangle$ -Galois covering $\zeta: X \to \zeta(X) = X/\langle g \rangle$ is unramified and restricts to unramified coverings $\zeta : \mathbb{B}/\Gamma \to \zeta(\mathbb{B}/\Gamma) \text{ and } \zeta : E(\beta) = \prod_{i=1}^n L_i \to \zeta(E(\beta)) \text{ of degree } |\langle g \rangle| = \operatorname{ord}(g).$

Note that the presence of an unramified covering $\varphi: Y \to \varphi(Y)$ implies the coincidence $Y = \varphi(Y)$ of the universal cover Y of Y with the universal cover $\varphi(Y)$ of $\varphi(Y)$. The fundamental group $\pi_1(\varphi(Y))$ of $\varphi(Y)$ acts on Y by biholomorphic automorphisms without fixed points and contains the fundamental group $\pi_1(Y)$ of Y as a subgroup of index $[\pi_1(\varphi(Y)) : \pi_1(Y)] = d$.

Proposition 22. Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification with toroidal compactifying divisor $D := X \setminus (\mathbb{B}/\Gamma), \ \beta : X \to Y$ be a blow down of $n \in \mathbb{N}$ smooth irreducible rational (-1)-curves to a minimal surface Y and $N(\pi_1(Y))$ be the normalizer of the fundamental group $\pi_1(Y)$ of Y in the biholomorphism group $\operatorname{Aut}(\widetilde{Y})$ of the universal cover \widetilde{Y} of Y. Then X is Galois non-primitive if and only if there exist a natural divisor d > 1 of $\text{GCD}(|\beta(D)^{\text{sing}}|, e(Y)) \in \mathbb{N}$ and an unramified covering $\varphi: Y \to \varphi(Y)$ of degree d, such that $\pi_1(\varphi(Y)) \cap N(\pi_1(Y)) \ge \pi_1(Y)$ and $\varphi: \beta(D) \to \varphi\beta(D)$ is an unramified covering of degree d.

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53-77.

Proof. If $X = (\mathbb{B}/\Gamma)'$ is Galois non-primitive then there exists a fixed point free biholomorphism $g \in \operatorname{Aut}(X, D) \setminus \{\operatorname{Id}_X\}$ of X. By Proposition 19(iv), g induces a fixed point free biholomorphism $g_o = \Phi^{-1}(g) \in \operatorname{Aut}(Y, \beta(D)) \setminus \{\operatorname{Id}_Y\}$ of Y. The element g_o of the finite group $\operatorname{Aut}(Y, \beta(D))$ is of finite order $d \in \mathbb{N} \setminus \{1\}$ and the $\langle g_o \rangle$ -Galois coverings $\zeta : Y \to Y/\langle g_o \rangle, \zeta : \beta(D) \to \zeta\beta(D)$ are unramified and of degree d. The automorphism g_o of Y lifts to an automorphism $\sigma \in \operatorname{Aut}(\widetilde{Y})$ of the universal cover \widetilde{Y} of Y, which normalizes $\pi_1(Y)$ and belongs to

$$\pi_1(\zeta(Y)) = \pi_1(Y/\langle g_o \rangle) = \pi_1\left((\widetilde{Y}/\pi_1(Y))/\langle \sigma \pi_1(Y) \rangle\right)$$
$$= \pi_1\left(\widetilde{Y}/\langle \sigma, \pi_1(Y) \rangle\right) = \langle \sigma, \pi_1(Y) \rangle.$$

Conversely, suppose that $\varphi: Y \to \varphi(Y)$ is an unramified covering of degree d > 1, which restricts to an unramified covering $\varphi: \beta(D) \to \varphi\beta(D)$ of degree d and there exists $\sigma \in [\pi_1(\varphi(Y)) \cap N(\pi_1(Y))] \setminus \pi_1(Y)$. Then $g_o := \sigma \pi_1(Y) \in \operatorname{Aut}(Y) = N(\pi_1(Y))/\pi_1(Y)$ is a non-identical biholomorphism $g_o: Y \to Y$. Since $\langle \sigma, \pi_1(Y) \rangle$ is a subgroup of $\pi_1(\varphi(Y))$, the unramified covering $\varphi: Y \to \varphi(Y)$ factors through the $\langle g_o \rangle$ -Galois covering $\zeta: Y \to Y/\langle g_o \rangle$ and a covering $\varphi_o: Y/\langle g_o \rangle \to \varphi(Y)$ along the commutative diagram

The finite coverings $\zeta : Y \to Y/\langle g_o \rangle$ and $\varphi_o : Y/\langle g_o \rangle \to \varphi(Y)$ are unramified, because their composition $\varphi = \varphi_o \zeta : Y \to \varphi(Y)$ is unramified. That is why g_o has no fixed points on Y. If $\beta(D) \subset Y$ is not $\langle g_o \rangle$ -invariant then there is an orbit $\operatorname{Orb}_{\langle g_o \rangle}(y_o) \subset Y$ of some $y_o \in \beta(D)$ which intersects both $\beta(D)$ and $Y \setminus \beta(D)$. Therefore, $\zeta : \beta(D) \to \zeta\beta(D)$ has a fibre $\zeta^{-1}(\zeta(y_o))$ of cardinality $|\zeta^{-1}(\zeta(y_o))| < \operatorname{deg}(\zeta) = |\langle g_o \rangle| = \operatorname{ord}(g_o)$ and $\zeta : \beta(D) \to \zeta\beta(D)$ is ramified. As a result, the composition $\varphi = \varphi_o \zeta : \beta(D) \to \varphi\beta(D)$ is ramified. The contradiction shows the $\langle g_o \rangle$ -invariance of $\beta(D)$. According to Proposition 19 (iv), the fixed point free $g_o \in \operatorname{Aut}(Y, \beta(D)) \setminus \{\operatorname{Id}_Y\}$ corresponds to a fixed point free $g = \Phi(g_o) \in$ $\operatorname{Aut}(X, D) \setminus \{\operatorname{Id}_X\}$ and X is Galois non-primitive. \Box

Definition 23. A covering $\varphi : Y \to \varphi(Y)$ by a smooth projective surface Y has Galois factorization if there exist $g_o \in \operatorname{Aut}(Y) \setminus \{\operatorname{Id}_Y\}$ and a covering $\varphi_o : Y/\langle g_o \rangle \to \varphi(Y)$, such that $\varphi = \varphi_o \zeta$ factors through the $\langle g_o \rangle$ -Galois covering $\zeta : Y \to Y/\langle g_o \rangle$ and a covering φ_o along the commutative diagram (6).

Now, Proposition 22 can be reformulated in the form of the following

Corollary 24. Let $X = (\mathbb{B}/\Gamma)'$ be a non-primitive smooth toroidal compactification with toroidal compactifying divisor $D := X \setminus (\mathbb{B}/\Gamma)$, $\beta : X \to Y$ be a blow down of $n \in \mathbb{N}$ smooth irreducible rational (-1)-curves onto a minimal surface Yand $\varphi : Y \to \varphi(Y)$ be an unramified covering of degree d, which restricts to an unramified covering $\varphi : \beta(D) \to \varphi\beta(D)$ of degree d. Then X is Galois non-primitive if and only if φ admits a Galois factorization.

Corollary 25. (i) Let $X = (\mathbb{B}/\Gamma)'$ be a smooth toroidal compactification with abelian minimal model Y. Then X is not saturated and X is non-primitive if and only if it is Galois non-primitive.

(ii) If $X = (\mathbb{B}/\Gamma)'$ is a smooth toroidal compactification with bi-elliptic minimal model Y then X is not saturated.

Proof. (i) Any abelian surface Y has non-trivial fundamental group $\pi_1(Y) \simeq (\mathbb{Z}^4, +)$. According to Corollary 9, that suffices for a smooth toroidal compactification $X = (\mathbb{B}/\Gamma)'$ with abelian minimal model Y to be non-saturated.

By Theorem 1.3 from Di Cerbo and Stover's article [3], if a smooth toroidal compactification $X = (\mathbb{B}/\Gamma)'$ has abelian minimal model Y then there is a blow down $\beta : X \to Y$ of $n \in \mathbb{N}$ smooth irreducible rational (-1)-curves on X onto Y. Such X is non-primitive if and only if there exists an unramified covering $\varphi : Y \to \varphi(Y)$ of degree d > 1, which restricts to an unramified covering $\varphi : \beta(D) \to \varphi\beta(D)$ of degree d. Since Y and $\varphi(Y)$ have one and the same universal cover $\widetilde{\varphi(Y)} = \widetilde{Y} = \mathbb{C}^2$ and one and the same Kodaira dimension $\kappa(\varphi(Y)) = \kappa(Y) = 0$, the minimal smooth irreducible projective surface $\varphi(Y)$ is abelian or bi-elliptic.

If $\varphi(Y)$ is an abelian surface then its fundamental group $\pi_1(\varphi(Y)) \simeq (\mathbb{Z}^4, +)$ is abelian and $\pi_1(Y) \simeq (\mathbb{Z}^4, +)$ is a normal subgroup of $\pi_1(\varphi(Y))$. As a result, $\varphi: Y \to \varphi(Y)$ is a $\pi_1(\varphi(Y))/\pi_1(Y)$ -Galois covering and Y is Galois non-primitive.

Let us suppose that $\varphi(Y)$ is a bi-elliptic surface. According to Bagnera-de Franchis classification of the bi-elliptic surfaces from [1], there is an abelian surface A and a cyclic subgroup $\langle g \rangle \leq \operatorname{Aut}(A)$ of order $d \in \{2, 3, 4, 6\}$ with a non-translation generator $g \in \operatorname{Aut}(A)$, such that $\varphi(Y) = A/\langle g \rangle$. Let $\operatorname{AffLin}(\mathbb{C}) := \mathcal{T}(\mathbb{C}^2) \rtimes \operatorname{GL}(2, \mathbb{C})$ be the group of the affine linear transformations of $\mathbb{C}^2 = \widetilde{Y} = \widehat{\varphi(Y)} = \widetilde{A}$ and

$$\mathcal{L}: \operatorname{AffLin}(\mathbb{C}^2) \longrightarrow \operatorname{GL}(2,\mathbb{C})$$

be the group homomorphism, associating to $\sigma \in \operatorname{AffLin}(\mathbb{C}^2)$ its linear part $\mathcal{L}(\sigma) \in \operatorname{GL}(2,\mathbb{C})$. Then the fundamental group of A is the maximal translation subgroup

$$\pi_1(A) = \pi_1(\varphi(Y)) \cap \ker(\mathcal{L})$$

of $\pi_1(\varphi(Y))$. The translation subgroup $\pi_1(Y) \leq \pi_1(\varphi(Y)) \cap \ker(\mathcal{L})$ of $\pi_1(\varphi(Y))$ is contained in $\pi_1(A)$ and the unramified covering $\varphi : Y \to \varphi(Y)$ factors through unramified coverings $\varphi_1 : Y \to A$ and $\varphi_2 : A \to \varphi(Y)$, along the commutative

diagram

The covering $\varphi_1 : Y \to A$ is $\pi_1(A)/\pi_1(Y)$ -Galois, so that $\varphi = \varphi_2\varphi_1$ is a Galois factorization of φ for $\pi_1(Y) \leq \pi_1(A)$. In the case of $\pi_1(Y) = \pi_1(A)$, there is an isomorphism $Y \simeq \mathbb{C}^2/\pi_1(Y) \simeq \mathbb{C}^2/\pi_1(A) = A$ and the covering $\varphi : Y \simeq A \to \varphi(Y) = A/\langle g \rangle$ is $\langle g \rangle$ -Galois. Thus, X is Galois non-primitive and a co-abelian smooth toroidal compactification $X = (\mathbb{B}/\Gamma)'$ is non-primitive if and only if it is Galois non-primitive.

(ii) The fundamental group $\pi_1(Y)$ of a bi-elliptic surface Y is subject to an exact sequence

$$1 \longrightarrow \pi_1(Y) \cap \ker(\mathcal{L}) \longrightarrow \pi_1(Y) \longrightarrow \langle g \rangle \longrightarrow 1$$

with a non-translation cyclic subgroup $\langle g \rangle$ of Aut $(\mathbb{C}^2/\pi_1(Y) \cap \ker(\mathcal{L})) = \operatorname{Aut}(A_o)$ of order 2, 3, 4 or 6. In particular, Y is not simply connected and a smooth toroidal compactification $X = (\mathbb{B}/\Gamma)'$ with bi-elliptic minimal model Y is not saturated. \Box

ACKNOWLEDGEMENT. This research was partially supported by Contract 80-10-209/17.04.2019 with the the Scientific Foundation of Kliment Ohridski University of Sofia.

4. REFERENCES

- Bagnera, G., de Franchis, M.: Sur les surfaces hyperelliptiques. C. R. Acad. Sci., 145, 1907, 747–749.
- [2] Di Cerbo, L. F., Stover, M.: Multiple realizations of varieties as ball quotient compactifications. *Michigan Math. J.*, 65(2), 2016, 441–447.
- [3] Di Cerbo, L. F., Stover, M.: Punctured spheres in complex hyperbolic surfaces and bi-elliptic ball quotient compactifications. *Trans. Amer. Math. Society*, **372**, 2019, 4627–4646.
- [4] Grothendieck A.: Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie. Publications mathématiques de l'I.H.E.S., tome 32, 1967, pp. 5–361.
- [5] Hartshorne R.: Algebraic Geometry. Graduate Texts in Mathematics 52, Springer, 1977.
- [6] Stover, M.: Volumes of Picard modular surfaces. Proc. Amer. Math. Soc., 139, 2011, 3045–3056.

[7] Uludağ, M.: Covering relations between ball quotient orbifolds. Math. Ann., 328(2), 2004, 503–523.

Received on January 3, 2020

PANCHO G. BESHKOV Faculty of Mathematics and Informatics "St. Kliment Ohridski" University of Sofia 5 blvd. J. Bourchier, BG-1164 Sofia BULGARIA

E-mail: panchob@fmi.uni.sofia.bg

AZNIV K. KASPARIAN

Faculty of Mathematics and Informatics "St. Kliment Ohridski" University of Sofia 5 blvd. J. Bourchier, BG-1164 Sofia BULGARIA E-mail: kasparia@fmi.uni-sofia.bg

GREGORY K. SANKARAN Department of Mathematical Sciences University of Bath Bath BA2 7AY UNITED KINGDOM E-mail: masgks@bath.ac.uk