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Some versions of the notion of operative space with storage operation were used previous-
ly [10, 11] for uniform treatment of both theories of operative and combinatory spaces
[2, 7]. In this paper we show that the scope of this notion is essentially greater than
that considered in [10]. Formally, we describe a general categorical model of operative
spaces with storage operation and specify some particular cases of this model, which
cannot be directly treated by operative and combinatory spaces. On the other hand,
these examples arise naturally in an attempt to comprise in the sense of algebraic
recursion theory some important kinds of nondeterministic computing notions like that
of quantum (and more generally reversible) one, which were not treated before in the
last theory.
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1. INTRODUCTION

Combinatory spaces of Skordev [6, 7] were the first system of algebraic recursion

theory, a branch of abstract recursion theory based on a specific algebraic treatment

of least fixed points. Later on, the same approach was employed for other algebraic

systems by L. Ivanov and the present author, in a search for the best such system for

which the approach in question works. Among these systems, the operative spaces

of Ivanov [2] are the most remarkable. They are natural and simple objects with a
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huge variety of models, being in a sense very near to practically arising ideas and

universes for computation. There is, however, a practically important operation

which can not be directly treated by operative spaces; that is the operation of

encoding a pair of data objects into one such object. This operation can be viewed

as a computable retraction of the set X of data objects on its cartesian square

X × X , and in this sense the notion of operative space does not directly handle

the cartesian product ×. That is why the notions of computability like that of

Moschovakis are difficult to comprise immediately by operative spaces. The notion

of combinatory space, however, can handle in this sense the cartesian product,

while, on the other hand, it does not work well (or does not work at all) with more

general kinds of products, and in particular with the tensor product of Hilbert

spaces which has to be used, instead, for the corresponding treatment of quantum

computing. In the present paper we show how the notion of combinatory space

can be modified (or rather generalized) in order to avoid this difficulty. For that

purpose we use the categorical language, and thus indicate also that there is a large

variety of natural models for the notion of storage operation in an operative space

besides those given by the operation of translation in an iterative one, as well as

by other inductively definable operations of similar kind.

In this way we propose a revision of the notion of combinatory space, replacing

it by another one called regular OSS below. The last notion almost coincides

with the notion of operative space with strong storage operation from [11] and is a

special case of that of intensional combinatory space from [10]. It avoids some basic

algebraic disadvantages of the notion of combinatory space like using constants for

data objects, and the projection objects L and R, which obstructs the treatment

of reversible computing notions, retaining in the same time its capacity to express

various possible forms of (tensor) product operations.

2. OPERATIVE SPACES AND STORAGE OPERATIONS

We shall remind the basic notions of operative space and storage operation in

such spaces. Detailed information about these notions and their role in algebraic

recursion theory is available in the book [2] and the papers [9, 10]. By protoring we

shall mean a set R with two binary operations and three constants I, T , F such

that:

1) R is a monoid with unit I w.r.t. one of the operations called multiplication

and denoted by juxtaposition;

2) the other operation denoted by [−,−] satisfies the identities χ[ϕ, ψ] =

[χϕ, χψ], [ϕ, ψ]T = ϕ, and [ϕ, ψ]F = ψ for all elements ϕ, ψ, χ of R.

A storage operation in a protoring R is a quadruple ($, D, P,Q) consisting

of a unary operation $ and three constants D,P,Q in R such that the following

equalities hold for all ϕ,ψ ∈ R:

124 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 123–142.



$(ϕψ) = $(ϕ)$(ψ); (2.1)

$([ϕ, ψ]) = [$(ϕ), $(ψ)]D; (2.2)

$($(ϕ)) = Q$(ϕ)P ; (2.3)

[T $(I), F$(I)]D = D$(I). (2.4)

Below we shall often use the shorthand ϕ̂ for $(ϕ). A storage operation in a

protoring R will be called regular, iff it satisfies the equalities

$(ϕ)T = Tϕ, $(ϕ)F = F$(ϕ) (2.5)

for all ϕ ∈ R.

An operative space (shortly OS) is a partially ordered protoring, i.e. protoring

with a partial order ≤ in the set of its elements, such that the basic binary

operations of this algebra are increasing w.r.t. ≤ in both arguments. Similarly,

by operative space with storage (OSS) we mean operative space in which a storage

operation ($, D, P,Q) with increasing first component $ is given, and when the last

operation is regular we shall say that the OSS in question is regular.

An OSS F is called iterative, iff for every ϕ ∈ F the inequality [I, ξ]ϕ ≤ ξ has

least solution I(ϕ) w.r.t. ξ in F , such that for every α ∈ F the element αI(ϕ) is

the least solution of [α, ξ]ϕ ≤ ξ, and the equality

$(I(ϕ)) = I(D$(ϕ))

holds for every ϕ ∈ F . The iterative regular OSS are special case of iterative

intensional combinatory spaces from [10]. Hence the results of [10] imply that

the basic theorems of algebraic recursion theory (inductive completeness and the

normal form theorem) hold in all iterative regular OSS F in which the following

condition is fulfilled:

(S7) For all elements α,β,ϕ of F , s.t. the inequalities ϑ ≤ [I, α$(ϑ)]β and ϑ ≤
[I, ϑ]ϕ imply [I, ϑ]ϕ ≤ [I, α$([I, ϑ]ϕ)]β for all ϑ ∈ F , we have the inequality

I(ϕ) ≤ [I, α$(I(ϕ))]β.

The last condition is rather weak, and is fulfilled in all cases in which the existence

of the operation I can be established by the usual methods. (The normal form

theorem holds even without (S7)).

Iterative operative spaces of Ivanov [2] provide a general and natural model

for iterative regular OSS, the operation $ being interpreted as translation. Weakly

iterative combinatory spaces ([11]) in which (L,R) = I are also a special case of

iterative regular OSS.
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3. CATEGORICAL MODELS OF REGULAR OSS

As mentioned in [9], protorings can be described categorically as follows. Con-

sider a category C, an object X of C for which the coproduct X + X exists, and

a retraction r : X → X + X with section s : X + X → X in C. Then we have

a protoring R(C, X, r) whose elements are the C-morphisms ϕ : X → X with the

composition in C as multiplication, the identity 1X of X in C as unit, and the

second binary operation and the constants T , F defined by [ϕ, ψ] = [ϕ, ψ]+ ◦ r,
T = s ◦ I0 and F = s ◦ I1 respectively, where I0 and I1 are the canonical injections

X → X +X of the last sum and [ϕ, ψ]+ : X +X → X is the unique arrow in C
such that [ϕ, ψ]+ ◦ I0 = ϕ and [ϕ, ψ]+ ◦ I1 = ψ. Conversely, every protoring R can

be regarded as one-object category with the multiplication in R as composition law

and the unit I as the identity arrow; the Karoubi envelope K of the last category

consists of all elements ε ∈ R such that ε2 = ε as objects, and all elements ϕ ∈ R
such that ηϕε = ϕ as arrows ϕ : ε → η. The category K has binary coproducts

ε+η = [Tε, Fη] with canonical injections Tε : ε→ [Tε, Fη] and Fη : η → [Tε, Fη].

In particular, we have a retraction [T, F ] : I → I + I in the last category with

section [T, F ]; and the protoring R(K, I, [T, F ]) coincides with the original one R.

Thus all protorings are of the form R(C, X, r); and working with categories enriched

over the category of posets we get a similar description of operative spaces.

Below we shall extend this observation to obtain a large class of models for

regular OSS. Let C be a category with binary coproducts. We denote by I0 =

I0(X0, X1) and I1 = I1(X0, X1) the canonical injections Ii : Xi → X0 +X1 of the

coproduct X0 +X1 in C; they are natural in X0, X1 ∈ C. We shall use to omit the

arguments X0, X1 in I0 and I1, as well as in all natural transformations occurring

below; this can not create confusion since these arguments can be obviously restored

in every expression involving such transformations in order to make this expression

meaningful. Similarly, we shall write 1X for the identity arrow of an object X ∈ C,

often omitting the subscript X . For every two arrows fi : Xi → X in C we denote

by [f0, f1]+ the unique arrow f : X0 + X1 → X for which f ◦ Ii = fi for both

i = 0, 1. Suppose there are a bi-endofunctor ⊗ and two, natural in X,Y, Z ∈ C,

transformations

a⊗ : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) (3.1)

and

d̄⊗ : X ⊗ (Y + Z) → X ⊗ Y +X ⊗ Z

in C such that

i) a⊗ is a retraction with section ā⊗ : X⊗ (Y ⊗Z) → (X⊗Y )⊗Z also natural

in X,Y, Z;

ii) the arrow

d⊗ = [1 ⊗ I0, 1 ⊗ I1]+ : X ⊗ Y +X ⊗ Z → X ⊗ (Y + Z)
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is a retraction with section d̄⊗, i.e. d⊗ ◦ d̄⊗ = 1.

Then given an object X of C and two retractions r+ : X → X + X and

r⊗ : X → X ⊗X with sections s+ and s⊗ respectively, we have the following:

Proposition 1. There is a storage operation ($, D, P,Q) in the protoring

R(C, X, r+) defined by

$(ϕ) = s⊗ ◦ (1 ⊗ ϕ) ◦ r⊗

D = s+ ◦ (s⊗ + s⊗) ◦ d̄⊗ ◦ (1 ⊗ r+) ◦ r⊗

P = s⊗ ◦ (s⊗ ⊗ 1) ◦ ā⊗ ◦ (1 ⊗ r⊗) ◦ r⊗

Q = s⊗ ◦ (1 ⊗ s⊗) ◦ a⊗ ◦ (r⊗ ⊗ 1) ◦ r⊗.

Proof. A direct calculation. Here are the details for the identities (2.2)–(2.4),

the identity (2.1) being obvious. For (2.2):

$([ϕ, ψ]) = s⊗ ◦ (1 ⊗ [ϕ, ψ]+ ◦ r+) ◦ r⊗

= s⊗ ◦ (1 ⊗ [I, I]+ ◦ (ϕ+ ψ) ◦ r+) ◦ r⊗

= s⊗ ◦ (1 ⊗ [I, I]+) ◦ (1 ⊗ (ϕ+ ψ)) ◦ (1 ⊗ r+) ◦ r⊗

= s⊗ ◦ (1 ⊗ [I, I]+) ◦ d⊗ ◦ (1 ⊗ ϕ+ 1 ⊗ ψ) ◦ d̄⊗ ◦ (1 ⊗ r+) ◦ r⊗

= s⊗ ◦ (1 ⊗ [I, I]+) ◦ [1 ⊗ I0, 1 ⊗ I1]+

◦ (r⊗ ◦ ϕ̂ ◦ s⊗ + r⊗ ◦ ψ̂ ◦ s⊗) ◦ d̄⊗ ◦ (1 ⊗ r+) ◦ r⊗

= s⊗ ◦ [1 ⊗ I, 1 ⊗ I]+ ◦ (r⊗ ◦ ϕ̂+ r⊗ ◦ ψ̂) ◦ (s⊗ + s⊗)

◦ d̄⊗ ◦ (1 ⊗ r+) ◦ r⊗

= s⊗ ◦ [(1 ⊗ 1) ◦ r⊗ ◦ ϕ̂, (1 ⊗ 1) ◦ r⊗ ◦ ψ̂]+ ◦ r+ ◦D

= [s⊗ ◦ r⊗ ◦ ϕ̂, s⊗ ◦ r⊗ ◦ ψ̂] ◦D

= [ϕ̂, ψ̂] ◦D;

for (2.3):

$2(ϕ) = s⊗ ◦ (1 ⊗ s⊗ ◦ (1 ⊗ ϕ) ◦ r⊗) ◦ r⊗

= s⊗ ◦ (1 ⊗ s⊗) ◦ (1 ⊗ (1 ⊗ ϕ)) ◦ (1 ⊗ r⊗) ◦ r⊗

= s⊗ ◦ (1 ⊗ s⊗) ◦ a⊗ ◦ ((1 ⊗ 1) ⊗ ϕ)) ◦ ā⊗ ◦ (1 ⊗ r⊗) ◦ r⊗

= s⊗ ◦ (1 ⊗ s⊗) ◦ a⊗ ◦ ((r⊗ ◦ s⊗) ⊗ ϕ)) ◦ ā⊗ ◦ (1 ⊗ r⊗) ◦ r⊗

= s⊗ ◦ (1 ⊗ s⊗) ◦ a⊗ ◦ (r⊗ ⊗ 1) ◦ (1 ⊗ ϕ) ◦ (s⊗ ⊗ 1)

◦ ā⊗ ◦ (1 ⊗ r⊗) ◦ r⊗

= Q ◦ s⊗ ◦ (1 ⊗ ϕ) ◦ r⊗ ◦ P

= Q$(ϕ)P ;
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for (2.4):

[T $(I), F$(I)]D = [s+ ◦ I0 ◦ s⊗ ◦ r⊗, s+ ◦ I1 ◦ s⊗ ◦ r⊗]+ ◦ r+ ◦D

= [s+ ◦ I0 ◦ s⊗ ◦ r⊗, s+ ◦ I1 ◦ s⊗ ◦ r⊗]+ ◦ (s⊗ + s⊗)

◦ d̄⊗ ◦ (1 ⊗ r+) ◦ r⊗

= [s+ ◦ I0 ◦ s⊗, s+ ◦ I1 ◦ s⊗]+ ◦ d̄⊗ ◦ (1 ⊗ r+) ◦ r⊗

= s+ ◦ [I0, I1]+ ◦ (s⊗ + s⊗) ◦ d̄⊗ ◦ (1 ⊗ r+) ◦ r⊗

= D = D ◦ s⊗ ◦ r⊗ = D$(I). �

Let C be a category with a bi-endofunctor ⊗ : C2 → C and associativity

transformation (3.1) which is a natural isomorphism with inverse ā⊗, and with a

unit w.r.t. ⊗, i.e. an object 1 of C such that the isomorphisms X⊗1 ∼= X ∼= 1⊗X
hold naturally in X ∈ C. We shall call such categories premonoidal (the usual

definition of monoidal category requiring some coherence conditions to be fulfilled,

which are not supposed for a premonoidal one), and we shall denote by ē⊗ and e⊗
the canonical isomorphism X → 1 ⊗ X and its inverse respectively, omitting the

argument X as usual. All categories occurring below, for which the opposite is not

especially stated, will be supposed to have ω-coproducts, i.e. all coproducts
∑

n∈A

Xn

of families of objects Xn indexed by a set A of natural numbers. The canonical

injections Xi →
∑

n∈A

Xn of such coproducts will be denoted by In; they are natural

in (Xn) ∈ CA and as usual we shall omit to write the arguments of the natural

transformations In. A premonoidal category C with such coproducts will be called

preclosed, iff the canonical natural transformations

δ :
∑

i

(X ⊗ Yi) → X ⊗
∑

i

Yi, δ′ :
∑

i

(Yi ⊗X) → (
∑

i

Yi) ⊗X (3.2)

determined by the condition that δ ◦ Ii = 1 ⊗ Ii and δ′ ◦ Ii = Ii ⊗ 1 for all i,

respectively, are isomorphisms. We shall say that an object X of a preclosed

category C is strictly reflexive, iff it satisfies the isomorphisms X ⊗ X ∼= X ∼=
X +X ∼= 1 +X , and X will be called reflexive iff X ⊗X ∼= X and both X + X

and 1 +X are retracts of X in C.

It is very easy to construct reflexive objects in this sense in preclosed categories.

In fact, every object of such category can be extended to a strictly reflexive one in

the following sense:

Proposition 2. In every preclosed category C there is an endofunctor R and

a natural in X transformation X → R(X) such that the object R(X) is strictly

reflexive for every object X ∈ C.
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Proof. The isomorphisms (3.2) imply the isomorphism

∞∑

i=0

Xi ⊗
∞∑

j=0

Yj
∼=

∞∑

n=0

n∑

i=0

(Xi ⊗ Yn−i)

for all sequences Xi and Yj of objects. On the other hand, for every object X the

coproduct Xω = 1 +X + 1 +X + · · · satisfies the isomorphisms

Xω
∼= Xω +Xω

∼= 1 +Xω,

whence for the progression

R(X) = 1 +Xω +Xω ⊗Xω +Xω ⊗Xω ⊗Xω + · · ·

we have

R(X) +R(X) ∼= 1 + 1 +Xω +Xω +Xω ⊗Xω +Xω ⊗Xω + · · ·

∼= 1 +Xω +Xω ⊗ (Xω +Xω) + · · · ∼= R(X)

and

R(X) ⊗R(X) ∼= (1 +Xω +Xω ⊗Xω + · · · ) ⊗ (1 +Xω +Xω ⊗Xω + · · · )

∼= 1 +Xω +Xω

+ (Xω ⊗Xω +Xω ⊗Xω +Xω ⊗Xω) + · · · ∼= R(X). �

Note that the morphism X → R(X) in the last Proposition is a canonical

injection of certain coproduct, and hence a monomorphism (even section of a

retraction) in very general suppositions for the category C and the object X . (For

instance, it suffices to assume that the category C has terminal object t and a

morphism t → X .)

Theorem 1. Every reflexive object X in a preclosed category C canonically

determines a protoring F(C, X) with regular storage operation.

Proof. Consider the protoring R = R(C, X, r+),where r+ : X → X + X

is the retraction given with X as reflexive object, together with a section s+ of

it. Similarly, let r⊗ and s⊗ be the isomorphism X → X ⊗ X and its inverse,

respectively, and let r1 : X → 1 +X be the retraction with a section s1, which are

given with X . We have a natural in Y ∈ C transformation

ϑ(Y ) = ((s1 ◦ I0) ⊗ 1Y ) ◦ ē⊗ : Y → X ⊗ Y.
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Indeed, for every C-arrow ϕ : Y → Z we have

(1X ⊗ ϕ) ◦ ϑ(Y ) = (1X ⊗ ϕ) ◦ ((s1 ◦ I0) ⊗ 1Y ) ◦ ē⊗

= ((s1 ◦ I0) ⊗ 1Z) ◦ (11 ⊗ ϕ) ◦ ē⊗

= ((s1 ◦ I0) ⊗ 1Z) ◦ ē⊗ ◦ ϕ = ϑ(Z) ◦ ϕ.

Denote by d⊗ and d̄⊗ the canonical natural in Y, Z,W ∈ C isomorphism

d⊗ = [I0 ⊗ 1, I1 ⊗ 1]+ : Y ⊗W + Z ⊗W → (Y + Z) ⊗W

and its inverse respectively, and define an arrow

G = s+ ◦ (e⊗ + s⊗) ◦ d̄⊗ ◦ (r1 ⊗ 1) ◦ r⊗ : X → X

as the obvious composition of the string

X → X ⊗X → (1 +X) ⊗X → 1⊗X +X ⊗X → X +X → X.

Similarly, define the arrows T ′, F ′ : X → X by

T ′ = s⊗ ◦ ϑ(X), F ′ = s⊗ ◦ (ζ ⊗ 1) ◦ r⊗,

where ζ = s1 ◦ I1 : X → X . The arrows G, T ′ and F ′ are elements of the protoring

R satisfying in it the equalities GT ′ = T and GF ′ = F . Indeed, we have

GT ′ = s+ ◦ (e⊗ + r⊗) ◦ d̄⊗ ◦ (r1 ⊗ 1) ◦ r⊗ ◦ s⊗ ◦ ϑ(X)

= s+ ◦ (e⊗ + r⊗) ◦ d̄⊗ ◦ (r1 ⊗ 1) ◦ ((s1 ◦ I0) ⊗ 1) ◦ ē⊗

= s+ ◦ (e⊗ + r⊗) ◦ d̄⊗ ◦ (I0 ⊗ 1) ◦ ē⊗

= s+ ◦ (e⊗ + r⊗) ◦ d̄⊗ ◦ d⊗ ◦ I0 ◦ ē⊗ = s+ ◦ (e⊗ + r⊗) ◦ I0 ◦ ē⊗

= s+ ◦ I0 ◦ e⊗ ◦ ē⊗ = s+ ◦ I0 = T

and

GF ′ = s+ ◦ (e⊗ + s⊗) ◦ d̄⊗ ◦ (r1 ⊗ 1) ◦ r⊗ ◦ s⊗ ◦ (s1 ⊗ 1) ◦ (I1 ⊗ 1) ◦ r⊗

= s+ ◦ (e⊗ + s⊗) ◦ d̄⊗ ◦ (I1 ⊗ 1) ◦ r⊗

= s+ ◦ (e⊗ + s⊗) ◦ d̄⊗ ◦ d⊗ ◦ I1 ◦ r⊗

= s+ ◦ (e⊗ + s⊗) ◦ I1 ◦ r⊗

= s+ ◦ I1 ◦ s⊗ ◦ r⊗ = s+ ◦ I1 = F.

Then we have a protoring F with the same set of elements, multiplication operation

and unit as R; the second binary operation defined by

[ϕ, ψ]′ =def [ϕ, ψ]G,
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where [−,−] is the corresponding operation of R; and the elements T ′ and F ′ as

the basic constants T and F , respectively. Indeed,

[ϕ, ψ]′T ′ = [ϕ, ψ]GT ′ = [ϕ, ψ]T = ϕ,

and similarly [ϕ, ψ]′F ′ = ψ for all ϕ, ψ ∈ F . By Proposition 1, there is a storage

operation ($, D, P,Q) in R. Defining D′ = [T ′, F ′]D$(G), we have a storage

operation ($, D′, P,Q) in F , because

$([ϕ, ψ]′) = $([ϕ, ψ]G) = [$(ϕ), $(ψ)]D$(G) = [$(ϕ), $(ψ)]′[T ′, F ′]D$(G)

for all ϕ, ψ ∈ F , and

[T ′$(I), F ′$(I)]′D′ = [T ′$(I), F ′$(I)]′[T ′, F ′]D$(G)

= [T ′$(I), F ′$(I)]D$(G)

= [T ′, F ′][T $(I), F$(I)]D$(G)

= [T ′, F ′]D$(I)$(G) = D′$(I).

The storage operation ($, D′, P,Q) is regular since

ϕ̂T ′ = s⊗ ◦ (1 ⊗ ϕ) ◦ r⊗ ◦ s⊗ ◦ ϑ = s⊗ ◦ (1 ⊗ ϕ) ◦ ϑ = s⊗ ◦ ϑ ◦ ϕ = T ′ϕ

and

ϕ̂F ′ = s⊗ ◦ (1 ⊗ ϕ) ◦ r⊗ ◦ s⊗ ◦ (ζ ⊗ 1) ◦ r⊗ = s⊗ ◦ (1 ⊗ ϕ) ◦ (ζ ⊗ 1) ◦ r⊗

= s⊗ ◦ (ζ ⊗ 1) ◦ (1 ⊗ ϕ) ◦ r⊗ = s⊗ ◦ (ζ ⊗ 1) ◦ r⊗ ◦ s⊗ ◦ (1 ⊗ ϕ) ◦ r⊗

= F ′ϕ̂

for all ϕ ∈ F . �

Definition. We say that a preclosed category is partially ordered, iff a partial

order is given in every hom-set such that the composition, ⊗ and the ω-coproduct

functors are increasing (in all arguments together) w.r.t. this partial order. For a

partially ordered preclosed category we say that it is continuous, iff in every hom-

set there is least element o such that ϕ ◦ o = o for every suitable arrow ϕ and

ψ ⊗ o = o for every arrow ψ, and in every hom-set the suprema of increasing

sequences exist and are preserved in each argument by the composition, ⊗ and the

coproducts. If in each hom-set of a partially ordered preclosed category every chain

C has least upper bound supC such that the equalities ϕ ◦ supC = sup(ϕ ◦ C) and

ψ⊗ supC = sup(ψ⊗C) hold for all suitable arrows ϕ and ψ, we shall say that this

category is semicontinuous. Finally, if the last condition holds for the composition

(not necessarily for ⊗) and the element 1 is a ⊗-generator for the category in

question (in the following sense: for every pair of arrows f, g : X ⊗ Y → Z such
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that f ◦ (x ⊗ y) = g ◦ (x ⊗ y) for all arrows x : 1 → X and y : 1 → Y , we have

the equality f = g, then we shall say that this partially ordered preclosed category

is quasisemicontinuous.

Theorem 2. Let C be a partially ordered preclosed category. Then for every

reflexive object X of C the canonically generated protoring F(C, X) is an iterative

regular OSS satisfying (S7) provided someone of the following three conditions holds:

i) C is continuous;

ii) C is semicontinuous and the morphism r⊗ satisfies the equality

(supC) ◦ r⊗ = sup(C ◦ r⊗)

for every chain C in every suitable hom-set of C;

iii) C is quasisemicontinuous.

Proof. The set of elements of F(C, X) is the hom-set C(X,X), whence it is

partially ordered by the partial order of C, and F = F(C, X) obviously forms a

regular OSS w.r.t. this partial order. If C is continuous, then there is least element

o ∈ F such that ϕo = o for all ϕ ∈ F . Moreover all increasing sequences have

suprema in F which is preserved in each argument by the multiplication and the

operations [−,−] and $. Therefore for every ϕ ∈ F the element I(ϕ) = supϕn,

where ϕn is the sequence defined by ϕ0 = o and ϕn+1 = [I, ϕn]ϕ, is the least

solution of the inequality [I, ξ]ϕ ≤ ξ w.r.t. ξ in F . For arbitrary α ∈ F the

sequence ψn = αϕn satisfies ψ0 = o and ψn+1 = [α, ψn]ϕ for all n, whence the least

solution of [α, ξ]ϕ ≤ ξ is supψn = αI(ϕ). Moreover the sequence χn = ϕ̂n satisfies

the equalities χ0 = o and χn+1 = [I, χn]Dϕ̂, and therefore

I(Dϕ̂) = sup ϕ̂n = $(supϕn) = $(I(ϕ)).

Suppose C satisfies condition ii). Then for all ϕ, α ∈ F we have a transfinite

increasing sequence ψi(α, ϕ) ∈ F uniquely determined by the condition

ψi(α, ϕ) = sup
j<i

[α, ψj(α, ϕ)]ϕ (3.3)

and ψi(α, ϕ) ≤ [α, ψi(α, ϕ)]ϕ for all i < k where k is a cardinal number greater

than the power of F . Then the element ψj(α, ϕ) is the least solution of [α, ξ]ϕ ≤ ξ,

where j < k is any ordinal number among those for which ψj(α, ϕ) = ψj+1(α, ϕ).

In particular, for α = I denote this least solution by I(ϕ). Then the supposition

of semicontunuity of C implies ψi(α, ϕ) = αψi(I, ϕ) for all i < k, which shows that

αI(ϕ) is the least solution of [α, ξ]ϕ ≤ ξ. Similarly, applying $ to (3.3) and using the

supposition for r⊗ we obtain , $(ψi(I, ϕ)) = ψi(I,Dϕ̂) whence $(I(ϕ)) = I(Dϕ̂).
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Now, when C is quasisemicontinuous, we see in the same way that αI(ϕ) is the

least solution of [α, ξ]ϕ ≤ ξ. Hence, also, the inequality

I(Dϕ̂) ≤ $(I(ϕ)),

because [I, $(I(ϕ))]Dϕ̂ = $([I, I(ϕ)]ϕ) = $(I(ϕ)). For arbitrary C-arrow x : 1 → X

the arrow

ϑY (x) = (x⊗ 1Y ) ◦ ē⊗ : Y → X ⊗ Y

is a natural in Y ∈ C transformation such that ϕ̂x∗ = x∗ϕ for all ϕ ∈ F where

x∗ : X → X is the arrow x∗ = s⊗ ◦ ϑX(x). Then for all ϕ, ψ ∈ F the following will

be true: if ϕx∗ = ψx∗ for every x : 1 → X , then ϕ = ψ = Indeed, for arbitrary

arrow y : 1 → X we have

x∗y = s⊗ ◦ (x ⊗ 1) ◦ ē⊗ ◦ y = s⊗ ◦ (x⊗ 1) ◦ (1 ⊗ y) ◦ ē⊗ = s⊗ ◦ (x ⊗ y) ◦ ē⊗;

therefore ϕx∗ = ψx∗ implies ϕ ◦ s⊗ ◦ (x⊗ y) ◦ ē⊗ = ψ ◦ s⊗ ◦ (x ⊗ y) ◦ ē⊗, whence

ϕ ◦ s⊗ ◦ (x⊗ y) = ψ ◦ s⊗ ◦ (x⊗ y).

By the supposition that 1 is a ⊗-generator this shows that when ϕx∗ = ψx∗ holds

for all x we have ϕ ◦ s⊗ = ψ ◦ s⊗, and therefore ϕ = ψ since I = s⊗ ◦ r⊗.

Denote by [−,−]0, T0, F0 and D0 the operation [−,−] and the constants T ,

F and D in the protoring R(C, X, r+), respectively (see Proposition 1). Then we

have

D0x
∗ = s+ ◦ (s⊗ + s⊗) ◦ d̄⊗ ◦ (1 ⊗ r+) ◦ r⊗ ◦ s⊗ ◦ (x⊗ 1) ◦ ē⊗

= s+ ◦ (s⊗ + s⊗) ◦ d̄⊗ ◦ (x⊗ 1) ◦ (1 ⊗ r+) ◦ ē⊗

= s+ ◦ (s⊗ + s⊗) ◦ (x⊗ 1 + x⊗ 1) ◦ d̄⊗ ◦ ē⊗ ◦ r+

= s+ ◦ (s⊗ ◦ (x ⊗ 1) + s⊗ ◦ (x⊗ 1)) ◦ d̄⊗ ◦ ē⊗ ◦ r+.

But

d⊗ ◦ (ē⊗ + ē⊗) = [1 ⊗ I0, 1 ⊗ I1]+ ◦ (ē⊗ + ē⊗)

= [(1 ⊗ I0) ◦ ē⊗, (1 ⊗ I1) ◦ ē⊗]+

= [ē⊗ ◦ I0, ē⊗ ◦ I1]+ = ē⊗ ◦ [I0, I1]+ = ē⊗,

whence d̄⊗ ◦ ē⊗ = ē⊗ + ē⊗. Therefore

D0x
∗ = s+ ◦ (s⊗ ◦ (x⊗ 1) + s⊗ ◦ (x ⊗ 1)) ◦ (ē⊗ + ē⊗) ◦ r+

= s+ ◦ (x∗ + x∗) ◦ r+ = s+ ◦ [I0 ◦ x
∗, I1 ◦ x

∗]+ ◦ r+

= [s+ ◦ I0 ◦ x
∗, s+ ◦ I1 ◦ x

∗]+ ◦ r+ = [T0x
∗, F0x

∗]0.
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Then in the protoring F we have:

Dx∗ = [T, F ]0D0$(G)x∗ = [T, F ]0D0x
∗G = [T, F ]0[T0x

∗, F0x
∗]0G

= [Tx∗, Fx∗]0G = [Tx∗, Fx∗].

Hence for all ϕ ∈ F and all arrows x : 1 → X we have the following equalities in

the protoring F :

[x∗, I(Dϕ̂)x∗]ϕ = [I, I(Dϕ̂)][Tx∗, Fx∗]ϕ = [I, I(Dϕ̂)]Dx∗ϕ

= [I, I(Dϕ̂)]Dϕ̂x∗ = I(Dϕ̂)x∗,

which implies $(I(ϕ))x∗ = x∗I(ϕ) ≤ I(Dϕ̂)x∗ since x∗I(ϕ) is the least solution of

[x∗, ξ]ϕ ≤ ξ. Then the inequality I(Dϕ̂) ≤ $(I(ϕ)) shows that

$(I(ϕ))x∗ = I(Dϕ̂)x∗

for all x : 1 → X . This, as we have already seen, implies $(I(ϕ)) = I(Dϕ̂).

The condition (S7) follows from Proposition 3 in [10] in all of the cases

i)–iii). �

4. COHERENCE SPACES

Coherence spaces ([1], sometimes called Girard domains) are well known objects

used for semantical treatment of linear logic and other systems of typed lambda

calculus. We shall note here that they form a continuous preclosed category w.r.t.

so called linear maps, thus giving by Theorem 2 various models for iterative regular

OSS. It is essential to stress the intuitive interpretation of these models in terms of

some kind of data processing which preserves information, indicating in this way

their naturalness, and hence importance for abstract recursion theory.

In detail, we define coherence spaces as pairs (X,∼) consisting of a set X and a

binary reflexive and symmetric relation ∼ in X . (We shall write also X for (X,∼)

and ∼X for ∼.) A linear map f : X → Y of coherence spaces X = (X,∼X) and

(Y,∼Y ) is a multivalued mapping f : X → 2Y such that:

1) f is coherently injective in the sense that y ∈ f(x) ∩ f(x′) and x ∼X x′

imply x = x′ for all x, x′ ∈ X and y ∈ Y ;

2) f preserves ∼ in the sense that x ∼X x′, y ∈ f(x) and y′ ∈ f(x′) imply

y ∼Y y′ for all x, x′ ∈ X and y, y′ ∈ Y .

The following Theorem is a (special case of a) well known result.

Theorem 3. LCoh is a continuous preclosed category.

Proof. We remind only the definitions of the components of the structure of

continuous preclosed category in LCoh, omitting the straightforward details. The
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category LCoh has coproducts for all families Xi ∈ LCoh of objects Xi = (Xi,∼i)

defined by
∑

iXi = (X,∼) where X =def

⋃
i({i} ×Xi) and

(i, x) ∼ (j, y) ⇔def i = j & x ∼i y.

The canonical injections Ii : Xi → X of these coproducts are Ii(x) = {(i, x)}. The

tensor product of two coherence spaces X = (X,∼X) and Y = (Y,∼Y ) is defined

by X ⊗ Y = (X × Y,∼) where

(x, y) ∼ (x′, y′) ⇔def x ∼X x′ & y ∼Y y′;

and the tensor product of two arrows f : X → X ′ and g : Y → Y ′ in LCoh is (f ⊗
g)(x, y) =def f(x)×g(y). The associativity maps a⊗ : (X⊗Y )⊗Z → X⊗ (Y ⊗Z)

and its inverse are a⊗((x, y), z) =def {(x, (y, z))} and ā⊗(x, (y, z) =def {((x, y), z)},
respectively. The object 1 is defined as the one-element coherence space, and the

natural isomorphisms e⊗ and ē⊗ are obvious. The distributivity map

d⊗ :
∑

i

(Z ⊗Xi) → Z ⊗
∑

i

Xi

is the unique arrow for which d⊗ ◦ Ii = 1Z ⊗ Ii i.e. d⊗(i, (z, x)) = {(z, (i, x))};
and its inverse is defined by d̄⊗(z, (i, x)) = {(i, (z, x))}. LCoh is a symmetric

premonoidal category in the sense that the isomorphism X ⊗ Y ∼= Y ⊗ X holds

naturally in X,Y ∈ LCoh. The partial order for parallel arrows f, g : X → Y in

LCoh is defined by

f ≤ g ⇔def ∀x ∈ X(f(x) ⊆ g(x)).

The least element o : X → Y in a hom-set is the empty multivalued map, i.e.

o(x) = ∅ for all x ∈ X . The least upper bound of an increasing sequence fn : X → Y

is given by (sup fn)(x) =
⋃∞

n=0 fn(x). �

Thus every reflexive coherence space X canonically gives rise, according to

Theorems 1 and 2, to an iterative regular OSS F = F(LCoh, X) whose elements

are the linear mappings ϕ : X → X . Intuitively, the elements of X can be

regarded as data units considered not as quite separate entities, but rather in a

context of some ‘internal’ information which connects them with a set of other such

units, the connection relation thus arising being represented by ∼. Accordingly,

the elements of F are regarded as a mathematical idealization describing a kind

of nondeterministic processing of those units which takes care not to annihilate

internal information by identifying (transforming to identical) units which are

connected with ∼, and, on the other hand, preserves the ‘external’ information

of connectedness of these units with each other. This is the intuitive interpretation

meant above.

On the other hand, no reasonable way is seen to treat these models or, more

precisely, the notion of computability associated with the OSS F(LCoh, X), by
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means of combinatory spaces. The abstract notion of combinatory space requires

the data objects x, y, . . . to be presented as elements of the abstract structure in

question, as well as a pairing operation x, y 7→ (x, y) and projections L and R

restoring the components of pairs in the sense of the equalities L(x, y) = x and

R(x, y) = y. This is incompatible with the idea of nondistinctness of the elements

of a coherence space; formally, the interpretation of L and R is obstructed by the

fact that the set-theoretical projections X ⊗ Y → X and X ⊗ Y → Y of coherence

spaces are generally not coherently injective.

5. MODELS OF OSS INVOLVING THE IDEA OF IMPLEMENTATION

Implementation of computations, which practically means physical simulation

(theoretically or philosophically other nonphysical realizations may be possible),

is an important issue, being fundamental for the modern computer development.

It is even hard to separate the theoretical notion of computability from the idea

of implementation, as it is seen, for instance, in the notion of Turing machine;

and one of the aims of abstract theory of computation is to find a mathematical

idealization which characterizes this notion in its pure form, independently of

concrete realizations. In the present section we shall indicate how the idea of

implementation suggests some natural and mathematically interesting models of

iterative regular OSS.

The physical simulation of a computational process requires the data object to

be encoded into the state of a physical system (which may generally depend on this

object), the time evolution of which is used for modeling the process in question.

The keeping of the information conveyed by such object x into the physical system

has some energy cost e(x) measured by the energy which will be dissipated into

the environments if the information in question is erased; and the cost e(x) is

to be supposed proportional to the quantity of information conveyed by x ([5]).

This cost has to remain unchanged during the process of computation, which is a

basic requirement of the so called reversible computing. Thus the computational

process in question may be characterized by a partial function f defined exactly

for those data objects x for which the process terminates and satisfying in this

case the equality e(f(x)) = e(x). This suggests to consider the category E(M)

defined below. Note that formally it is not essential that e(x) is just this energy

cost; one may conceive of any physical invariant of the state encoding the data

into the physical system in question. It suffices to suppose that the values of e can

be operated algebraically by some operation called addition and having the usual

properties, except the commutativity law.

Now let M be a monoid (not necessarily commutative) with basic operations

written additively, and denote by E(M) the category with objects the functions
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e : X →M and arrows with source e : X → M and target e′ : X ′ →M the partial

mappings f : X → X ′ such that e′(f(x)) = e(x) whenever f(x) is defined.

Theorem 4. The category E(M) can be naturally provided with a structure of

continuous preclosed one.

Proof. The details being quite straightforward, we shall indicate only the

required structure. The category E(M) has coproducts for all families of objects

ei : Xi → M defined as follows. Consider the coproduct X =
⋃

i{i} × Xi of the

family Xi in Set with canonical injections Ii(x) = (i, x) for all x ∈ Xi and all i.

Then the unique mapping e :
⋃

i{i} × Xi → M such that e(i, x) = ei(x) for all

x ∈ Xi and all i is an object of E(M) which is coproduct of the family ei with

canonical injections Ii (the same as in Set). For arbitrary family of E(M)-arrows

fi : ei → e′ with target the object e′ : X ′ → M of E(M) the unique E(M)-arrow

f : e→ e′ such that f ◦Ii = fi for all i is the partial mapping f : X → X ′ for which

f(Ii(x)) is defined and equals fi(x) when fi(x) is defined and f(Ii(x)) is undefined

otherwise.

For every two objects e0 : X0 →M and e1 : X1 →M of E(M) define an object

e0 ⊗ e1 : X0 ×X1 →M by

(e0 ⊗ e1)(x0, x1) = e0(x0) + e1(x1).

Given a pair of morphisms f0 : e0 → e′0 and f1 : e1 → e′1 in E(M) with targets

e′i : X ′
i →M , i = 0, 1, define the morphism f0⊗f1 : e0⊗e1 → e′0⊗e

′
1 as the partial

mapping f0 ⊗ f1 : X0 ×X1 → X ′
0 ×X ′

1 such that (f0 ⊗ f1)(x0, x1) is defined for a

pair (x0, x1) ∈ X0 ×X1 iff both f0(x0) and f1(x1) are, and in the last case

(f0 ⊗ f1)(x0, x1) = (f0(x0), f1(x1)).

This defines a bi-endofunctor in E(M) which is naturally associative, the associativi-

ty isomorphisms a⊗ being the same as in Set. The object 1 is defined as the function

1 : {0} →M which sends the element 0 into the neutral element of the monoid M .

For arbitrary object e : X → M of E(M) the projections e⊗ : X × {0} → X and

e⊗ : {0} ×X → X define isomorphisms e ⊗ 1 → e and 1 ⊗ e → e in E(M) which

are natural in e. Given a sequence of objects e : X → M , ei : Xi → M (i ∈ N) of

E(M), the distributivity isomorphisms

d̄⊗ : e⊗ (e0 + e1 + · · · ) → e⊗ e0 + e⊗ e1 + · · ·

and

d̄⊗ : (e0 + e1 + · · · ) ⊗ e→ e0 ⊗ e+ e1 ⊗ e+ · · ·

are defined by d̄⊗(x, (i, y)) = (i, (x, y)) and d̄⊗((i, y), x) = (i, (y, x)) respectively for

all x ∈ X, y ∈ Xi and i ∈ N . If the monoid M is commutative, then the category

E(M) is a symmetric premonoidal one. The partial order in a hom-set of E(M) is
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the relation of extension of partial functions, the least element is the function with

empty domain, and the suprema of increasing sequences of morphisms is the union

of the corresponding partial functions. �

A reflexive object e : X → M of E(M) has necessarily (as a consequence of

the isomorphism e ⊗ e ∼= e) to have a binary operation x, y 7→ 〈x, y〉 in X which

maps X ×X bijectively on X and satisfies the equality

e(〈x, y〉) = e(x) + e(y),

in accordance with the requirement that the energy cost e(x) is proportional to the

quantity of information contained in x. The elements of the iterative regular OSS

F = F(E(M), e) arising canonically from e are the partial functions f : X → X

preserving the energy cost in the sense that e(f(x)) = e(x) whenever f(x) is defined.

As in the case with coherence spaces in the previous section, the treatment of

the OSS F by means of combinatory spaces is obstructed by the fact that the

projections L(〈x, y〉) = x and R(〈x, y〉) = y do not generally preserve the energy

cost.

Another idea is to describe the physical simulation of a computational process

by a mathematical idealization involving the time evolution operator of the physical

system through which the process is simulated. This operator can be conceived,

in accordance with the requirement of reversibility, as an isomorphism in a certain

category. For instance, in the case of quantum computation, the physical system

in question is mathematically a Hilbert space, mostly finite dimensional; and we

shall use for the mentioned category that one which has finite dimensional Hilbert

spaces as objects and isometrical linear operators as morphisms. In the case of

‘classical’ computation we use the category of finite sets instead (or rather finite

sets of special kind – the sets of subsets of finite sets – the usual registers being

representable as sets of units which can have two possible states).

To detail this idea consider a premonoidal category K with tensor product bi-

endomorphism ⊗K and unit-object 1K , not necessarily having ω-coproducts. Let

P(K) be the category with objects the pairs (B,K) consisting of a set B and a

mapping K which assigns to every element b ∈ B an object K(b) of K, and with

arrows (B,K) → (B′,K ′) the pairs (f, ϕ) of two partial functions with the same

domain Df ⊆ B such that the values of f are in B′ and for every b ∈ Df the value

ϕ(b) is an isomorphism ϕ(b) : K(b) → K ′(f(b)). The composition of two arrows

(f, ϕ) : (B,K) → (B′,K ′) and (g, ψ) : (B′,K ′) → (B′′,K ′′) in P(K) is

(g, ψ) ◦ (f, ϕ) =def (g ◦ f, ψ(f)ϕ),

where g ◦ f : B → B′′ is the composition of partial functions and

(ψ(f)ϕ)(b) = ψ(f(b)) ◦ ϕ(b) : K(b) → K ′′(g(f(b)))
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for all b ∈ B such that (g ◦f)(b) is defined. The identity 1(B,K) of an object (B,K)

is the pair (1B, ιK) of the identity map 1B of B and the mapping assigning to each

b ∈ B the identity ιK(b) = 1K(b) of K(b) in K.

Theorem 5. The category P(K) can be naturally provided with a structure of

continuous preclosed one.

Proof. The proof is straightforward and similar to that of Theorem 4. As

before, we shall indicate the components of the required structure. Let (Bn,Kn) ∈
P(K) be a countable family of objects. The coproduct of this family in P(K) is

defined as the pair (B,K) ∈ P(K) where B =
∑∞

n=0Bn is the coproduct in Set

and K(in(b)) = Kn(b) for all b ∈ Bn and all n, and in : Bn → B are the canonical

injections of the coproduct in Set so that B is the disjoint union of the sets in(Bn).

The canonical injections In : (Bn,Kn) → (B,K) of the coproduct in question are

the pairs In = (in, ιn) where ιn(b) : Kn(b) → K(in(b)) is the identity arrow for all

n and all b ∈ Bn. Given a family

(fn, ϕn) : (Bn,Kn) → (B′,K ′)

of arrows in P(K), the unique arrow (f, ϕ) : (B,K) → (B′,K ′) such that

(f, ϕ) ◦ In = (fn, ϕn)

for all n is the pair of partial functions such that f(in(b)) and ϕ(in(b)) are defied

whenever fn(b) is, and in this case f(in(b)) = fn(b) and

ϕ(in(b)) = ϕn(b) : K(in(b)) = Kn(b) → K ′(fn(b))

for all b ∈ Bn and all n.

The tensor product (B0,K0) ⊗ (B1,K1) of two objects of P(K) is defined as

the pair (B0 ×B1,K0 ⊗K1) where (K0 ⊗K1)(b0, b1) = K0(b0)⊗K K1(b1) for every

pair (b0, b1) ∈ B0 ×B1. The tensor product (f0, ϕ0) ⊗ (f1, ϕ1) of two morphisms

(fj , ϕj) : (Bj ,Kj) → (B′

j ,K
′

j), j = 0, 1

is the pair (f, ϕ) where f and ϕ are the partial mappings defined for those (b0, b1) ∈
B0 ×B1 for which both fj(bj) are defined with values the pair

f(b0, b1) = (f0(b0), f1(b1)) ∈ B′

0 ×B′

1

and the isomorphism

ϕ(b0, b1) = ϕ0(b0) ⊗K ϕ1(b1) : K0(b0) ⊗K K1(b1) → K ′

0(f0(b0)) ⊗K K ′

1(f1(b1))

respectively. The associativity isomorphisms ā⊗ : X0 ⊗ (X1 ⊗X2) → (X0 ⊗X1) ⊗
X2), where Xj = (Bj ,Kj) ∈ P(K) for all j = 0, 1, 2 are ā⊗ =def (ā×, ᾱ⊗) where

ā× is the usual associativity isomorphism for the cartesian product × in Set, and

ᾱ⊗(b0, (b1, b2)) : K0(b0) ⊗K(K1(b1) ⊗KK2(b2)) → (K0(b0) ⊗KK1(b1)) ⊗KK2(b2)
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is the corresponding associativity isomorphism for ⊗K in K for all bj ∈ Bj , j =

0, 1, 2. The object 1 of P(K) is defined as ({0}, u) where u(0) = 1K . The natural

isomorphism e⊗ : 1 ⊗ (B,K) → (B,K) is e⊗ = (p, ε) where p : {0} × B → B

is the projection and ε(0, b) = eK(K(b)) : 1K ⊗K K(b) → K(b) is the natural

isomorphism given in K; and similarly is defined the other natural in the object

(B,K) isomorphism e⊗ : (B,K) ⊗ 1 → (B,K). The distributivity isomorphisms

d⊗ :

∞∑

n=0

(X ⊗ Yn) → X ⊗
∞∑

n=0

Yn

and

d⊗ :

∞∑

n=0

(Yn ⊗X) →
∞∑

n=0

Yn ⊗X

are the unique morphisms d⊗ and d⊗ such that d⊗◦In = 1⊗In and d⊗◦In = In⊗1

respectively for all n. The morphism d⊗ has the form (d×, ι⊗) where d× is the

corresponding distributivity isomorphism in Set and ι⊗ at every argument is the

identity map of certain object of K; hence d⊗ is invertible, and similarly for d⊗.

Note that the category P(K) is symmetric w.r.t. ⊗ if K is such w.r.t. ⊗K . The

partial order in a hom-set of P(K) is defined as the relation of extension of functions,

i.e. (f, ϕ) ≤ (g, ψ) iff g is extension of f and ψ – of ϕ. The least element is the pair

of partial functions with empty domain, and the suprema of increasing sequences

are the pairwise unions of the corresponding sequences of partial functions. �

As in the case with the category E(M), for every reflexive objectX = (B,K) of

P(K) there is a binary operation b, c 7→ 〈b, c〉 in B, obtained from the isomorphism

X ⊗ X ∼= X , which maps B × B bijectively on B and satisfies the isomorphism

K(〈b, c〉) ∼= K(b) ⊗K(c) for all b, c ∈ B. Hence the projections p0(〈b, c〉) = b and

p1(〈b, c〉) = c cannot be reasonably expected to satisfy

K(p0(b)) ∼= K(b) ∼= K(p1(b)).

This, as in the case with E(M), obstructs the treatment of (the notion of computabi-

lity definable by) the OSS F = F(P(K), X) through a combinatory space.

6. FINAL REMARKS

The notion of regular OSS in its previous version from [11] was a subject of

some polemic since it does not comprise formally that of combinatory space in full

generality. Instead of regular OSS one can use intensional combinatory spaces,

of which the combinatory ones are special case ([10]). But the former spaces are

somewhat complicated notion, and this complication seems not to be justified by

the gain in generality it provides. The polemic started with a remark formulated

in [11], which expressed this view. The last remark was objected in [8], but in some
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misleading way1. The real situation can be described as follows. The regular OSS

do not comprise all combinatory spaces up to isomorphism in the usual algebraic

sense, in which the basic operations are required to be preserved exactly. This is

obvious since the equality (L,R) = I is to be preserved by such isomorphisms of

combinatory spaces, and it is not clear how we can treat the combinatory spaces in

which this equality is violated as regular OSS. On the other hand, from the view

point of recursion theory it is more natural to consider another kind of morphisms of

iterative combinatory spaces and other similar objects of algebraic recursion theory,

namely those which preserve all operations, including the inductively definable ones

only up to explicit expressibility. These are the morphisms preserving the notion

of computability, expressed by the given space, hence it is natural to call them

recursive morphisms. So a natural question is whether the notion of iterative regular

OSS can comprise that of iterative combinatory space up to recursive isomorphism.

Generally, the question is open, but the works of Ivanov [3, 4] strongly suggest that

the answer is positive. What is shown in [8] is that if we consider another kind of

morphisms of combinatory spaces of hybrid nature, namely those which preserve

one of the basic operations (multiplication) exactly, and the other ones only up to

expressibility, then there is an example of iterative combinatory space (expressing

a degenerate version of Moschovakis computability), which is not isomorphic in the

hybrid sense to one in which (L,R) = I holds, thus retaining the difficulty to be

treated as regular OSS up to such isomorphism.
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