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This work is dedicated to the study of Lie algebra of linear non-selfadjoint operators
{A1, A2, A3} given by the relations [A1, A2] = iA3; [A1, A3] = 0; [A2, A3] = 0, besides,
we assume that none of the operators A1, A2, A3 is dissipative. For Lie algebra
{A1, A2, A3} such that {A1, A2, A3} given by the relations [A1, A2] = iA3; [A1, A3] =
0; [A2, A3] = 0, take place, and when one of the operators is dissipative, the functional
models were constructed earlier.
In Paragraph 1 it is shown that the open system corresponding to this Lie algebra
{A1, A2, A3}, [A1, A2] = iA3; [A1, A3] = 0; [A2, A3] = 0, should be considered on the
Lie – Geizenberg group H(3). Paragraph 2 is dedicated to the construction of triangu-
lar model for this Lie algebra, A1, A3 in which are bounded, and A2 is an unbounded
operator. Note that even in the dissipative case such dissipative models haven’t been
constructed. Using the models from Paragraph 2, in the following Paragraph 3 func-
tional models for the Lie algebra [A1, A2] = iA3; [A1, A3] = 0; [A2, A3] = 0, of the
special form and acting in the L. de Branges Hilbert space of whole functions are
listed. In Paragraph 4 the special class of Lie algebras [A1, A2] = iA3; [A1, A3] = 0;
[A2, A3] = 0, having the reasonable model representations in L. de Branges spaces on
Riemann surfaces is displayed.
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1. LIE–GEIZENBERG GROUP

I. Following the works [4, 6] for the study of Lie algebra of linear non-selfadjoint
operators {A1, A2, A3} given by the commutation relations [A1, A2] = iA3; [A1, A3]
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= 0; [A2, A3] = 0, we ought to find such Lie group G, the Lie algebra {∂1, ∂2, ∂3} of
which is such that [∂1, ∂2] = ∂3, [∂1, ∂3] = 0; [∂2, ∂3] = 0. Let x, y, z ∈ R. Consider
the Lie – Geizenberg group G = H(3) formed by the elements g = g(x, y, z), the
multiplication law in G is given by [8, 9]

g (x1, y1, z1) ◦ g (x2, y2, z2)
def
= g (x1 + x2, y1 + y2, z1 + z2 + x1y2) . (1.1)

Hence it follows that every subgroup

G1 = {g(x, 0, 0) ∈ G}; G2 = {g(0, y, 0) ∈ G}; G3 = {g(0, 0, z) ∈ G}; (1.2)

is equivalent to the additive group of real numbers R.
It is easy to prove that the group G is isomorphic to the following group of

matrices of the third order

Bg =





1 x z

0 1 y

0 0 1



 .

This immediately follows from the equality

Bg2
·Bg1

=





1 x1 z1
0 1 y1
0 1 1









1 x2 z2
0 1 y2
0 0 1



 =





1 x1 + x2 z1 + z2 + x1y2
0 1 y1 + y2
0 0 1



 =

= Bg1◦g2
.

Consider a complex-valued function f(g) on the group G, which means that we
have a function f(x, y, z) on R3. Define one-parameter subgroup inG corresponding
to G1, G2, G3 (1.2),

g1(t) = (t, 0, 0) ∈ G1; g2(t) = (0, t, 0) ∈ G2; g3(t) = (0, 0, t) ∈ G3. (1.3)

Find the vector fields corresponding to these subgroups

F 1
t = f (g1(t) ◦ g(x, y, z)) = f(x+ t, y, z + ty).

Therefore the derivative by t at the identity e = (0, 0, 0) of group G of this function

d

dt
F 1

t

∣

∣

∣

∣

t=0

= ∂1f

where ∂1 =
∂

∂x
+ y

∂

∂z
. Since

F 2
t = f (g2(t) ◦ g(x, y, z)) = f(x, y + t, z),

it is obvious that
d

dt
F 2

t

∣

∣

∣

∣

t=0

= ∂2f,
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besides,

∂2 =
∂

∂y
.

Finally, taking into account

F 3
t = f (g3(t) ◦ g(x, y, z)) = f (x, y, z1 + t)

we obtain
d

dt
F 3

t

∣

∣

∣

∣

t=0

= ∂3f,

where ∂3 =
∂

∂z
. Thus the Lie algebra of vector fields h(3) corresponding to G =

H(3) is generated by the differential operators of first order

∂1 =
∂

∂x
+ y

∂

∂z
; ∂2 =

∂

∂y
; ∂3 =

∂

∂z
. (1.4)

Obviously, for this Lie algebra h(3) the commutation relations

[∂2, ∂1] = ∂3; [∂1, ∂3] = 0; [∂2, ∂3] = 0 (1.5)

take place. It is well-known [8, 9] that the simply connected Lie group G = H(3)
“uniquely” corresponds to this Lie algebra of differential operators (1.4).

II. Consider in a Hilbert spaceH the Lie algebra of linear operators {A1, A2, A3}
satisfying the relations

[A1, A2] = iA3; [A1, A3] = 0; [A2, A3] = 0. (1.6)

Note that the operators A1, A2, A3 cannot be bounded simultaneously. Otherwise,
(1.6) yields

[An
1 , A2] = inAn−1

1 A3

and thus 2 ‖An
1‖ · ‖A2‖ ≥ n ‖A3‖

∥

∥An−1
1

∥

∥ (∀n ∈ Z+). In connection with this it is
sensible to rewrite the relations (1.6) in terms of resolvents,

R3(w) [R1(λ)R2(z) −R2(z)R1(λ)] = iR2
1(λ)R

2
2(z)R3(w)w + iR2

1(λ)R
2
2(z);

[R1(λ), R3(w)] = 0; [R2(z), R3(w)] = 0 (1.7)

where R1(λ) = (A1 − λI)
−1

; R2(z) = (A2 − zI)
−1

; R3(w) = (A3 − wI)
−1

; and λ,
z, w are regularity points of the operators A1, A2, A3, respectively.

III. For the given Lie algebra {A1, A2, A3} (1.6) of non-selfadjoint operators
construct the colligation of Lie algebra [4, 5, 6].
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Definition 1.1. A family

∆ =

(

{A1, A2, A3} ;H ;ϕ;E; {σk}
3
1 ;

{

γ−k,s

}3

1
;
{

γ+
k,s

}3

1

)

(1.8)

is said to be the colligation of Lie algebra if

1) [A1, A2] = iA3; [A1, A3] = 0; [A2, A3] = 0;

2) 2Im 〈Akh, h〉 = 〈σkϕh, ϕh〉 ; ∀h ∈ ϑ (Ak) ;

3) σkϕAs − σsϕAk = γ+
k,sϕ; γ+

k,s = −γ+
s,k;

4) γ−k,s = γ+
k,s + i (σsϕϕ

∗σk − σkϕϕ
∗σs) ;

(1.9)

for all k and s (1 ≤ k, s ≤ 3).

Relations (3.6) (§1.3) imply

γ±1,3 =
(

γ±1,3

)∗
; γ±2,3 =

(

γ±2,3

)∗
; γ±1,2 −

(

γ±1,2

)∗
= iσ3. (1.10)

Consider the differential operators

∂1 =
∂

∂x
; ∂2 =

∂

∂y
+ x

∂

∂z
; ∂3 =

∂

∂z
; (1.11)

coinciding with operators (1.4) after the substitution x → y, y → x. It is obvious
that the commutation relations (1.5) now are written in the following way:

[∂1, ∂2] = ∂3; [∂1, ∂3] = 0; [∂2, ∂3] = 0. (1.12)

Equations of the open system (3.13), (3.14) (§1.3) are given by










i∂kh(x, y, z) +Akh(x, y, z) = ϕ∗σku(x, y, z);

h(0) = h0 (1 ≤ k ≤ 3) (x, y, z) ∈ G;

v(x, y, z) = u(x, y, z) − iϕh(x, y, z).

(1.13)

It is easy to show that u(x, y, z) is the solution of the equation system
{

σki∂s − σsi∂k + γ−k,s

}

u(x, y, z) = 0 (1 ≤ k, s ≤ 3), (1.14)

and the function v(x, y, z) also satisfies the equation system
{

σki∂s − σsi∂k + γ+
k,s

}

v(x, y, z) = 0 (1 ≤ k, s ≤ 3). (1.15)

If σ1 is invertible, then relations eliminating the overdetermination of equation
system (1,14) are given by

1.
[

σ−1
1 σ2, σ

−1
1 σ3

]

= 0;

2.
[

σ−1
1 σ2, σ

−1
1 γ−1,3

]

−
[

σ−1
1 σ3, σ

−1
1 γ−1,2

]

= iσ−1
1 σ3σ

−1
1 σ3;

3.
[

σ−1
1 γ−1,2, σ

−1
1 γ−1,3

]

= iσ−1
1 σ3σ

−1
1 γ−1,3.

(1.16)

70 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 67–92.



Moreover,
γ−2,3 = σ2σ

−1
1 γ−1,3 − σ3σ

−1
1 γ−1,2. (1.17)

Similar relations also take place for the family
{

γ+
k,s

}3

1
.

So, we assume that the operators γ−1,2, γ
−

1,3, for which (1.10) takes place, are

specified and the operator γ−2,3 is specified by formula (1.17). Note that the self-

adjointness of γ−2,3 automatically follows from 2. (1.16) and corresponding relations

(1.10) for γ−1,3 and γ−1,2.

2. TRIANGULAR MODEL

I. Consider the colligation ∆ (1.8) corresponding to the Lie algebra of linear
operators {A1, A2, A3} given by the commutation relations 1) (1.9) assuming that
dimE = r < ∞ and σ1 = J is an involution in E. Let the characteristic function
S1(λ) = I − iϕ (A1 − λI)

−1
ϕ∗J be given by

S1(λ) =

←

l
∫

0

exp
iJdFt

λ

where Fx is a non-decreasing function on [0, l] such that trFx = x. Besides, we
assume that measure dFx is absolutely continuous, dFx = axdx (trax = 1). Define
the Hilbert space L2

r,l (Fx) [1, 3]. Specify in this space the operator system

(

◦

A1 f

)

x

= i

l
∫

x

ftatJdt;

(

◦

A3 f

)

x

= fxJγx,3 + i

l
∫

x

ftatσ3dt;

(

◦

A2 f

)

x

= f ′

xbx + fxJγx,2 + i

l
∫

x

ftatσ2dt; (2.1)

where bx, γx,3, γx,2 are some operator-functions in E specified on [0, l] and σ2, σ3

are selfadjoint operators in E. The domain of definition D (A2) is formed by the
linear span of smooth functions in L2

r,l (Fx) such that A1, A3 are bounded and A2

is unbounded non-selfadjoint operator. Find the necessary and sufficient conditions
on ax, bx, γx,3, γx,2, σ2, σ3 for this operator system (2.1) to form the Lie algebra,

[

◦

A1,
◦

A3

]

= 0;

[

◦

A2,
◦

A3

]

= 0;

[

◦

A1,
◦

A2

]

= i
◦

A3 . (2.2)
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It is easy to see [4] that the commutativity of operators

[

◦

A1,
◦

A3

]

= 0 signifies that

the operator-function γx,3 satisfies the relations

{

γ′x,3 = i (Jaxσ3 − σ3axJ) ; γ0,3 = γ+
1,3;

Jaxγx,3 = γx,3axJ.
(2.3)

Hence it follows [4] that

◦

A1 −
◦

A∗

1= i
◦

ϕ∗ J
◦
ϕ,

◦

A3 −
◦

A∗

3= i
◦

ϕ∗ σ3

◦
ϕ (2.4)

and, moreover,

J
◦
ϕ

◦

A3 −σ3

◦
ϕ

◦

A1= γ+
1,3

◦
ϕ;

γ−1,3 = γ+
1,3 + i

(

σ3

◦
ϕ

◦

ϕ∗ J − J
◦
ϕ

◦

ϕ∗ σ3

)

(2.5)

where γ−1,3 = γx,3

∣

∣

x=l
and the operator

◦
ϕ from L2

r,l (Fx) into E is given by

(

◦
ϕ f

)

x

def
=

l
∫

0

ftdFt. (2.6)

Note that (2.4), (2.5) coincide, respectively, with the conditions of colligation 1),
3) 4) (1.9).

II. Find the conditions on ax, bx, γx,3, γx,2 for the relation

[

◦

A1,
◦

A2

]

= i
◦

A3 (2.7)

to hold. It is easy to see that

(

◦

A1

◦

A2 f

)

x

= i

l
∫

x

f ′

tbtatdtJ + i

l
∫

x

ftJγt,2atdtJ −

l
∫

x

dt

l
∫

t

dsfsasσ2atJ =

= −ifxbxaxJ − i

l
∫

x

ft (btat)
′
dtJ + i

l
∫

x

ftJγt,2atdtJ −

l
∫

x

dt

l
∫

t

dsfsasσ2atJ,

in view of the fact that fl = 0. Similarly,

(

◦

A2

◦

A1 f

)

x

= −ifxaxJbx + i

l
∫

x

ftatdtγx,2 −

l
∫

x

dt

l
∫

t

dsfsasJatσ2.
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Consider the vector-function Φx in L2
r,l (Fx),

Φx
def
=

{[

◦

A1,
◦

A2

]

− i
◦

A3

}

fx = −ifx [bxaxJ − axJbx + Jγx,3] − i

l
∫

x

ft (btat)
′
dtJ+

+i

l
∫

x

ftJγt,2atdtJ−i

l
∫

x

ftatdtγx,2−i
2

l
∫

x

ftatdtσ3−

l
∫

x

dt

l
∫

t

dsfsas (σ2atJ − Jatσ2) .

Suppose
bxaxJ − axJbx + Jγx,3 = 0 (2.8)

and let γx,2 be differentiable, then it is easy to see that the derivative of function
Φx is

Φ′

x = ifx (bxax)
′
J − ifxJγx,2axJ + ifxaxγx,2 + ifxaxσ3−

−i

l
∫

x

ftatdtγ
′

x,2 +

l
∫

x

ftatdt (σ2axJ − Jaxσ2) .

Hence it follows that Φ′
x = 0 if

{

(bxax)
′
J − Jγx,2axJ + axγx,2 + iaxσ3 = 0;

iγ′x,2 = σ2axJ − Jaxσ2.
(2.9)

Thus, Φ′
x = 0, and since Φl = 0, then Φx ≡ 0.

Lemma 2.1. Suppose that (2.8), (2.9) take place, then the operator system
{

◦

A1,
◦

A2,
◦

A3

}

(2.1) satisfies the commutation relation (2.7).

III. Prove that condition 3) (1.9) is true for
◦

A1,
◦

A2 (2.1). To do this, calculate

(

J
◦
ϕ

◦

A2 −σ2

◦
ϕ

◦

A1

)

fx =

l
∫

0



f ′

xbx + fxJγx,2 +

l
∫

x

ftatσ2dt



 axdxJ−

−

l
∫

0

i

l
∫

x

ftatdtJaxdxσ2 =

=

l
∫

0

fx







Jγx,2axJ − (bxax)′ J + iax

x
∫

0

(σ2atJ − Jatσ2) dt







dx.
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The second equality in (2.9) implies

γx,2 = γ+
1,2 − iσ3 + i

x
∫

0

(Jatσ2 − σ2atJ) dt. (2.11)

Here we use the equality
γ+
1,2 −

(

γ+
1,2

)∗
= iσ3 (2.12)

taking place in virtue of (1.10) §3.1. Thus

(

J
◦
ϕ

◦

A2 −σ2

◦
ϕ

◦

A1

)

fx =

=

l
∫

0

fx

{

Jγx,2axJ − (bxax)
′
J + axγ

+
1,2 − iaxσ3 − axγx,2

}

dx =

=

l
∫

x

fxaxdxγ
+
1,2 = γ+

1,2

(

◦
ϕ f

)

x

in virtue of the first condition in (2.9) and definition (2.6) of the operator
◦
ϕ.

Lemma 2.2. Let the family {ax, bx, γx,2, γx,3, J, σ2, σ3} be such that (2.8),
(2.9) are true and, moreover, γx,2, solution of the second equation in (2.9) satisfies
the initial condition γ0,2 =

(

γ+
1,2

)∗
, besides, γ+

1,2 −
(

γ+
1,2

)∗
= iσ3 (2.12). Then the

colligation relation 3) (1.9)

J
◦
ϕ

◦

A2 −σ2

◦
ϕ

◦
ϕ

◦

A1= γ+
1,2

◦
ϕ (2.13)

is true.

IV. Study when the colligation relation 2) (1.9) takes place for the operator
◦

A2 (2.1). Calculate the expression

2Im

〈

◦

A2 f, f

〉

=
1

i

l
∫

0



f ′

xbx + fxJγx,2 + i

l
∫

x

ftatdtσ2



 axf
∗

xdx−

−
1

i

l
∫

0

dxfxax



b∗x (f∗

x)′ + γ∗x,2Jf
∗

x − i

l
∫

x

σ2atf
∗

t dt



 =

=
1

i

l
∫

0

[

f ′

xbxaxf
∗

x − fxaxb
∗

x (f∗

x)
′
+ fxJγx,2axf

∗

x − fxaxγ
∗

x,2Jf
∗

x

]

dx+
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+

l
∫

0







l
∫

x

ftatσ2dtaxf
∗

x + fxax

l
∫

x

σ2atf
∗

t dt







dx.

Obviously, the second integral after the transfer of the order of integration is

l
∫

0

fxaxdxσ2

l
∫

0

atf
∗

t dt =
〈

σ2

◦
ϕ f,

◦
ϕ f

〉

in virtue of the definition of operator
◦
ϕ (2.6). So, for the colligation relation 2)

(1.9) to hold for
◦

A2, one has to ascertain when the first integral vanishes.
The integrand of this integral equals

Ψx
def
= f ′

xbxaxf
∗

x − fxaxb
∗

x (f∗

x)
′
+ fxJγx,2axf

∗

x − fxax (γx,2 + iσ3) Jfx

in virtue of γ∗x,2 − γx,2 = iσ3. This easily follows from (2.11). Thus,

Ψx = f ′

xbxaxf
∗

x − fxaxb
∗

x (f∗

x)
′
+ fx (axbx)

′
f∗

x ,

we took into account the first equality in (2.9).
Let the condition

axb
∗

x = bxax (2.14)

hold, then Ψx = (fbxaxf
∗
x)′ and thus

l
∫

0

Ψtdt = 0

since f0 = fl = 0 for fx ∈ D (A2).

Lemma 2.3. Suppose that for the family {ax, bx, γx,2, γx,3, J, σ2, σ3} (2.8),
(2.9) are true and γx,2 as the solution of the second equation in (2.9) is such that
γ0,2 = γ+

1,2 and (2.12) takes place. Then, if (2.14) holds ∀fx ∈ D (A2), the colliga-
tion relation

2Im

〈

◦

A2 f, f

〉

=
〈

σ2

◦
ϕ f,

◦
ϕ f

〉

(2.15)

is true.

V. Study the interchangeability (2.2) of operators
◦

A2,
◦

A3 (2.1). It is easy to
see that

◦

A2

◦

A3 fx =



fxJγx,3 + i

l
∫

x

ftatdtσ3





′

bx +



fxJγx,3 + i

l
∫

x

ftatdtσ3



 Jγx,2+
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+i

l
∫

x



ftJγt,3 + i

l
∫

t

fsasdsσ3



 atσ2dt = fxJγx,3bx + fxJγ
′

x,3bx − ifxaxσ3bx+

+fxJγx,3Jγx,2 + i

l
∫

x

ftatdtσ3Jγx,2 + i

l
∫

x

ftJγt,3atσ2dt−

l
∫

x

dt

l
∫

t

dsasσ3atσ2.

Similarly,

◦

A3

◦

A2 fx =



f ′

xbx + fxJγx,2 + i

l
∫

x

ftatdtσ2



Jγx,3+

+i

l
∫

x



f ′

tbt + ftJγt,2 + i

l
∫

t

fsasdsσ2



 atσ3dt = f ′

xbxJγx,3 + fxJγx,2Jγx,3+

+i

l
∫

x

ftatdtσ2Jγx,3 − i

l
∫

x

ft (btat)
′
σ3dt+ i

l
∫

x

ftJγt,2atσ3dt−

l
∫

x

dt

l
∫

t

dsasσ2atσ3.

Thus function Gx from L2
r,l (Fx) is

Gx
def
=

[

◦

A2,
◦

A3

]

fx = f ′

x [Jγx,3bx − bxJγx,3] +

+fx

{

Jγ′x,3bx − iaxσ3bx + Jγx,2Jγx,3 + ibxaxσ3

}

+i

l
∫

x

ftatdt [σ3Jγx,2 − σ2Jγx,3] +

+i

l
∫

x

ft [Jγt,3atσ2 − Jγt,2atσ3]dt−

l
∫

x

dt

l
∫

t

dsas (σ3atσ2 − σ2atσ3) .

Suppose that the equalities

{

Jγx,3bx = bxJγx,3;

Jγ′x,3bx + ibxaxσ3 − iaxσ3bx + Jγx,3Jγx,2 − Jγx,2Jγx,3

hold. Then, taking into account smoothness of γx,2 and γx,3, we obtain

G′

x = −ifx {axσ3γx,2 − axσ2Jγx,3 + Jγx,3axσ2 − Jγx,2axσ3}+

+

l
∫

x

ftatdt
{

i [σ3Jγx,2 − σ2Jγx,3]
′
+ σ3axσ2 − σ2axσ3

}

.
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Requirement G′
x = 0 leads to the equalities

{

axσ3Jγx,2 − Jγx,2axσ3 + Jγx,3axσ2 − axσ2Jγx,3 = 0;

σ3Jγ
′
x,2 − σ2Jγ

′
x,3 = i (σ3axσ2 − σ2axσ3) .

(2.17)

Since Gl = 0, hence it follows that Gx ≡ 0. As a result, we obtain the statement.

Lemma 2.4. If relations (2.16), (2.17) hold for the family {ax, bx, γx,2, γx,3, J,

σ2σ3}, then the operators
◦

A2 and
◦

A3 commute,

[

◦

A2,
◦

A3

]

= 0. (2.18)

Observation 2.1. Last equality in (2.17) is the obvious corollary of equations
for γx,2 (2.9) and γx,3 (2.3) since

σ3Ji (Jaxσ2 − σ2axJ) − σ2Ji (Jaxσ3 − σ3axJ) = i (σ3axσ2 − σ2axσ3)

in virtue of 1. (1.6). Note that this fact is completely coordinated with (1.17).

VI. Summarizing considerations of previous clauses, we obtain the following

Theorem 2.1. Suppose operators {ax, bx, γx,2, γx,3, σ2, σ3} in E are such that:

1) γx,3 satisfies relations (2.3);

2) γx,3 = JaxJbx − JbxaxJ ;

3) (bxax)
′
= Jγx,2ax − axγx,2J − iaxσ3J ;

4) γ′x,2 = i (Jaxσ2 − σ2axJ) ; γ0,2 =
(

γ+
1,2

)∗
;

(2.19)

and γ1,2 − γ∗1,2 = iσ3. Moreover,

5) Jγx,3bx = bxJγx,3;

6) Jγ′x,3bx = [Jγx,2, Jγx,3] + i [axσ3, bx] ;

7) [axσ3, Jγx,2] − [axσ2, Jγx,3] = 0

(2.20)

take place. Then the family

◦

∆=

({

◦

A1,
◦

A2,
◦

A3

}

;L2
r,l (Fx) ;

◦
ϕ;E; {σk}

3
1 ;

{

γ−k,s

}3

1
;
{

γ+
k,s

}3

1

)

(2.21)

is the colligation of Lie algebra (1.8)–(1.9) where
◦

A1,
◦

A2,
◦

A3 are given by (2.1) and
◦
ϕ, respectively, by (2.6), besides, γ−1,k = γx,k|x=l

(k = 2, 3), the operators γ±k,s when
s 6= 1 are given by formula (1.17) and σ1 = J is an involution.
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Now use the theorem on unitary equivalence [1, 2].

Theorem 2.2. Let ∆, simple colligation of Lie algebra (1.8), (1.9), be given
by (1.16), (1.17). If the spectrum of operator A1 is concentrated at zero and the
characteristic function S1(λ) = I − iϕ (A1 − λI)

−1
ϕ∗J is given by

S1(λ) =

←

l
∫

0

exp
iJdFt

λ
,

besides, dFx is absolutely continuous, dFx = axdx, and ax is such that for the
family {ax, bx, γx,2, γx,3, J, σ2, σ3} (2.19), (2.20) take place, then the colligation ∆

is unitarily equivalent to the simple part of colligation
◦

∆ (2.21).

3. FUNCTIONAL MODEL OF LIE ALGEBRA

I. Consider the triangular model (2.1) of Lie algebra of linear operators
{

◦

A1,
◦

A2,
◦

A3

}

(2.2) assuming that dimE = 2 and J = JN is given by

JN =

[

0 i

−i 0

]

. (3.0)

Under the action of the L. de Branges transform [3, 7], the operator
◦

A1 (2.1) turns
into the shift operator in B(A,B) since

BL

(

◦

A1 ft

)

=
1

π

l
∫

0







i

l
∫

t

fsdFsJ







dFtL
∗

t (z̄) =
1

π

l
∫

0

ftdFt

{

L∗
t (z̄) − L∗

t (0)

z

}∗

and thus operator
◦

A1 after the transform BL turns into Ã1,

Ã1 =
F (z) − F (0)

z
, (3.1)

where F (z)
def
= BL (ft). To calculate BL

(

◦

A3 ft

)

and BL

(

◦

A2 ft

)

, note that

Lt(z) =

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0). (3.2)

Since

BL

(

◦

Ak ft

)

=

〈

◦

Ak ft, Lt (z̄)

〉

=

〈

ft,
◦

A∗

k Lt (z̄)

〉
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(k = 2, 3), then using (3.2) we ought to find the expressions

◦

A∗

3

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0);
◦

A∗

2

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0). (3.3)

Commutativity of

[

◦

A1,
◦

A3

]

, the colligation relation Jϕ̃
◦

A3= σ3ϕ̃
◦

A1 +γ+
1,3ϕ̃, and

the self-adjointness of γ+
1,3 =

(

γ+
1,3

)∗
(1.10) yields

◦

A∗

3

(

I − z
◦

A∗

1

)−1

ϕ̃∗ =

(

I − z
◦

A∗

1

)−1
◦

A∗

1 ϕ̃
∗σ3J +

(

I − z
◦

A∗

1

)−1

ϕ̃∗γ+
1,3J =

=

(

I − z
◦

A∗
1

)−1

− I

z
ϕ̃∗σ3J +

(

I − z
◦

A∗

1

)−1

ϕ̃∗γ+
1,3J.

Thus, expression (3.3) for the operator
◦

A3 is given by

◦

A∗

3

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0) =
1

z

{

(

I − z
◦

A∗

1

)−1

ϕ̃∗ − ϕ̃∗

}

σ3J(1, 0)+

+

(

I − z
◦

A∗

1

)−1

ϕ̃∗γ+
1,3J(1, 0). (3.4)

Expand σ3J(1, 0) and γ+
1,3J(1, 0) in terms of the basis {(1, 0), (0, 1)} in E2,

σ3J(1, 0) = ᾱ3(1, 0) + β̄3(0, 1);

γ+
1,3J(1, 0) = µ̄3(1, 0) + ϑ̄3(0, 1); (3.5)

where

ᾱ3 = (1, 0)σ3J

(

1

0

)

; β̄3 = (1, 0)σ3J

(

0

1

)

;

µ̄3 = (1, 0)γ+
1,3J

(

1

0

)

; ϑ̄3 = (1, 0)γ+
1,3J

(

0

1

)

. (3.6)

As a result, we obtain that expression (3.4) can be written in the following form:

◦

A∗

3

(

I − z
◦

A∗

1

)

ϕ̃∗(1, 0) = ᾱ3
1

z

{

(

I − z
◦

A∗

1

)−1

ϕ̃∗ − ϕ̃∗

}

(1, 0)+

+β̄3
1

z

{

(

I − z
◦

A∗

1

)−1

ϕ̃∗ − ϕ̃∗

}

(0, 1) + µ̄3

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0)+

+ϑ̄3

(

I − z
◦

A∗

1

)−1

ϕ̃∗(0, 1). (3.7)
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Along with the integral equation

Lx(z) + iz

x
∫

0

Lt(z)dFtJ = (1, 0) (3.8)

for Lx(z), consider the integral equation

Nx(z) + iz

x
∫

0

Nt(z)dFtJ = (0, 1) (3.9)

for the row vector Nx(z) [3, 7].
Thus expression (3.7) can be written as

◦

A∗

3 Lt (z̄) = ᾱ
Lt (z̄) − Lt(0)

z̄
+ β̄3

Nt (z̄) −Nt(0)

z̄
+ µ̄3Lt (z̄) + ϑ̄3Nt (z̄) . (3.10)

Construct the L. de Branges space B(C,D) [3, 7] by the row vector Nx(z) =
[Cx(z), Dx(z)] and specify the L. de Branges space BL from L2

2,l (Fx) onto B(C,D)
using the formula

G(z)
def
= BN (ft) =

1

π

l
∫

0

ftdFtN
∗

t (z̄) . (3.11)

A function G(z) ∈ B(C,D) is said to be dual to F (z) ∈ B(A,B) if

F (z) = BL (ft) , G(z) = BN (ft) . (3.12)

Using these notations and (3.10), we obtain that the operator
◦

A3 after the L. de
Branges transform equals

Ã3F (z) =
α3F (z) + β3G(z) − α3F (0) − β3G(0)

z̄
+ µ3F (z) + ϑ3G(z) (3.13)

where the complex numbers α3, β3, µ3, ϑ3 are given by (3.6) and functions F (z)
and G(z), respectively, equal (3.12).

Observation 3.1. Generally speaking, function G(z) (3.12) does not belong to
the space B(A,B) but, nevertheless, there exist such numbers α3, β3, µ3, ϑ3 (3.6)
from C that the expressions

µ3F (z) + ϑ3G(z);
α3F (z) + β3G(z) − α3F (0) − β3G(0)

z̄

belong to the space B(A,B). Besides, numbers α3, β3, µ3, ϑ3 do not depend on
F (z)B(A,B).
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To obtain the formula similar to (3.13) for Ã2, it is necessary, in virtue of (3.3),

to calculate the expression
◦

A∗
2

(

I − z
◦

A∗
1

)−1

ϕ̃∗(1, 0).

The commutation relation

[

◦

A1,
◦

A2

]

= i
◦

A3 implies

◦

A∗

2

(

I − z
◦

A∗

1

)−1

−

(

I − z
◦

A∗

1

)−1
◦

A∗

2= iz
◦

A∗

3,

therefore

◦

A∗

2

(

I − z
◦

A∗

1

)−1

=

(

I − z
◦

A∗

1

)−1
◦

A∗

2 −iz

(

I − z
◦

A∗

1

)−2
◦

A∗

3

in virtue of

[

◦

A3,
◦

A1

]

= 0. Taking into account the colligation relation Jϕ̃
◦

A2=

σϕ̃
◦

A2= σ2ϕ̃
◦

A1 +γ+
1,2ϕ̃, Jϕ̃

◦

A3= σ3ϕ̃
◦

A1 +γ+
1,3ϕ̃ 3) from (1.9), we obtain

◦

A∗

2

(

I − z
◦

A∗

1

)−1

ϕ̃∗ =

(

I − z
◦

A∗

1

)−1
◦

A∗

1 ϕ̃
∗σ2J +

(

I − z
◦

A∗

1

)−1

ϕ̃
(

γ+
1,2

)∗
J−

−iz

(

I − z
◦

A∗

1

)−2
◦

A∗

1 ϕ̃
∗σ3J − iz

(

I − z
◦

A∗

1

)−2

ϕ̃∗γ+
1,3J.

Use an obvious equality

z

(

I − z
◦

A∗

1

)−1
◦

A∗

1=

(

I − z
◦

A∗

1

)−1

− I,

then
◦

A∗

2

(

I − z
◦

A∗

1

)−1

ϕ̃∗ =
1

z

{

(

I − z
◦

A∗

1

)−1

ϕ̃∗ − ϕ̃∗

}

σ2J+

+

(

I − z
◦

A∗

1

)−1

ϕ̃∗
(

γ+
1,2

)∗
J − iz

(

I − z
◦

A∗

1

)−2
◦

A∗

1 ϕ̃
∗σ3J−

−iz2

(

I − z
◦

A∗

1

)−2
◦

A∗

1 ϕ̃
∗γ+

1,3J + iz

(

I − z
◦

A∗

1

)−1

ϕ̃∗γ+
1,3J. (3.14)

Similar to (3.5), expand the vectors σ2J(1, 0) and
(

γ+
1,2

)∗
J(1, 0) in terms of the

basis {(1, 0), (0, 1)} in E2,

σ2J(1, 0) = ᾱ2(1, 0) + β̄2(0, 1);

(

γ+
1,2

)∗
J(1, 0) = µ̄2(1, 0) + ϑ̄2(0, 1); (3.15)
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where

ᾱ2 = (1, 0)σ2J

(

1

0

)

; β̄2 = (1, 0)σ2J

(

0

1

)

;

µ̄2 = (1, 0)
(

γ+
1,2

)∗
J

(

0

1

)

; ϑ̄2 = (1, 0)
(

γ+
1,2

)∗
J

(

0

1

)

. (3.16)

Then we obtain that expression (3.14) equals

◦

A∗

2

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0) = ᾱ2
1

z

{

(

I − z
◦

A∗

1

)−1

ϕ̃∗ − ϕ̃∗

}

(1, 0)+

+β̄2
1

z

{

(

I − z
◦

A∗

1

)−1

ϕ̃∗ − ϕ̃∗

}

(0, 1) + µ̄2

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0)+

+ϑ̄2

(

I − z
◦

A∗

1

)−1

ϕ̃∗(0, 1) − izᾱ3
d

dz

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0)−

−izβ̄3
d

dz

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0) − iz2µ̄3
d

dz

(

I − z
◦

A∗

1

)−1

ϕ̃(1, 0)−

−iz2ϑ̄3
d

dz

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0) + izµ̄3

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0)+

+izϑ̄3

(

I − z
◦

A∗

1

)−1

ϕ̃∗(1, 0). (3.17)

Using the definition of F (z) and G(z) (3.12), we obtain that the operator
◦

A2 after
the L. de Branges transform turns into the operator Ã2,

Ã2F (z) =
ᾱ2F (z) + β2G(z) − α2F (0) − β2G(0)

z̄
+ µ2F (z) + ϑ2G(z)−

−iz
d

dz
{α3F (z) + β3G(z)} − iz2 d

dz
{µ3F (z) + ϑ3G(z)} + iz {µ3F (z) + ϑ3G(z)} ,

(3.18)
which in elementary way follows from (3.17).

Observation 3.2. The dual function G(z) to F (z) does not necessarily belong
to the space B(A,B) but, nevertheless, there always exist such constants α2, α3,
β2, β3, µ2, µ3, ϑ2, ϑ3 from C (not depending on F (z)) that the expressions

α2F (z) + β2G(z) − α2F (0) − β2G(0)

z̄
; F (z) (µ2 + izµ3) +G(z) (ϑ2 + izϑ3) ;

z
d

dz
{α3F (z) + β3G(z)} ; z2 d

dz
{µ3F (z) + ϑ3G(z)}
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already belong to B(A,B).

Define the operator ϕ̃ from B(A,B) into E2 by the formula

ϕ̃F (z) 〈F (z), e1(z)〉 (1, 0) + 〈F (z), e2(z)〉 (0, 1) (3.19)

where

e1(z) =
B∗

l (z)

z
; e2(z) = 1 −A∗

l (z)z. (3.20)

Theorem 3.1. Let ∆ be the simple colligation of Lie algebra (1.8), (1.9),
spectrum of the operator A1 be concentrated at zero and the characteristic function
S1(λ) = I − iϕ (A1 − λI)−1

ϕ∗J be given by

S1(λ) =

←

l
∫

0

exp
iJdFt

λ
.

Besides, measure dFx is absolutely continuous, dFx = axdx, ax ≥ 0, ax is matrix-
function in E2, and J is given by (3.0). And, moreover, let the selfadjoint operators
σ2, σ3, γ

+
1,3 be given in E2, the operator γ+

1,2 be such that γ+
1,2 −

(

γ+
1,2

)∗
= iσ3, and

(1.16), (1.7) take place. Then the colligation ∆ (1.8) is unitarily equivalent to the
functional model

∆̃ =

(

{

Ã1, Ã2, Ã3

}

;B(A,B); ϕ̃; {J, σ2, σ3} ;
{

γ+
k,s

}3

1
;
{

γ−k,s

}3

1

)

(3.21)

where the operators Ã1, Ã2, Ã3 are given by (3.1), (3.13), (3.18) respectively; oper-
ator ϕ̃ equals (3.19); the numbers {αk, βk, µk, ϑk}

3
2 are given by the formulas (3.6),

(3.15); and, finally, {ek(z)}
2
1 are given by (3.20).

4. FUNCTIONAL MODELS ON RIEMANN SURFACE

I. Let dimE = r <∞, and σ1 = J be an involution, then the relation [4, 5, 6]

J
(

σ2 + z
(

γ+
1,2

)∗
)

J
(

σ3 + zγ+
1,3

)

= J
(

σ3 + zγ+
1,3

)

J
(

σ2 + zγ+
1,2

)

(4.1)

is true ∀z ∈ C. We used the fact that γ+
1,2 =

(

γ+
1,2

)∗
+ iσ3 in virtue of (1.16) §3.1.

Suppose that dimE = r = 2n is even and the matrix-function in E specified on
[0, l] equals

ax = In ⊗ âx (4.2)
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where In is the unit operator in En, âx is the non-negative (2× 2) matrix-function
such that trâx = n−1. Knowing dFx = axdx, define the Hilbert space L2

2n,l (Fx)
formed by the vector-functions f(x) = (f1(x), . . . , fn(x)) such that

l
∫

0

fk(x)âxf
∗

k (x)dx <∞

∀k (1 ≤ k ≤ n), besides, fk(x) is a row vector from E2 (x ∈ [0, l]).
Let the operators σ1 (= J), σ2, σ3 and γ+

1,3, γ
−

1,2 be given by

σ1 = J = In ⊗ JN ; σ2 = σ̃2 ⊗ JN ; σ3 = σ̃3 ⊗ JN ;

γ+
1,3 = γ̃3 ⊗ JN ; γ+

1,2 = γ̃2 ⊗ JN (4.3)

where σ̃2, σ̃3, γ̃3 are selfadjoint operators in En, and γ̃2 is such that

γ̃2 − γ̃∗2 = iσ̃3. (4.4)

Then the conditions (1.10) §1 hold. Equality (4.1) in terms of {σ̃k, γ̃k}
3
1 is written

in the following way:

(σ̃2 + zγ̃∗2) (σ̃3 + zγ̃3) = (σ̃3 + zγ̃3) (σ̃2 + zγ̃2) . (4.5)

The L. de Branges transform BL [3, 7] of a vector-function f(x) from L2
2n,l (Fx)

associates each of its components fk(x) ∈ L2
2,l (âxdx) (here dFx = axdx and ax is

given by (4.2)) with the function

Fk(x)
def
= BL (fk) =

1

π

l
∫

0

fk(x)âxL
∗

x (z̄) dx (4.6)

from the L. de Branges B(A,B), besides, Lx(z) is the solution of the integral equa-
tion (3.8) by the measure âxdx. As a result, we obtain the Hilbert space Bn(A,B) =
En ⊗ B(A,B) formed by the vector-functions F (z) = (F1(z), . . . , Fn(z)),

Bn(A,B) = {F (z) = (F1(z), . . . , Fn(z)) : Fk(z) ∈ B(A,B) (1 ≤ k ≤ n)} . (4.7)

Scalar product in Bn(A,B) is given by

〈F (z), G(z)〉Bn(A,B) =

n
∑

k=1

〈Fk(z), Gk(z)〉
B(A,B) .

Taking into account the form of the matrix-function ax (4.2) and the operator
σ1 (4.3), it is easy to show that the L. de Branges transform (4.6) translates the

triangular model
◦

A1 (2.1) in the shift operator

(

Ã1F
)

(z) =
1

z
(F (z) − F (0)), (4.8)
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∀F (z) ∈ Bn(A,B). To obtain the model representation for
◦

A3 in the space Bn(A,B),
use that

◦

A∗

3

(

I − z
◦

A∗

1

)−1

ϕ̃∗ =

(

I − z
◦

A∗

1

)−1
◦

A∗

3 ϕ̃
∗ =

=
1

z

{

(

I − z
◦

A∗

1

)−1

ϕ̃∗σ3J − ϕ̃∗σ3J

}

+

(

I − z
◦

A∗

1

)−1

ϕ̃∗
(

γ+
1,3

)∗
J

in virtue of (2.5), §3.2,

[

◦

A1,
◦

A3

]

= 0 (2.2), §2 and selfadjointness of γ+
1,3.

The form of the operators J , σ3, γ
+
1,3 (4.3) yields

σ3J = σ̃3 ⊗ I2; γ+
1,3J = γ̃3 ⊗ I2. (4.9)

Taking into account that Lx(z) = (I − zA∗
1)

−1
ϕ̃∗(1, 0), we obtain that the operator

◦

A3 (2.1) after the L. de Branges transform BL (4.6) is given by

(

Ã3F
)

(z) =
1

z
(F (z) − F (0))σ3 + F (z)γ̃3. (4.10)

Thus

Ã3F (z) =
1

z
{F (z) (σ̃3 + zγ̃3) − F (z) (σ̃3 + zγ̃3)|0} (4.11)

where, as always, F (z) (σ̃3 + zγ̃3)|0 = F (0)σ̃3.

To find the representation for
◦

A2 (2.1) in Bn(A,B) similar to (4.8), (4.11), note

that
◦

A∗
2

◦

A∗
1 −

◦

A∗
1

◦

A∗
2= i

◦

A∗
3 (in virtue of (2.2), §2), therefore

(

I − z
◦

A∗

1

)−1
◦

A∗

2 −
◦

A∗

2

(

I − z
◦

A∗

1

)−1

= iz

(

I − z
◦

A∗

1

)−2
◦

A∗

3 . (4.12)

Taking into account (2.5) and (2.13), §2, we obtain

◦

A∗

2

(

I − z
◦

A∗

1

)−1

ϕ̃∗ =

(

I − z
◦

A∗

1

)−1
◦

A∗

2 ϕ̃
∗ − iz

(

I − z
◦

A∗

1

)−2
◦

A∗

3 ϕ̃
∗ =

=
1

z

{

(

I − z
◦

A∗

1

)−1

ϕ̃∗σ2J − ϕ̃∗σ2J

}

+

−iz

(

I − z
◦

A∗

1

)−1

ϕ̃∗
(

γ+
1,2

)∗
J−

−iz

(

I − z
◦

A∗

1

)−1
{

(

I − z
◦

A∗

1

)−1
◦

A∗

1 ϕ̃
∗σ3J +

(

I − z
◦

A∗

1

)

ϕ̃∗γ+
1,3J

}

.

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 67–92. 85



In connection with

(

I − z
◦

A∗
1

)−1

= z

(

I − z
◦

A∗
1

)−1
◦

A∗
1 −I, we have

◦

A∗

2

(

I − z
◦

A∗

1

)−1

ϕ̃∗ =
1

z

{

(

I − z
◦

A∗

1

)−1

ϕ̃∗σ2J − ϕ̃∗σ2J

}

+

+

(

I − z
◦

A∗

1

)−1

ϕ̃∗
(

γ+
1,2

)∗
J − iz

(

I − z
◦

A∗

1

)−2
◦

A∗

1 ϕ̃
∗σ3J−

−iz2

(

I − z
◦

A∗

1

)−2
◦

A∗

1 ϕ̃
∗γ+

1,3J − iz

(

I − z
◦

A∗

1

)−1

ϕ̃∗γ+
1,3J.

Since
σ2J = σ̃2 ⊗ I2; γ+

1,2J = γ̃2 ⊗ I2, (4.13)

then using (4.9) and
d

dz

(

I − z
◦

A∗

1

)−1

=

(

I − z
◦

A∗

1

)−2
◦

A∗

1, we obtain that the

operator
◦

A2 (2.1) after the L. de Branges transform (4.6) in the space Bn(A,B) is
given by

(

Ã2F
)

(z) =
1

z
{F (z) (σ̃2 + zγ̃2) − F (z) (σ̃2 + zγ̃2)|0} + iz

d

dz
F (z) (σ̃3 + zγ̃3) ,

(4.14)
besides, F (z) (σ̃2 + zγ̃2)|0 = F (0)σ̃2.

Now define the colligation of Lie algebra (1.8), (1.9)

∆̃ =

(

{

Ã1, Ã2, Ã3

}

;Bn(A,B); ϕ̃;E; {σk} ;
{

γ−k,s

}3

1
;
{

γ+
k,s

}3

1

)

(4.15)

assuming that the operators
{

σk, γ
+
1,k

}3

1
are given by (4.3), the operator γ+

2,3 is

given by formula (1.17), and
{

γ−k,s

}3

1
are found by the formulas 4) (1.9) where ϕ̃

on every component acts in a standard way (3.19), (3.20).

Theorem 4.1. Suppose that the simple colligation ∆ of Lie algebra (1.8), (1.9)

is given, besides, dimE = 2n, and the operators
{

σk, γ
+
1,k

}3

1
in E are given by (4.3)

and condition (4.4) is true. And let the spectrum of operator A1 lie at zero, and
the characteristic function S1(λ) of operator A1 be given by

S1(λ) =

←

l
∫

0

exp
iJdFt

λ
,

and be such that the measure dFx is absolutely continuous, dFx = axdx and ax

equals (4.1). Then the colligation ∆ is unitarily equivalent to the simple part of
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functional model ∆̃ (4.15) where the operators Ã1, Ã2, Ã3 are given by (4.8), (4.11),
(4.14) respectively.

II. Consider the linear operator bundle

σ̃3 + zγ̃3

which is a selfadjoint operator when z ∈ R. Denote by h(z, w) eigenvectors of the
given bundle,

h(P ) (σ̃3 + zγ̃3) = wh(P ), (4.17)

where P = (z, w) belongs to the algebraic curve Q,

Q =
{

P = (z, w) ∈ C2 : Q(z, w) = 0
}

, (4.18)

specified by the polynomial

Q(z, w)
def
= det (σ̃3 + zγ̃3 − wIn) . (4.19)

Suppose that the curve Q is nonsingular [4], then z = z(P ) and w = w(P ) are
correspondingly ’l-valued’ and ’n-valued’ functions on Q (l = rankγ̃3). Norm the
rational function h(P ) (4.17) using the condition hn(P ) = 1 where hn(P ) is the
’nth’ component of vector h(P ). It is easy to show [4] that the quantity of poles
(subject to multiplicity) of vector-function h(P ) equals N = g+n−1 where g is type
of the Riemann surface Q (4.18). Isolate on Q (4.18) analogues of the semi-planes
C± and real axis R,

Q± = {P = (z, w) ∈ Q : ±Imz(P ) > 0}; Q0 = ∂Q±. (4.20)

Roots wk(z) of the polynomial Q,
(

z, wk(z)
)

= 0, (4.19) are different when z ∈ R in
virtue of non-singularity of the curve Q (4.18) (excluding the points of branching).
Therefore the eigenvectors h (Pk) (4.17) corresponding to Pk =

(

z, wk(z)
)

∈ Q

(4.18) are orthogonal. Therefore we can expand every vector-function F (z) ∈
Bn(A,B) in terms of the orthogonal basis {h (Pk)}n

1 ,

F (z) =

n
∑

k=1

g (Pk) ‖h (Pk)‖
−2
E h (Pk) , (4.21)

where g (Pk) = 〈F (z), h (Pk)〉E (1 ≤ k ≤ n). It is easy to see that wk(z), h (Pk)
and g (Pk) represent branches of the ’n-valued’ algebraic functions w(P ), h(P ) and
g(P ), respectively. In view of this, we can rewrite the last equality in the following
form:

F (P ) = F (z(P )) = g(P ) · ‖h(P )‖−2
E h(P ). (4.22)

Since the basis h(P ) in En is fixed, the function F (P ) is defined by the scalar
component g(P ). Note that g(P ) is meromorphic on Q (4.18) and its poles can
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lie only at the poles of h(P ) (4.17), besides, their aggregate multiplicity does not
exceed N = g + n− 1.

Construct the L. de Branges space BQ(A,B, h) corresponding to the Riemann
surface Q (4.18). Operator Ã1 (4.8) in the space BQ(A,B, h) is given by

(

Â1g
)

(P ) =
g(P ) − ψ (P, P0) g (P0)

z(P ) − z (P0)
(4.23)

where
ψ (P, P0) = 〈h (P0) , h(P )〉En · ‖h(P )‖−2

En , (4.24)

besides, P0 = (0, w) ∈ Q. Similarly, operator Ã3 (4.11) in the space BQ(A,B, h) is
given by the formula

(

Â3g
)

(P ) =
w(P )g(P ) − w (P0)ψ (P, P0) g (P0)

z(P ) − z (P0)
, (4.25)

besides, ψ (P, P0) is given by (4.24).
Now consider the operator Ã2 (4.14). Let {h (Pk)}

n

1 be the orthogonal basis of
eigenvectors (4.17),

h (Pk) (σ̃3 + zγ̃3) = wk(z)h (Pk) (4.26)

where Pk =
(

z, wk(z)
)

∈ Q (4.18) and z ∈ R. Then (4.5) implies

wk(z)h (Pk) (σ̃2 + zγ̃2) = h (Pk) (σ̃2 + zγ̃∗2) (σ̃3 + zγ̃3) .

Taking into account (4.4), we can rewrite this equality in the following form:

wk(z)h (Pk) (σ̃2 + zγ̃2) =

= h (Pk) (σ̃2 + zγ̃2) (σ̃3 + zγ̃3) − izh (Pk) σ̃3 (σ̃3 + zγ̃3) =

= h (Pk) (σ̃2 + zγ̃2) (σ̃3 + zγ̃3)+

+iz2wk(z)h (Pk) γ̃3 (σ̃3 + zγ̃3) − iz
(

wk(z)
)2
h (Pk) .

(4.27)

To simplify the last summand in this sum, differentiate equality (4.26) by z,

h (Pk) γ̃3 + h′ (Pk) (σ̃3 + zγ̃3) =
(

wk(z)
)′

h (Pk) + wk(z)h′ (Pk) (4.28)

where prime signifies the derivative by z. Expand vector h′ (Pk) in terms of the
basis {h (Ps)}

n
1 :

h′ (Pk) =

n
∑

s=1

a (Pk, Ps) ‖h (Ps)‖
−2
E · h (Ps) (4.29)

where
a (Pk, Ps) = 〈h′ (Pk) , h (Ps)〉E . (4.30)

Then (4.28) implies

h (Pk) γ̃3 =
(

wk(z)
)′

h (Pk) +

n
∑

s=1

a (Pk, Ps)
(

wk(z) − ws(z)
)

‖h (Ps)‖
−2
E · h (Ps) .
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Now realize the expansion of vector h (Pk) (σ̃2 + zγ̃2) from (4.27) in terms of the
basis {h (Ps)}

n
1 :

h (Pk) (σ̃2 + zγ̃2) =

n
∑

s=1

b (Pk, Ps) ‖h (Ps)‖
−2
E · h (Ps) (4.31)

where
a (Pk, Ps) = 〈h′ (Pk) , h (Ps)〉 . (4.30)

Then (4.28) yields

h (Pk) γ̃3 =
(

wk(z)
)′

h (Pk) +

n
∑

s=1

a (Pk, Ps)
(

wk(z) − ws(z)
)

‖h (Ps)‖
−2
E · h (Ps) .

Now realize expansion of the vector h (Pk) (σ̃2 + zγ̃2) from (4.27) in terms of the
basis {h (Ps)}

n
1 :

h (Pk) (σ̃2 + zγ̃2) =

n
∑

s=1

b (Pk, Ps) ‖h (Ps)‖
−2
E · h (Ps) (4.31)

where
b (Pk, Ps) = 〈h′ (Pk) (σ̃2 + zγ̃2) , h (Ps)〉E . (4.32)

Then equality (4.27) has the form

n
∑

s=1

b (Pk, Ps)
(

wk(z) − ws(z)
)

‖h (Ps)‖
−2
E · h (Ps) = −iz

(

wk(z)
)2
h (Pk)+

+iz
(

wk(z)
)′

wk(z)h (Pk)+

+iz2
n

∑

s=1

a (Pk, Ps)
(

wk(z) − ws(z)
)

ws(z) ‖h (Ps)‖
−2
E h (Ps) .

Linear independence of {h (Ps)}
n
1 yields

{

b (Pk, Ps) = iza (Pk, Ps)w
s(z) (s 6= k);

wk(z) = z
(

wk(z)
)′

(s = k).
(4.33)

Using (4.27), it is easy to show that b (Pk, Pk) = 0.
Thus knowing the function a (Pk, Ps) (4.30) defined by the vector-functions

h (Pk) (4.25), we can construct b (Pk, Ps) and find expansion of the vector h (Pk)×
× (σ̃2 + zγ̃2):

h (Pk) (σ̃2 + zγ̃2) = iz

n
∑

s=1

a (Pk, Ps) · ‖h (Ps)‖
−2
E · h (Ps) . (4.34)
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This implies that action of the bundle σ̃2 + zγ̃2 on F (z) (4.21) in terms of the
components g (Pk) appears as follows:

g (Pk) −→ izwk(z)

n
∑

s=1

g (Ps) a (Pk, Ps) · ‖h (Ps)‖
−2
E · h (Ps) . (4.35)

Now consider the second summand in (4.14), use (4.21), then

iz
d

dz
F (z) (σ̃3 + zγ̃3) = iz

d

dz

{

n
∑

k=1

g (Pk) ‖h (Pk)‖
−2
E wk(z)h (Pk)

}

=

= iz

n
∑

k=1

(

g (Pk)wk(z)
)

‖h (Pk)‖
−2
E ·

·h (Pk) − 2iz

n
∑

k=1

g (Pk)wk(z) · ‖h (Pk)‖
−3
E · ‖h (Pk)‖

1
E h (Pk)+

+iz
n

∑

k=1

g (Pk)wk(z) · ‖h (Pk)‖−2
E ·

n
∑

s=1

a (Pk, Ps) · ‖h (Ps)‖
−2
E · h (Ps) .

Thus action of the expression
d

dz
F (z) (σ̃3 + zγ̃3) in terms of the scalar component

g (Pk) can be written as

g (Pk) −→ iz
(

wk(z)g (Pk)
)′

− 2izwk(z)g (Pk) ‖h (Pk)‖−1
E · ‖h (Pk)‖1

E +

+iz

n
∑

s=1

g (Ps)w
s(z)a (Ps, Pk) · ‖h (Ps)‖

−2
E . (4.36)

To rewrite the formulas (4.35), (4.36) in a compact form, consider the kernel

a (P ′, P ) =

〈

d

dz
h (P ′) , h(P )

〉

E

(4.37)

coinciding with (4.30) as P ′ = Pk, P = Ps. Define action of this kernel on the
function g(P ) in the following way:

(a ∗ g)(P )
def
=

∑

P ′

g (P ′) a (P ′, P ) · ‖h (P ′)‖
−2
E (4.38)

where P ′ varies over all the values (branches) of the function g (P ′).
Now taking into account (4.35) and (4.36), we can write form of the operator

Ã2, which, in view of (4.14), is given by

(

Ã2g
)

(P ) =
iz(P )w(P )(a ∗ g)(P ) − iz (P0)w (P0)ψ (P, P0) (a ∗ g) (P0)

z(P ) − z (P0)
+
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+iz(P )
d

dz
(w(P )g(P )) − 2iz(P )w(P )b(P )g(P ) + iz(P )(a ∗ g)(P ) (4.39)

where

b(P ) = ‖h(P )‖−1
E ·

d

dz
‖h(P )‖. (4.40)

Construct colligation of the Lie algebra (1.8), (1.9)

∆̃ =

(

{

Ã1, Ã2, Ã3

}

;BQ(A,B, h); ϕ̃, E; {σk}
3
1 ,

{

γ−k,s

}3

1
,
{

γ+
k,s

}3

1

)

(4.41)

where the operators
{

σk, γ
+
1,k

}3

1
are given by (4.3), γ+

2,3 is defined by formula (1.17),

and the operators
{

γ−k,s

}3

1
are defined from 4) (1.9), ϕ̃ is given by

ϕ̃g(P ) =

2
∑

k=1

〈g(P ), ek(z(P ))〉
BQ(A,B,h) · ek, (4.42)

ek are given by

e1(z) =
1 − αz

z
B∗ (z̄) ; e2(z) =

1 − αz

z
(1 −A∗ (z̄)) ;

e1 = (1, 0); e2 = (0, 1).
(4.43)

Theorem 4.2. Suppose that for the colligation ∆ of Lie algebra (1.8), (1.9)
requirements of Theorem 4.1 hold and let curve Q (4.18) be non-singular, besides,
zw′ = w(z). Then colligation ∆ (1.8), (1.9) is unitarily equivalent to the simple
part of colligation ∆̃ (4.41) where operators Ã1, Ã2 and Ã3 are given by (4.23),
(4.25) and (4.39), respectively.

In this work for a Lie algebra of linear non-selfadjoint operators {A1, A2, A3}
([A1, A2] = iA3, [A1, A3] = 0, [A2, A3] = 0) are obtained the following results.

1) The triangular model (2.1) for this Lie algebra in the space L2
r,l (Fx) is

constructed.

2) In §3 using the triangular model from §2, the functional model (Theorem
3.1) for the studied in this chapter Lie algebra {A1, A2, A3} is stated.

3) For special classes of Lie algebra {A1, A2, A3}, the functional model on
Riemann surface in special L. de Branges spaces (Theorem 4.1 and Theorem 4.2)
is constructed.
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