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1. INTRODUCTION

The almost paracontact structure on pseudo-Riemannian manifold M of di-
mension (2n+1) is defined in [7]. An almost paracomplex structure on M (2n+1)×R

is constructed in [5]. Some properties of an almost paracontact metric manifold
and the gauge (conformal) transformations of a paracontact metric manifold, i.e.,
transformations preserving the paracontact structure, are studied in [8]. Further-
more, in this paper a canonical paracontact connection on a paracontact metric
manifold is defined. This connection is the paracontact analogue of the (gener-
alized) Tanaka-Webster connection. It is shown that the torsion of the canonical
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paracontact connection vanishes exactly when the structure is para-Sasakian and
the gauge transformation of its scalar curvature is computed.

An example of a paracontact structure of flat canonical connection is the hy-
perbolic Heisenberg group [3]. The paraconformal tensor gives a necessary and
sufficient condition for a (2n + 1)-dimensional paracontact manifold to be locally
paracontact conformal to the hyperbolic Heisenberg group [3].

In this paper, we show that there is no flat, with respect to Levi-Civita con-
nection, paracontact metric structures in dimension greater than or equal to five,
whereas in dimension equal to three there is.

2. PRELIMINARIES

A (2n+1)-dimensional smooth manifold M (2n+1) has an almost paracontact
structure (ϕ, ξ, η) if it admits a tensor field ϕ of type (1, 1), a vector field ξ, and a
1-form η satisfying the following compatibility conditions

(i) ϕ(ξ) = 0, η ◦ ϕ = 0,

(ii) η(ξ) = 1 ϕ2 = id − η ⊗ ξ,

(iii) the tensor field ϕ induces an almost paracomplex structure (see [4])
on each fibre on the horizontal distribution D = Ker η.

(2.1)

Recall that an almost paracomplex structure on a 2n-dimensional manifold is a
(1,1)-tensor J such that J2 = 1 and the eigensubbundles T +, T− corresponding to
the eigenvalues 1,−1 of J respectively, have dimensions equal to n. The Nijenhuis
tensor N of J , given by NJ(X, Y ) = [JX, JY ] − J [JX, Y ] − J [X, JY ] + [X, Y ], is
the obstruction for the integrability of the eigensubbundles T +, T−. If N = 0 then
the almost paracomplex structure is called paracomplex or integrable.

An immediate consequence of the definition of the almost paracontact structure
is that the endomorphism ϕ has rank 2n, ϕξ = 0 and η ◦ ϕ = 0, (see [1, 2] for the
almost contact case).

If a manifold M (2n+1) with (ϕ, ξ, η)-structure admits a pseudo-Riemannian
metric g such that

g(ϕX, ϕY ) = −g(X, Y ) + η(X)η(Y ), (2.2)

then we say that M (2n+1) has an almost paracontact metric structure and g is
called compatible metric. Any compatible metric g of a given almost paracontact
structure is necessarily of signature (n + 1, n).

Setting Y = ξ, we have η(X) = g(X, ξ). From here and (2.2) follows

g(ϕX, Y ) = −g(X, ϕY ).

The fundamental 2-form

F (X, Y ) = g(X, ϕY ) (2.3)
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is non-degenerate on the horizontal distribution D and η ∧ Fn 6= 0.

Definition 2.1. If g(X, ϕY ) = dη(X, Y ) (where dη(X, Y ) = 1
2 (Xη(Y ) −

Y η(X)−η([X, Y ]), then η is a paracontact form and the almost paracontact metric
manifold (M, ϕ, η, g) is said to be paracontact metric manifold.

Definition 2.2. An r-dimensional submanifold N of M (2n+1) is said to be an
integral submanifold (of the horizontal distribution D) if and only if every tangent
vector of N at every point p of N belongs to D.

Definition 2.3. An integral submanifold of dimension r in M (2n+1) is said to
be a maximal integral submanifold if it is not a proper subset of any other integral
submanifold of dimension r.

Similarly to the contact metric case [6], we may obtain the following

Proposition 2.4. Let (M2n+1, ϕ, η, g) be a paracontact metric manifold. Then
the highest dimension of integral submanifolds of the horizontal distribution D is
equal to n.

The tensors N (1), N (2), N (3) and N (4) are defined [8] by

N (1)(X, Y ) = Nϕ(X, Y ) − 2dη(X, Y )ξ,

N (2)(X, Y ) = (£ϕXη)Y − (£ϕY η)X,

N (3)(X) = (£ξϕ)X,

N (4)(X) = (£ξη)X,

where Nϕ(X, Y ) = [ϕX, ϕY ] − ϕ[ϕX, Y ] − ϕ[X, ϕY ] + ϕ2[X, Y ].
The tensors N (1), N (2), N (3) and N (4) are analogs of the tensors denoted in

the same way in the almost contact case [1, 2].
They have the following propositions [8].

Proposition 2.5. For an almost paracontact structure (ϕ, ξ, η) the vanishing
of N (1) implies the vanishing N (2), N (3) and N (4);

For a paracontact structure (ϕ, ξ, η, g), N (2) and N (4) vanish. Moreover N (3)

vanishes if and only if ξ is a Killing vector field.

Proposition 2.6. For an almost paracontact metric structure (ϕ, ξ, η, g), the
covariant derivative ∇ϕ of ϕ with respect to the Levi-Civita connection ∇ is given
by

2g((∇Xϕ)Y, Z) = −dF (X, Y, Z) − dF (X, ϕY, ϕZ) − g(N (1)(Y, Z), ϕX) (2.4)

+N (2)(Y, Z)η(X) − 2dη(ϕZ, X)η(Y ) + 2dη(ϕY, X)η(Z).

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 27–34. 29



For a paracontact metric structure (ϕ, ξ, η, g), the formula (2.4) simplifies to

2g((∇Xϕ)Y, Z) = −g(N (1)(Y, Z), ϕX)−2dη(ϕZ, X)η(Y )+2dη(ϕY, X)η(Z) (2.5)

Lemma 2.7. On a paracontact metric manifold, h = 1
2N (3) is a symmetric

operator,
∇Xξ = −ϕX + ϕhX, (2.6)

h anti-commutes with ϕ ,and trh = hξ = 0.

3. NON-EXISTENCE OF FLAT PARACONTACT METRIC STRUCTURES IN
DIMENSION GREATER THAN OR EQUAL TO FIVE

In this section we shall show that every paracontact metric manifold of dimen-
sion greater than or equal to five must have some curvature, though not necessarily
in the plane sections containing ξ.

Theorem 3.1. Let M2n+1 be a manifold of dimension greater than or equal
to five. Then M2n+1 cannot admit a paracontact structure of vanishing curvature.

Proof. The proof will be by contradiction. We let (ϕ, ξ, η, g) denote the struc-
ture tensors of a paracontact metric structure and assume that g is flat. From [8]
we have, for a paracontact metric structure,

1

2
(R(ξ, X)ξ + ϕR(ξ, ϕX)ξ) = ϕ2X − h2X

where h = 1
2Lξϕ. Thus if g is flat, h2 = ϕ2, and hence hξ = 0 and rank(h) = 2n.

The eigenvectors corresponding to the non-zero eigenvalues of h are orthogonal to
ξ and the non-zero eigenvalues are ±1. Recall that dη(X, Y ) = 1

2 (g(∇Xξ, Y ) −
g(∇Y ξ, X)) and that for a paracontact metric structure

∇Xξ = −ϕX + ϕhX. (3.1)

From Lemma 2.7 follows that whenever X is an eigenvector of eigenvalue +1, ϕX

is an eigenvector of −1 and vice-versa. Thus the paracontact distribution D is
decomposed into the orthogonal eigenspaces of ±1 which we denote by [+1] and
[−1].

We now show that the distribution [+1] is integrable. If X and Y are vector
fields belonging to [+1], equation (3.1) gives ∇Xξ = 0 and ∇Y ξ = 0. Thus since
M2n+1 is flat:

0 = R(X, Y )ξ = −∇[X,Y ]ξ = ϕ[X, Y ] − ϕh[X, Y ];

but η([X, Y ]) = −2dη(X, Y ) = −2g(X, ϕY ) = 0, so that h[X, Y ] = [X, Y ]. Apply-
ing the same argument to ξ and X ∈ [+1] we see that the distribution [+1] ⊕ [ξ]
spanned by [+1] and ξ is also integrable.
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Since [+1]⊕ [ξ] is integrable, we can choose local coordinates (u0, u1, . . . , u2n)
such that ∂

∂u0 , ∂
∂u1 , . . . , ∂

∂un ∈ [+1] ⊕ [ξ]. For i = 1 . . . n the vector ∂
∂un+i can be

uniquely presented as ∂
∂un+i = v+1

n+i + v
ξ
n+i + v−1

n+i where v+1
n+i ∈ [+1], v

ξ
n+i ∈ [ξ],

v−1
n+i ∈ [−1], and v−1

n+i 6=
−→
0 . Let v+1

n+i + v
ξ
n+i = −

∑n
j=0 f

j
i

∂
∂uj . We define local

vector fields Xi, i = 1, . . . , n by Xi = ∂
∂un+i +

∑n
j=0 f

j
i

∂
∂uj , i.e. Xi = v−1

n+i so that
Xi ∈ [−1]. Note X1, . . . , Xn are n linearly independent vector fields spanning [−1].
Clearly [ ∂

∂uk , Xi] ∈ [+1]⊕ [ξ] for k = 0, . . . , n and hence ξ is parallel along [ ∂
∂uk , Xi].

Therefore using (3.1) and the vanishing curvature

0 = ∇[ ∂

∂uk ,Xi]
ξ = ∇ ∂

∂uk
∇Xi

ξ −∇Xi
∇ ∂

∂uk
ξ = −2∇ ∂

∂uk
ϕXi

from which we have
∇ϕXj

ϕXi = 0. (3.2)

In particular ∇ξϕXi = 0. Furthermore, from equation (3.1) we obtain ∇ϕXi
ξ = 0

and hence [ϕXi, ξ] = 0.

Similarly, noting that [Xi, Xj] ∈ [+1],

0 = R(Xi, Xj)ξ = ∇Xi
∇Xj

ξ −∇Xj
∇Xi

ξ −∇[Xi,Xj ]ξ = −2∇Xi
ϕXj + 2∇Xj

ϕXi

giving
∇Xi

ϕXj = ∇Xj
ϕXi, (3.3)

or equivalently
ϕ[Xi, Xj ] = −(∇Xi

ϕ)Xj + (∇Xj
ϕ)Xi. (3.4)

Using equations (3.1) and (3.2) we obtain

0 = R(Xi, ϕXj)ξ = −∇[Xi,ϕXj]ξ = ϕ[Xi, ϕXj ] − ϕh[Xi, ϕXj ]

from which

g([Xi, ϕXj ], Xk) = −g(ϕ[Xi, ϕXj ], ϕXk) = g(h[Xi, ϕXj ], Xk) =

= g([Xi, ϕXj ], hXk) = −g([Xi, ϕXj ], Xk)

and hence
g([Xi, ϕXj ], Xk) = 0. (3.5)

Using formula (2.5) and equations (3.2), (3.4) and (3.5) we have

2g((∇Xi
ϕ)Xj , Xk) = −g(N (1)(Xj , Xk), ϕXi) = −g([Xj, Xk], ϕXi) =

= −g((∇Xj
ϕ)Xk, Xi) + g((∇Xk

ϕ)Xj , Xi).

From F = dη, we obtain dF = 0 and hence σi,j,kg((∇Xi
ϕ)Xj , Xk) = 0. Thus our

computation yields g((∇Xi
ϕ)Xj , Xk) = 0. Similarly

2g((∇Xi
ϕ)Xj , ϕXk) = −g(N (1)(Xj , ϕXk), ϕXi) =
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= −g([Xj, ϕXk], ϕXi) − g([ϕXj , Xk], ϕXi) =

= −g(∇Xj
ϕXk −∇ϕXk

Xj −∇Xk
ϕXj + ∇ϕXj

Xk, ϕXi)

which vanishes by equations (3.2) and (3.3). Finally

2g((∇Xi
ϕ)Xj , ξ) = −g(N (1)(Xj , ξ), ϕXi) + 2dη(ϕXj , Xi) =

= −g(ϕ2[Xj , ξ], ϕXi) + 2dη(ϕXj , Xi) = −4g(Xi, Xj).

Thus for any vector fields X and Y in [−1] on a paracontact metric manifold such
that ξ is annihilated by the curvature transformation

(∇Xϕ)Y = −2g(X, Y )ξ. (3.6)

Note that equation (3.4) now gives [Xi, Xj] = 0.
Analogously, we obtain

2g(∇ϕXi
Xj , Xk) = 2g((∇ϕXi

ϕ)Xj , ϕXk) = 0. (3.7)

Therefore by equation (3.5), we get

g(∇Xi
Xj , ϕXk) = −g(Xj,∇Xi

ϕXk) = −g(Xj, [Xi, ϕXk]) = 0.

It is trivial that g(∇Xi
Xj , ξ) = 0 and hence we obtain ∇Xi

Xj ∈ [−1].
Differentiating equation (3.6), we have

∇Xk
∇Xi

ϕXj − (∇Xk
ϕ)∇Xi

Xj − ϕ∇Xk
∇Xi

Xj =

= −2Xk(g(Xi, Xj))ξ + 4g(Xj, Xi)ϕXk.

Taking the inner product with ϕXl, having in mind equation (3.6) and ∇Xi
Xj ∈

[−1], we obtain

g(∇Xk
∇Xi

ϕXj , ϕXl) + g(∇Xk
∇Xi

Xj, Xl) = −4g(Xj, Xi)g(Xk, Xl) (3.8)

Interchanging i and k, i 6= k and subtracting, we have

g(Xi, Xj)g(Xk, Xl) − g(Xk, Xj)g(Xi, Xl) = 0

by virtue of the flatness and [Xi, Xj ] = 0.
Setting i = j and k = l, we have

g(Xi, Xi)g(Xk, Xk) − g(Xi, Xk)g(Xi, Xk) = 0

contradicting the linear independence of Xi and Xk. �

Note that in the proof of our theorem, the vanishing of R(X, Y )ξ is enough
to obtain the decomposition of the paracontact distribution into ±1 eigenspaces of
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the operator h = 1
2Lξϕ. Moreover, R(X, Y )ξ = 0 for X and Y in [+1] is sufficient

for the integrability of [+1]. Thus we have the following

Theorem 3.2. Let M2n+1 be a paracontact manifold with paracontact metric
structure (ϕ, ξ, η, g). If the sectional curvatures of all plane sections containing ξ

vanish, then the operator h has rank 2n and the paracontact distribution is decom-
posed into the ±1 eigenspaces of h. Moreover, if R(X, Y )ξ = 0 for X, Y ∈ [+1],
M admits a foliation by n−dimensional integral submanifolds of the paracontact
distribution along which ξ is parallel.

From Theorem 3.1 and Theorem 3.2 we obtain following

Theorem 3.3. Let M2n+1 be a paracontact metric manifold and suppose that
R(X, Y )ξ = 0 for all vector fields X and Y . Then locally M2n+1 is the product of a
flat (n + 1)-dimensional manifold and n-dimensional manifold of negative constant
curvature equal to −4.

Proof. We noted in Theorem 3.1 proof that [Xi, Xj ] = 0 so that the distribution
[−1] is also integrable and hence we may take Xi = ∂

∂un+i . Moreover, locally
M2n+1 is the product of an integral submanifold Mn+1 of [+1]⊕ [ξ] and an integral
submanifold Mn of [−1]. Since {ϕXi, ξ} is a local basis of tangent vector fields on
Mn+1, equation (3.2) and R(X, Y )ξ = 0 show that Mn+1 is flat.

Now ∇ϕXi
Xj = 0 since g(∇ϕXi

Xj , Xk) = 0 by equation (3.7). Moreover,
g(∇ϕXi

Xj, ϕXk) = 0 by equation (3.2) and g(∇ϕXi
Xj, ξ) = 0 which is trivial.

Interchanging i and k in equation (3.8) and subtracting, we have

R(Xk, Xi, ϕXj , ϕXl) + R(Xk, Xi, Xj, Xl) =

= −4(g(Xi, Xj)g(Xk, Xl) − g(Xk, Xj)g(Xi, Xl)).

Using ∇ϕXi
Xj = 0 and [ϕXi, ϕXj ] = 0 we see that R(Xk, Xi, ϕXj , ϕXl) =

= R(ϕXj , ϕXl, Xk, Xi) = 0, and hence

R(Xk, Xi, Xj , Xl) = −4(g(Xi, Xj)g(Xk, Xl) − g(Xk, Xj)g(Xi, Xl))

completing the proof. �

4. FLAT ASSOCIATED METRICS ON R
3
1

In dimension 3 it is easy to construct flat paracontact structures. For example,
consider R

3
1 with coordinates (x1, x2, x3). The 1-form η = 1

2 (ch(x3)dx1+sh(x3)dx2)

is a paracontact form. In this case ξ = 2(ch(x3) ∂
∂x1 − sh(x3) ∂

∂x2 ) and the metric
g whose components are g11 = −g22 = g33 = 1

4 gives flat paracontact metric

structure. Following the proof of the Theorem 3.1, we see that ∂
∂x3 spans the

distribution [−1], and sh(x3) ∂
∂x1 + ch(x3) ∂

∂x2 spans the distribution [+1].
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We can now find a flat associated metric on R
3
1 for the standard paracontact

form η0 = 1
2 (dz − ydx). Consider the diffeomorphism f : R

3
1 → R

3
1 given by

x1 = zch(x) − ysh(x)

x2 = zsh(x) − ych(x)

x3 = −x

Then η0 = f∗η, and the pseudo-Riemannian metric g0 = f∗g is a flat associated
metric for the paracontact form η0.
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