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ON THE DIVISIBILITY OF ARCS WITH MULTIPLE POINTS1
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In this paper, we generalize a result by Ball, Hill, Landjev and Ward on plane arcs to
arcs with multiple points in spaces of arbitrary dimension. This result is further ap-
plied to the characterization of some non-Griesmer arcs in the 3-dimensional projective
geometry over F4.
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1. INTRODUCTION

In a series of papers in the mid-nineties H. N. Ward introduced and investigated
the so-called divisibility property of linear codes over finite fields. It turns out
that many important classes of codes are divisible. A celebrated result by Ward
establishes the divisibility of Griesmer codes of minimum weight divisible by some
power of the field order [7].

By the equivalence of the linear codes of full length and the arcs in PG(r, q),
divisibility can be translated into geometric language. This makes it possible to use
a geometric technique, the so-called polynomial method [1, 2], in the investigation
of divisibility properties for arcs and codes. For instance, the condition on the
arc in question being a Griesmer arc can be replaced by a milder condition on the
number of points of maximal multiplicity. A result of this type has been obtained
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in [3] for arcs with parameters (q2 +q+2, q+2) in the projective plane PG(2, q). In
what follows, we generalize this result to arcs in projective geometries of arbitrary
dimension.

The paper is organized as follows. In Section 2, we give some basic defini-
tions and results on arcs and codes. Section 3 contains the main theorem which
establishes the divisibility of non-Griesmer arcs having some additional properties.
Section 4 contains a characterization of non-Griesmer arcs in PG(3, 4) with enough
maximal points.

2. PRELIMINARIES

Let Π = PG(r, q) be the r-dimensional projective geometry of order q. A
multiset of points is a mapping K : P → N0 from the pointset P of Π into the
nonnegative integers. This mapping is extended trivially to the power set of P
by K(Q) =

∑

x∈QK(x), Q ⊆ P . The integer K(x) is called the multiplicity of
the point x. Similarly, we define multiplicities of lines, planes, hyperplanes etc. A
multiset K is called a (n, w)-arc if (1) K(P) = n, (2) K(H) ≤ w for any hyperplane
H , (3) K(H0) = w for at least one hyperplane H0. Denote by ai the number of
hyperplanes in Π of multiplicity exactly i and by Λi – the number of points of
multiplicity i. The sequence (ai)i≥0 is called the spectrum of K.

Let F
n
q be the vector space of all n-tuples over the finite field Fq. Any k-

dimensional subspace C of F
n
q is called a linear code of length n and dimension k.

If, in addition, the minimum Hamming distance between different codewords of C

is d the code is referred to as an [n, k, d]q-code. It is well-known that with every
linear [n, k, d]q-code of full length, i.e. a code in which no coordinate is identically
zero, one can associate an (n, n − d)-arc in PG(k − 1, q) so that isomorphic codes
lead to equivalent arcs and vice versa. This means that linear codes and arcs are
in some sense equivalent objects.

A fundamental bound on the parameters of a linear code is the so-called Gries-
mer bound [4]. It says that if C is an [n, k, d]q-code then

n ≥

k−1
∑

i=0

⌈

d

qi

⌉

. (2.1)

A linear code meeting the Griesmer bound is called a Griesmer code. An arc
associated with a Griesmer code is called a Griesmer arc.

A divisible linear code is defined as a code whose word weights have a nontrivial
common divisor [6]. It has been proved in [7] that every [n, k, d]q-code meeting the
Griesmer bound with minimum weight divisible by some power of q is also divisible.
Using the equivalence between linear codes and arcs in the projective geometries
PG(k − 1, q), we can translate this in geometric language. An (n, w)-arc K is said
to be divisible if there exists an integer ∆ > 1 such that K(H) ≡ n (mod ∆) for

22 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 21–26.



any hyperplane H . Ward’s divisibility result from [7] can be restated for Griesmer
arcs as follows [5].

Theorem 1. Let K be a Griesmer (n, w)-arc in PG(k − 1, p) with w ≡ n

(mod pe), p – a prime, e ≥ 1. Then K(H) ≡ n (mod pe) for every hyperplane H

in PG(k − 1, p).

This result can be generalized to arcs and codes over non-prime fields. How-
ever the condition on the arc of meeting the Griesmer bound remains essential.
Interestingly, some non-Griesmer arcs and codes also exhibit divisibility properties.
In their investigation of arcs with parameters (q2 + q + 2, q + 2) in PG(2, q) Ball et
al. [3] observed that the presence of many double points implies divisibility of the
arc. In the next section, we extend this observation to get a divisibility result for
non-Griesmer arcs in finite projective geometries of arbitrary dimension.

3. THE MAIN THEOREM

Consider the projective geometry PG(r, q) and fix a hyperplane H∞. Clearly,
PG(r, q) \H∞ can be regarded as the r-dimensional affine geometry AG(r, q). The
finite field Fqr is an r-dimensional vector space over Fq and can be identified by
the points of AG(r, q) = PG(r, q) \ H∞. The line through the points X, Y ∈ F

r
q is

given parametrically by

L = 〈X, Y 〉 = {tX + (1 − t)Y | t ∈ Fq} ⊂ Fqr .

Let X, Y, X ′, Y ′ ∈ Fqr be four points from AG(r, q) such that 〈X, Y 〉 ∩ H∞ =
〈X ′, Y ′〉 ∩ H∞. If Fqr = Fq(α), we can write the above four points as

X = x0 + x1α + . . . + xr−1α
r−1, Y = y0 + y1α + . . . + yr−1α

r−1

X ′ = x′
0 + x′

1α + . . . + x′
r−1α

r−1, Y ′ = y′
0 + y′

1α + . . . + y′
r−1α

r−1

where xi, yi, x
′
i, y

′
i ∈ Fq. In PG(r, q), the four points can be viewed as

(1, x0, . . . , xr−1), (1, y0, . . . , yr−1), (1, x′
0, . . . , x

′
r−1), (1, y′

0, . . . , y
′
r−1).

The common point of 〈X, Y 〉 and 〈X ′, Y ′〉, which lies in H∞, is

(0, x0 − y0, x1 − y1, . . . , xr−1 − yr−1) = t(0, x′
0 − y′

0, x
′
1 − y′

1, . . . , x
′
r−1 − y′

r−1)

where t ∈ F
∗
q. Hence

(X − Y ) =
r−1
∑

i=0

(xi − yi)α
i = t

r−1
∑

i=0

(x′
i − y′

i)α
i = t(X ′ − Y ′)

and (X − Y )q−1 = tq−1(X ′ − Y ′)q−1 = (X ′ − Y ′)q−1. Therefore the points on H∞

can be identified with the qr−1
q−1 -st roots of unity in Fqr . Denote by G the subgroup
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of F
∗
qr that contains the qr−1

q−1 -st roots of unity. The element of G identified with

the intersecting point of the line L from AG(r, q) and H∞ is denoted by ζL. The
above argument shows that L and L′ are parallel if and only if ζL = ζL′ .

The next theorem is an application of the so-called polynomial method in finite
geometry.

Theorem 2. Let K be a (n, w)-arc in PG(r, q), r ≥ 2, q = ph, p – a prime.

Let all lines through a point of maximal multiplicity m have the same multiplicity.

If Λm > (q − 1)pt−1, where t ≤ (r − 1)h, then for every hyperplane H

K(H) ≡ n (mod pt).

Proof. Denote by s the multiplicity of a line through a maximal point and set,

as usual, vi = qi−1
q−1 . Then n = m + (s−m)vr, and the multiplicity of a hyperplane

H containing a maximal point is K(H) = m + (s − m)vr−1. Then

n −K(H) = (s − m)(vr − vr−1) = (s − m)qr−1 ≡ 0 (mod qr−1).

Now consider a hyperplane which is not incident with points of maximal mul-
tiplicity. We can assume with no loss of generality that 0 ∈ Fqr is not a point of
maximal multiplicity (otherwise, we translate the points of the affine geometry to
ensure this). Consider the polynomial

F (x, y) =
∏

P∈Fqr

(

1 − (1 − Px)q−1y
)K(P ) ∏

ζ∈G

(1 − ζxq−1y)K(ζ)

=

n
∑

i=0

Fi(x)yi.

Let Q ∈ Fqr be a point of maximal multiplicity and set x = Q−1. Note that Q 6= 0.
When P 6= Q we have

(1 − PQ−1)q−1 = (Q − P )q−1Q1−q = ζLQ1−q,

where L = 〈P, Q〉. Collecting the factors in the product above, we get

F (Q−1, y) =
∏

ζ∈G

(1 − ζQ−1y)K(L)−K(Q)

where L is a line incident with Q and such that L∩H∞ is identified with ζ. Further,
we have

F (Q−1, y) =





∏

ζ∈G

(1 − ζQ−1y)





s−m

= (1 − yvr )s−m

= 1 −

(

s − m

1

)

yvr +

(

s − m

2

)

y2vr − . . . .
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Therefore Fi(Q
−1) = 0 for i = 1, . . . , vr − 1. The polynomial Fi(x) is of degree at

most i(q − 1) and since Λm > (q − 1)pt−1, we have Fi(x) ≡ 0 for all i ≤ pt−1. On
the other hand,

F (0, y) = (1 − y)n−K(H∞)

= 1 −

(

n −K(H∞)

1

)

y +

(

n −K(H∞)

2

)

y2 − . . . .

This implies in particular that

(

n −K(H∞)

pj

)

≡ 0 (mod p)

for j = 0, . . . , t − 1. Now by Lucas theorem, n −K(H∞) ≡ 0 (mod pt). �

4. ONE EXAMPLE

As an illustration of Theorem 2, consider the non-Griesmer arcs with parame-
ters (86, 22) in PG(3, 4). Clearly, every line through a 2-point has multiplicity of 6.
Assume t = 2 and Λ2 > (q− 1)pt−1 = 6. Recall the classification of the (22, 6)-arcs
in PG(2, 4) from [3]. There exist six equivalence classes of such arcs:

(1) arcs with one 2-point and no 0-points;

(2) arcs with two 2-points and one 0-point, which are collinear;

(3) arcs with three 2-points and two 0-points, which are collinear;

(4) arcs with four 2-points and three collinear 0-points, which form a Baer sub-
plane; the 0-points are collinear in the Baer subplane;

(5) arcs with six 2-points and five 0-points; the 2-points form a hyperoval and
the 0-points form an external line to the hyperoval;

(6) arcs with seven 2-points and six 0-points, which are represented as a sum of
two copies of a hypeoval plus the sum of two external lines to it.

By Theorem 2, the possible multiplicities of hyperplanes are: 2, 6, 10, 14,
18, 22. Planes of multiplicity 2 are impossible by a counting argument since 22-
and 18-planes do not have 1-lines; 10-planes are ruled out by the nonexistence of
(10, 3)-arcs in PG(2, 4). In order to rule out 6-planes, assume such a plane π exists
and consider a projection ϕ from an arbitrary 0-point in π. The planes through
an arbitrary 2-line in π are all 22-planes. Their image under ϕ is a line of type
(6, 6, 6, 2, 2) or (6, 6, 4, 4, 2). In all cases, we get a line in the projection plane of
multiplicity larger than 22, which is impossible.
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It is easily checked that a 14-plane cannot be the complement of a line and
two further points. So, it is the complement of a Baer subplane. If a plane of this
size does not exist, the (86, 22)-arc is a sum of a plane (22, 6)-arc of type (6) and
AG(3, 4). Assume there is a 14-plane. Then there is exactly one 14-plane which is
easily proved by considering the projection from a 0-point in this plane. But then
an easy counting gives Λ2 = 8, Λ1 = 70, Λ0 = 7. Such an arc is obtained by taking
the 2- and 0-points to form a PG(3, 2), where the 0-points are coplanar (all of them
are on the 14-plane).

As a matter of fact, all (86, 22)-arcs with Λ2 < 7 are obtained as the sum of a
plane (22, 6)-arc and AG(3, 4).
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