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FACTORIZATIONS OF SOME SIMPLE LINEAR GROUPS
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In this paper we have considered finite simple groups G which can be represented as a
product G = AB of two of their proper non-Abelian simple subgroups A and B. Any
such representation is called a (simple) factorization of G. Supposing that G belongs
to the infinite series of linear groups with some restrictions to the dimension of the
natural vector space onto which G acts we have determined all the factorizations of G.

Keywords: Finite simple groups, groups of Lie type, factorizations of groups

2000 MSC: main 20D06, 20D40, secondary 20G40

1. INTRODUCTION

Let G be a finite (simple) group. We are interested in the factorizations of G

into the product of two simple subgroups. In the present work we suppose that G

is the simple linear group Ln(q) and start our investigation of this series of groups

in case that n is at most 7. The results obtained are included in the following

Theorem. Let G = Ln(q) with 2 ≤ n ≤ 7. Suppose G = AB where A, B are

proper non-Abelian simple subgroups of G. Then one of the following holds:

(1) n = 2, q = 9 and A ∼= B ∼= A5;

(2) n = 4, q = 2 and A ∼= L3(2), B ∼= A6 or A7;

(3) n = 4, q > 2, q 6≡ 1 (mod 3) and A ∼= L3(q), B ∼= PSp4(q);
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(4) n = 6, q 6≡ 1 (mod 5) and A ∼= L5(q), B ∼= PSp6(q);

(5) n = 6, q = 2s > 2, s 6≡ 0 (mod 4) and A ∼= L5(q), B ∼= G2(q).

The factorizations of the groups L2(q) have been determined in [7]. This

gives (1) in the theorem. The groups L3(q) have no factorizations, see [2]. The

factorizations of the groups L4(2) ∼= A8 and L4(q) (q odd, q 6≡ 1 (mod 8)) have

been determined in [10]. This leads to the (2) and (3) (q odd, q 6≡ 1 (mod 8))

in the theorem. Some isolated linear groups as L4(4), L5(2) and L6(2) have been

treated in [1]and [3]. It has been proved that the groups L4(4) and L5(2) have no

factorizations whilst the group L6(2) has one factorization listed in (4) (with q = 2)

in the theorem.

The factorizations of all the classical simple groups into the product of two

maximal subgroups (so called maximal factorizations) have been determined in [9].

Particularly, an explicit list of the maximal factorizations of the groups Ln(q) have

also been given in [9]. We shall make use of this result here.

Note that,using the result of the above theorem especially for n = 4 (G =

L4(q)) and the results in previously published papers [4], [5] and [6], we have

finished determination of the factorizations (with two proper simple subgroups) of

all the finite simple groups of Lie type of Lie rank three. Indeed, only the groups

PSU7(q) and PΩ−

8 (q) of Lie rank three are not covered from the mentioned results;

but according to [9] these groups have no maximal factorizations and so it follows

they have no factorizations with any two proper factors A and B as well.

In our considerations we shall freely use the notation and basic information on

the finite (simple) classical groups given in [8]. Let V be the n-dimensional vector

space over the finite field GF (q) on which G = Ln(q) acts naturally, and let Pk be

the stabilizer in G of a k-dimensional subspace of V . From Proposition 4.1.17 in

[8] we can obtain the structure of Pk. In particular, it follows that P1
∼= Pn−1

∼=

{[qn−1] : GLn−1(q)}/Z(n,q−1). From this it follows immediately that P1 (∼= Pn−1)

contains a subgroup isomorphic to Ln−1(q) if and only if (n − 1, q − 1) = 1.

If a, b are positive integers and (a, b) = 1, then Orda(b) denotes the multiplicative

order of b modulo a (i.e. the least positive integer n with bn ≡ 1 (mod a)).

The following lemma is needed in the proof of the theorem.

Lemma 1.1 (see [9]). Let q be a prime power and n a positive integer. Then

there exists a prime r such that Ordr(q) unless n = 6 and q = 2 or n = 2 and q a

Mersenne prime.

Such a prime r is called a primitive prime divisor of qn − 1.
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2. PROOF OF THE THEOREM

Let G = Ln(q), where q = ps and p is a prime. In our assumptions here

2 ≤ n ≤ 7 , and G = AB where A, B are proper non-Abelian simple subgroups of

G. According to the information about known factorizations of G provided above,

it remains to treat G in the cases n = 4, 5, 6 and 7. If G = L4(q) we only suppose

q > 2 and no other restrictions on q will be applied, as for G = L5(q) or L6(q) we

assume that q > 2 as well. The list of maximal factorizations of G is given in [9]. In

case that G = Ln(q) with n = 5 or n = 7 only one maximal factorization appears

with one factor a (maximal) subgroup of G isomorphic to {Zqn
−1/q−1.n}/Z(n,q−1).

Obviously, there is no choice for one of the groups A and B to be a non-Abelian

simple subgroup of G. Now we proceed with the group G = Ln(q) where n = 4 or

n = 6 and choose (by Lemma 1.1) a primitive prime divisor of psn − 1 (recall that

if n = 6 then q > 2) to be a divisor of |B|. Using the list of maximal factorizations

in [9], by order considerations, we come to the following possibilities:

1) n = 4 or n = 6 and A ∼= Ln−1(q) ( in P1), B ∼= PSpn(q) with

(n − 1, q − 1) = 1;

2) n = 6 and A ∼= L5(q) ( in P1), B ∼= G2(q) with q = 2s > 2, s 6≡ 0 (mod 4);

3) n = 6 and A ∼= L5(q) ( in P1), B ∼= L3(q
2) with (5, q − 1) = 1.

We consider these possibilities case by case.

Case 1. These are the factorizations in (3) and (4) of the theorem. It remains

to show that these factorizations actually exist. From Proposition 3.3 in [10] we

have

SLn(q) = SLn−1(q).Spn(q)

with natural embeddings of SLn−1(q) and Spn(q) in SLn(q). Moreover, the inter-

section of these naturally embedded subgroups SLn−1(q) and Spn(q) is a subgroup

isomorphic to Spn−2(q) with natural embedding in SLn(q), too. Factoring out by

Z(SLn(q)), we obtain the factorizations in (3) and (4), as SLn−1(q) ≡ Ln−1(q) (by

the condition (n − 1, q − 1) = 1).

Case 2. Here q = 2s > 2, s 6≡ 0 (mod 4), and from the previous case it follows

that G = A.B1 where A ∼= L5(q), B1
∼= PSp6(q), and A∩B1

∼= PSp4(q). In [5] we

have proved that B1 = (A ∩ B1).B where B ∼= G2(q) with an explicit construction

in B1; also (A ∩ B1) ∩ B (= A ∩ B) ∼= L2(q). This leads, by order considerations,

to the factorization G = A.B in (5) of the theorem.

Case 3. This case is similar to one of those considered in [4]. Denote D = A∩B;

then |D| = q(q4 − 1).(6, q − 1)/(3, q2 − 1) (recall (5, q − 1) = 1). By the known
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subgroup structure of L3(q
2), it follows that D is contained in a subgroup of B

isomorphic to

H =
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2), a. detA = 1
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where ω is an element of order (3, q2 − 1) in GF (q2). Further, H = FK and

F ⊳ H, F ∩ K = 1 where
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∼= GL2(q
2)/Z(3,q2

−1).

Suppose that T = D∩F 6= 1. Then T ⊳D and T ∼= Epk where p ≤ pk ≤ q. The

centralizer of any non-identity p-element in L3(q
2) has order dividing q6(q2 − 1).

Hence |CD(T )| divides q(q2 − 1).(6, q − 1)/(3, q2 − 1). Then |D/CD(T )| is divisible

by q2 + 1. However, D/CD(T ) is a subgroup of Aut(T ) ∼= GLk(p), so

|GLk(p)| = pk(k−1)/2.(p − 1) · · · (pk − 1)

must be divisible by q2 + 1 which (in view of pk ≤ q) contradicts Lemma 1.1.

Indeed,using this lemma we can choose a primitive prime divisor of p4s−1 dividing

q2 + 1 but not dividing the order of GLk(p), which is impossible.

Thus D ∩ F = 1 and hence D is isomorphic to a subgroup of H/F ∼= K. Of

course, K contains a subgroup L ∼= SL2(q
2) of index (q2 − 1)/(3, q2 − 1) and then

D ∩L is a proper subgroup of L of order divisible by q(q2 + 1).(6, q − 1). It follows

that L2(q
2) has a proper subgroup of order divisible by q(q2 + 1) which (for q ≥ 3)

contradicts the structure of L2(q
2).

This completes the proof.
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