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1. INTRODUCTION

It has been known to Weingarten [21, 22], Eisenhart [4], Wu [23] that without
changing the principal lines on a Weingarten surface in Euclidean space, one can
find geometric coordinates in which the coefficients of the metric are expressed by
the principal curvatures (or principal radii of curvature).

The geometric parameters on Weingarten surfaces were used in [23] to find the
classes of Weingarten surfaces yielding “geometric”  !(3)-scattering systems (real
or complex) for the partial differential equations, describing these surfaces.
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We have shown that the Weingarten surfaces in Euclidean space [5, 6] and
space-like surfaces in Minkowski space [7] admit geometrically determined princi-
pal parameters (natural principal parameters), which have the following property:
all invariant functions on W-surfaces can be expressed in terms of one function  ,
which satisfies one natural partial differential equation. The Bonnet type funda-
mental theorem states that any solution to the natural partial differential equation
determines a W-surface uniquely up to motion. Thus the description of any class
of W-surfaces (determined by a given Weingarten relation) is equivalent to the
study of the solution space of their natural PDE. This solves the Lund-Regge re-
duction problem [13] for W-surfaces in Euclidean space and space-like W-surfaces
in Minkowski space.

The relationship between the solutions of certain types of partial differential
equations and the determination of various kinds of surfaces of constant curvature
has generated many results which have applications to the areas of both pure and
applied mathematics. This includes the determination of surfaces of either constant
mean curvature or Gaussian curvature. It has long been known that there is a
connection between surfaces of negative constant Gaussian curvature in Euclidean
ℝ
3 and the sine-Gordon equation. The fundamental equations of surface theory

are found to yield a type of geometrically based Lax pair. For instance, given a
particular solution of the sinh-Laplace equation, this Lax pair can be integrated to
determine the three fundamental vector fields related to the surface. These are also
used to determine the coordinate vector field of the surface.

Further results are obtained based on the fundamental equations of surface
theory, and it is shown how specific solutions of this sinh-Laplace equation can be
used to obtain the coordinates of a surface in either Minkowski ℝ3

1 or Euclidean ℝ3

space [9, 10].
In [3] Bracken introduces some fundamental concepts and equations pertaining

to the theory of surfaces in three-space, and, in particular, studies a class of sinh-
Laplace equation which has the form Δ! = ± sinh!.

In this paper we study time-like surfaces with real principal curvatures in the
three dimensional Minkowski space ℝ3

1.
A time-like surfaceℳ with real principal curvatures  1 and  2 is a Weingarten

surface (W-surface) [21, 22] if there exists a function  on ℳ and two functions
(Weingarten functions) ", # of one variable, such that

 1 = "( ),  2 = #( ).

A basic property of W-surfaces in Euclidean space is the following theorem of
Lie [12]:

The lines of curvature of any W-surface can be found in quadratures.

This remarkable property is also valid for space-like and time-like W-surfaces
in Minkowski space.

We use four invariant functions (two principal normal curvatures  1,  2 and
two principal geodesic curvatures $1, $2) and divide time-like W-surfaces into two
classes with respect to these invariants:

144 Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 143–165.



(1) the class of strongly regular time-like surfaces defined by

( 1 −  2) $1 $2 ∕= 0;

(2) the class of time-like surfaces defined by

$1 = 0, ( 1 −  2) $2 ∕= 0.

The basic tool to investigate the relation between time-like surfaces and the
partial differential equations describing them, is Theorem 2.1. This theorem is a
reformulation of the fundamental Bonnet theorem for the class of strongly regular
time-like surfaces in terms of the four invariant functions. Further, we apply this
theorem to time-like W-surfaces.

In Section 3 we prove (Proposition 3.3) that any time-like W-surface admits
locally special principal parameters (natural principal parameters).

Theorem 3.6 is the basic theorem for time-like W-surfaces of type (1):

Any strongly regular time-like W-surface is determined uniquely up to motion
by the functions " , # and the function  , satisfying the natural PDE (3.3).

Theorem 3.7 is the baic theorem for time-like Weingarten surfaces of type (2):

Any time-like W-surface with $1 = 0 is determined uniquely up to motion by
the functions ", # and the function  , satisfying the natural ODE (3.8).

In natural principal parameters the four basic invariant functions, which de-
termine time-like W-surfaces uniquely up to motions in ℝ3

1, are expressed by a
single function, and the system of Gauss-Codazzi equations reduces to a single
partial differential equation (the Gauss equation). Thus, the number of the four
invariant functions, which determine time-like W-surfaces, reduces to one invariant
function, and the number of Gauss-Codazzi equations reduces to one natural PDE.
This result gives a solution to the Lund-Regge reduction problem [13] for the time-
like W-surfaces in ℝ3

1. The Lund-Regge reduction problem has been analyzed and
discussed from several view points in the paper of Sym [18].

In Proposition 4.1 we prove that

The natural principal parameters of a given time-like W-surfaceℳ are natural
principal parameters for all parallel time-like surfaces ℳ(%), % = const ∕= 0 of ℳ.

Theorem 4.2 states that (cf. [6, 7]):

The natural PDE of a given time-like W-surface ℳ is the natural PDE of any
parallel time-like surface ℳ(%), % = const ∕= 0, of ℳ.

In [14, 16] Milnor studies surface theory in Euclidean and Minkowski space,
considering harmonic maps and various relations between the Gauss curvature &,

the mean curvature ' and the curvature ' ′ =
 1 −  2

2
. In [15, 6] it is proved that

any surface in ℝ3
1, whose Gauss curvature & and mean curvature ' satisfy the

linear relation

(& = )' + $, ), $, ( − constants; )2 + 4$( ∕= 0, (1.1)
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is parallel to a surface, satisfying one of the following conditions: ' = 0, & = 1 or
& = −1.

There arises the following question: what are the natural PDE’s describing the
surfaces, whose curvatures satisfy the relation (1.1)?

Since any time-like surface ℳ, whose invariants & and ' satisfy the linear
relation (1.1), is (locally) parallel to one of the following three types of basic sur-
faces: a surface with ' = 0; a surface with & = 1; a surface with & = −1, from
Theorem 4.2 it follows that

Up to similarity, the time-like surfaces, whose curvatures satisfy the linear
relation (1.1), are described by the natural PDE’s of the basic surfaces.

A. Ribaucour [17] has proved that a necessary condition for the curvature lines
of the first and second focal surfaces of ℳ to correspond to each other resp. to a
conjugate parametric lines on ℳ is *1 − *2 = const resp. *1 *2 = const.

Von Lilienthal [19] (cf. [20, 1, 2, 4]) has proved in ℝ3 that a surface with a rela-

tion *1 − *2 =
1

+
, + = const ∕= 0, between its principal radii of curvature *1 =

1

 1

and *2 =
1

 2
has first and second focal surfaces ℳ̃ of constant Gauss curvature

−+2 and vice versa. The involute surfacesℳ(%), % ∈ ℝ of ℳ̃ are parallel surfaces
of ℳ with the property *1 − *2 = const. This implies that the family ℳ(%) are

integrable surfaces as a consequence of the integrability of ℳ̃. The curvatures of
the above surfaces ℳ satisfy the relation & = , ' ′, , = const ∕= 0.

In ℝ3
1 one can prove in a similar way the corresponding property: The first

focal surface of a time-like surface with & = , ' ′, , ∕= 0, is space-like of constant
Gauss curvature ,2/4, and its second focal surface is time-like of constant Gauss
curvature −,2/4.

Obviously the time-like surfaces with & = , ' ′, , = const ∕= 0, are not
included in the class characterized by (1.1).

These surfaces belong to the classes of time-like W-surfaces, defined by the
following more general linear relation

(& = )' + ,' ′ + $, ), ,, $, ( − constants; )2 − ,2 + 4$( ∕= 0 (1.2)

between the Gauss curvature &, the mean curvature ' and the curvature ' ′. We
denote this class by ".

We show that the class " is the class of linear fractional time-like W-surfaces
with respect to the principal curvatures (cf. [6, 7]). Furthermore, ifℳ is a time-like
surface in ", then its parallel surfaces ℳ(%), % = const, belong to " too.

In the main Theorem 5.3 in this paper we determine ten basic relations with
respect to the constants in (1.2) and each of them generates a basic subclass of
surfaces of ". Any time-like surfaceℳ, whose invariants &, ' and ' ′ satisfy the
linear relation (1.2) is (locally) parallel to one of these basic surfaces.
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In [10] Hu has cleared up the relationship between the PDE’s

)  − )vv = ± sin) (sin−Gordon PDE),

)  − )vv = ± sinh) (sinh−Gordon PDE),

)  + )vv = ± sin) (sin−Laplace PDE),

)  + )vv = ± sinh) (sinh−Laplace PDE)

and the construction of various kinds of surfaces of constant curvature in ℝ3 or ℝ3
1.

In [11] by using Darboux transformations, from a known solution to the sinh-
Laplace (resp. sin-Laplace) equation have been obtained explicitly new solutions
to the sin-Laplace (resp. sinh-Laplace) equation.

Time-like surfaces with positive Gauss curvature and imaginary principal cur-
vatures have been constructed in [8].

It is essential to note that the natural PDE’s of the time-like W-surfaces from
the class " are expressed in the form (. = "(.) , where ( is one of the operators
(cf. [6, 7]):

Δ. := .!! + ."", Δ̄. := .!! − ."";

Δ∗. := .!! + (.−1)"", Δ̄∗. := .!! − (.−1)"".

2. PRELIMINARIES

Let ℝ3
1 be the three dimensional Minkowski space with the standard flat met-

ric ⟨ , ⟩ of signature (2, 1). We assume that the following orthonormal coordinate
system /010203 : 021 = 022 = −023 = 1, ⟨0#, 0$⟩ = 0, 1 ∕= 2 is fixed and gives the
orientation of the space.

Letℳ : 3 = 3(!, 4), (!, 4) ∈ ' be a time-like surface in the three dimensional
Minkowski space ℝ3

1 and ∇ be the flat Levi-Civita connection of the metric ⟨ , ⟩.
The unit normal vector field to ℳ is denoted by 5 and 6,F,7; 8,9,< stand for
the coefficients of the first and the second fundamental forms, respectively. Then
we have

6 = 32 < 0, F = 3 3v, 7 = 32v > 0, 67− F 2 < 0, 52 = 1.

The coefficients of the second fundamental form are given as follows:

8 = 5 3  = −5 3 , 9 = 5 3 v = −5 3v = −5v 3 , < = 5 3vv = −5v 3v.

The linear Weingarten map $ is determined by the conditions

$(3 ) = 5 , $(3v) = 5v.
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Then the mean curvature ' and the Gauss curvature & of ℳ are given in the
standard way

' = −1

2
tr $, & = det $.

While the Weingarten map of a space-like surface satisfies the inequality '2−
& ≥ 0 and is always diagonalizable, the Weingarten map on a time-like surface can
satisfy the inequalities '2 −& ≥ 0 or '2 −& < 0.

Throughout this paper we deal with time-like surfaces satisfying the inequality
'2 −& ≥ 0, i.e. time-like surfaces with real principal curvatures.

We suppose that the surfaces under consideration are free of points with '2−
& = 0, i.e. satisfy the strong inequality

'2 −& > 0 (2.1)

and denote by ' ′ the invariant curvature

' ′ =
√

'2 −&.

Under the above condition the theory of time-like surfaces can be developed in
a way similar to the theory of surfaces in Euclidean space or space-like surfaces in
Minkowski space.

Time-like surfaces satisfying the condition (2.1) can be locally parameterized
by principal parameters. Further we assume that the parametric net is principal,
i.e.

F (!, 4) = 9(!, 4) = 0, (!, 4) ∈ '.
Then the principal curvatures  1,  2 and the principal geodesic curvatures (geodesic
curvatures of the principal lines) $1, $2 are given by

 1 =
8

6
,  2 =

<

7
; $1 =

6v

26
√
7
, $2 =

−7 

27
√
−6

, (2.2)

and  1,  2 satisfy the Rodrigues’ formulas:

5 = − 1 3 , 5v = − 2 3v.

We consider the tangential frame field {?,@ } determined by

? :=
3 √
−6

, @ :=
3v√
7

and suppose that the moving frame field ?@ 5 is positive oriented.
The following Frenet type formulas for the frame field ?@ 5 are valid

∣∣∣∣∣∣∣∣

∇% ? = $1 @ − 15,

∇%@ = $1?,

∇% 5 =− 1?,

∣∣∣∣∣∣∣∣

∇& ? = −$2 @,
∇& @ = −$2? + 2 5,

∇& 5 = − 2@.
(2.3)
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The Codazzi equations have the form

$1 =
−@ ( 1)

 1 −  2
=

−( 1)v√
7( 1 −  2)

, $2 =
−?( 2)

 1 −  2
=

−( 2) √
−6 ( 1 −  2)

, (2.4)

and the Gauss equation can be written as follows:

?($2) + @ ($1) + $21 − $22 = − 1 2 = −&,

or
($2) √
−6

+
($1)v√

7
+ $21 − $22 = − 1 2 = −&. (2.5)

A time-like surface ℳ : 3 = 3(!, 4), (!, 4) ∈ ' parameterized by principal
parameters is said to be strongly regular if (cf. [5, 6, 7])

( 1(!, 4)−  2(!, 4))$1(!, 4)$2(!, 4) ∕= 0, (!, 4) ∈ '.

The Codazzi equations (2.4) imply that

$1$2 ∕= 0 ⇐⇒ ( 1)v( 2) ∕= 0.

Because of (2.4) the formulas

√
−6 =

−( 2) 
$2( 1 −  2)

> 0,
√
7 =

−( 1)v
$1( 1 −  2)

> 0 (2.6)

are valid on strongly regular time-like surfaces.
Taking into account (2.6), for strongly regular time-like surfaces formulas (2.3)

become
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

  = −
!1 ("2) 
!2("1−"2)

# +
"1 ("2) 
!2("1−"2)

$, # =−
!1 ("2) 
!2("1−"2)

 , $ =
"1 ("2) 
!2("1−"2)

 ;

 v =
!2 ("1)v
!1("1−"2)

#, #v =
!2 ("1)v
!1("1−"2)

 −
"2 ("1)v
!1("1−"2)

$, $v =
"2 ("1)v
!1("1 − "2)

#.

(2.7)

Finding the compatibility conditions for the system (2.7), we reformulate the
fundamental Bonnet theorem for strongly regular time-like surfaces in terms of the
invariants of the surface.

Theorem 2.1. Let the four functions  1(!, 4),  2(!, 4), $1(!, 4), $2(!, 4) be
defined in a neighborhood ' of (!0, 40) and satisfy the following conditions:

1) ( 1 −  2) $1 ( 1)v < 0, ( 1 −  2) $2 ( 2) < 0,

2.1)

(
ln

( 1)v
$1

)

 

=
( 1) 
 1 −  2

,

(
ln

( 2) 
$2

)

v

= − ( 2)v
 1 −  2

,

2.2)
 1 −  2

2

(
($22) 
( 2) 

+
($21)v
( 1)v

)
− ($21 − $22) =  1 2.
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Let 30?0@050 be an initial positive oriented orthonormal frame.

Then there exists a unique strongly regular time-like surface ℳ : 3 = 3(!, 4),
(!, 4) ∈ '0 ((!0, 40) ∈ '0 ⊂ ') with prescribed invariants  1,  2, $1, $2 such that

3(!0, 40) = 30, ?(!0, 40) = ?0, @ (!0, 40) = @0, 5(!0, 40) = 50.

Formulas (2.3) imply explicit expressions for the curvature and the torsion of
any principal line on the time-like surface ℳ.

Let A1 : 3 = 3(B), ℳ ∈ C be a line from the family ℱ1 (4 = const) parameter-
ized by a natural parameter and D1, E1 be its curvature and torsion, respectively.

Since A1 is an integral line of the unit time-like vector field ? , then

3′ = ?, 3′′ = ∇%? = $1 @ −  1 5,

3′′′ = ∇%∇%? = −?( 1) 5 +?($1)@ + ( 21 + $21)?,

D21 =  21 + $21 .

We use the formula

E =
3′3′′3′′′

3′′2
.

Since  21 + $21 > 0 along A1, we find

E1 =
 1?($1)− $1?( 1)

 21 + $21
=

 21
D21

?

(
$1
 1

)
.

Denoting sin G1 = '1
(1

and cos G1 =
)1
(1
, we obtain

E1 = ?(G1).

For the lines A2 of the family ℱ2 we obtain in a similar way the formulas

3′ = @, 3′′ = ∇& @ = −$2? +  2 5,

3′′′ = ∇&∇& @ = @ ( 2) 5− @ ($2)? + ($22 −  22 )@,

D22 = H2 3
′′2 = H2 ( 

2
2 − $22), H2 = sign 3′′2,

and in the case 3′′2 ∕= 0,

E2 = H2
$2 @ ( 2)−  2 @ ($2)

D22
= −H2

 22
D22

@

(
$2
 2

)
.

150 Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 143–165.



3. NATURAL PRINCIPAL PARAMETERS ON TIME-LIKE WEINGARTEN
SURFACES

In this section we consider diagonalizable time-like Weingarten surfaces. For
the sake of symmetry with respect to the principal curvatures  1 and  2 we use the
following characterization of time-like Weingarten surfaces:

A diagonalizable time-like surface ℳ : 3 = 3(!, 4), (!, 4) ∈ ' is Wein-
garten if there exist two real differentiable functions "( ), #( ), "( ) − #( ) ∕=
0, " ′( )#′( ) ∕= 0,  ∈ ℐ ⊆ ℝ such that the principal curvatures of ℳ at every
point are given by  1 = "( ),  2 = #( ),  =  (!, 4), (!, 4) ∈ '.

The next statement gives a property of time-like Weingarten surfaces, which
allows us to introduce special principal parameters on such surfaces.

Lemma 3.1. Let ℳ : 3 = 3(!, 4), (!, 4) ∈ ' be a diagonalizable time-like
Weingarten surface parameterized with principal parameters. Then the function

. =
√
−6 exp

(∫
" ′I 

" − #

)

does not depend on 4, while the function

J =
√
7 exp

(∫
#′I 

# − "

)

does not depend on !.

Proof. Taking into account (2.4) and (2.2), we find

$1 =
−" ′( )@ ( )

"( )− #( )
= @ (ln

√
−6), $2 =

−#′( )?( )

"( )− #( )
= −?(ln

√
7),

which imply that

@

(∫
" ′( ) I 

"( )− #( ))
+ ln

√
−6
)

= 0, ?

(∫
#′( ) I 

#( )− "( )
+ ln

√
7

)
= 0.

The last equalities mean that .v = 0 and J = 0.

We define special principal parameters on a time-like Weingarten surface as
follows:

Definition 3.2. Letℳ : 3 = 3(!, 4), (!, 4) ∈ ' be a diagonalizable time-like
Weingarten surface parameterized with principal parameters. The parameters (!, 4)
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are said to be natural principal, if the functions .(!) and J(4) from Lemma 3.1
are constants.

Proposition 3.3. Any diagonalizable time-like Weingarten surface admits lo-
cally natural principal parameters.

Proof. Letℳ : 3 = 3(!, 4), (!, 4) ∈ ' be a time-like Weingarten surface in the
Minkowski space ℝ3

1, parameterized with principal parameters. Then  1 = "( ),
 2 = #( ),  =  (!, 4) for some differentiable functions " , # and  satisfying the
conditions ("( )− #( )) " ′( ) #′( ) ∕= 0, (!, 4) ∈ '.

Let # = const ∕= 0, $ = const ∕= 0, (!0, 40) ∈ ' and  0 =  (!0, 40). We
change the parameters (!, 4) ∈ ' with (!̄, 4̄) ∈ '̄ by the formulas

!̄ = #

∫  

 0

√
−6 exp

(∫ )

)0

" ′I 

" − #

)
I! + !0, !̄0 = const,

4̄ = $

∫ v

v0

√
7 exp

(∫ )

)0

#′I 

# − "

)
I4 + 40, 4̄0 = const.

According to Lemma 3.1 it follows that (!̄, 4̄) are again principal parameters and

6̄ = − 1

#2
exp

(
−2
∫ )

)0

" ′I 

" − #

)
, 7̄ =

1

$2
exp

(
−2
∫ )

)0

#′I 

# − "

)
. (3.1)

Then for the functions from Lemma 3.1 we find

.(!̄) = ∣#∣−1, J(4̄) = ∣$∣−1.

Furthermore #
2 6̄(!0, 40) = −1, $

2 7̄(!0, 40) = 1.

We assume now that the considered time-like Weingarten surface ℳ : 3 =
3(!, 4), (!, 4) ∈ ' is parameterized with natural principal parameters (!, 4). It
follows from the above proposition that the coefficients 6 and 7 (consequently 8
and <) are expressed by the invariants of the surface.

As an immediate consequence from Proposition 3.3 we get

Corollary 3.4. Let ℳ be a time-like Weingarten surface parameterized by
natural principal parameters (!, 4). Then any natural principal parameters (!̃, 4̃)
on ℳ are determined by (!, 4) up to an affine transformation of the type

!̃ = %11 !+ K1, 4̃ = %22 4 + K2, %11%22 ∕= 0,

or of the type
!̃ = %12 4 + A1, 4̃ = %21 !+ A2, %12%21 ∕= 0,
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where %#$ , K#, A#; 1, 2 = 1, 2 are constants.

Next we give a simple criterion principal parameters to be natural.

Proposition 3.5. Let a time-like Weingarten surfaceℳ : 3 = 3(!, 4), (!, 4) ∈
' be parameterized with principal parameters. Then (!, 4) are natural principal if
and only if √

−67( 1 −  2) = const ∕= 0. (3.2)

Proof. The equality
√
−67 ( 1 −  2) = A .J, A = const ∕= 0, and Lemma 3.1

imply the assertion.

3.1. STRONGLY REGULAR TIME-LIKE W-SURFACES.

We consider strongly regular time-like W-surfaces, i.e. time-like W-surfaces,
satisfying the condition

  (!, 4) v(!, 4) ∕= 0, (!, 4) ∈ '.

Our main theorem for such surfaces is

Theorem 3.6. Let "( ), #( );  ∈ ℐ, be two differentiable functions satisfying
"( ) − #( ) ∕= 0, " ′( ) #′( ) ∕= 0, and let  (!, 4), (!, 4) ∈ ' be a differentiable
function such that

   v ∕= 0,  (!, 4) ∈ ℐ.

Let (!0, 40) ∈ ',  0 =  (!0, 40) and # ∕= 0, $ ∕= 0 be two constants. If

#
2 exp

(
2

∫ )

)0

" ′I 

" − #

)[
#′   +

(
#′′ − 2#′2

# − "

)
 2 

]

+$
2 exp

(
2

∫ )

)0

#′I 

# − "

)[
" ′ vv +

(
" ′′ − 2" ′2

" − #

)
 2v

]
= "#(" − #),

(3.3)

then there exists a unique (up to a motion) strongly regular time-like Weingarten
surface ℳ : 3 = 3(!, 4), (!, 4) ∈ '0 ⊂ ' with invariants

 1 = "( ),  2 = #( ),

$1 = exp

(∫ )

)0

#′I 

# − "

) −$" ′

" − #
 v, $2 = exp

(∫ )

)0

" ′I 

" − #

) −##′

" − #
  .

(3.4)
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Furthermore, (!, 4) are natural principal parameters for ℳ.

Proof. Using Proposition 3.3, we obtain that the integrability conditions 2.1)
and 2.2) in Theorem 2.2 reduce to (3.3), which proves the assertion.

Introducing the functions

L :=

∫ )

)0

" ′( ) I 

"( )− #( )
, C :=

∫ )

)0

#′( ) I 

#( )− "( )
, (3.5)

we can write the PDE (3.3) in the form

#
2 02*

(
C  + L C − C2

 

)
− $

2 02+
(
Lvv + Lv Cv − L2v

)
= −" #, (3.6)

and the principal geodetic curvatures (3.4) in the form

$1 = −$ 0+ Lv, $2 = # 0* C . (3.7)

Hence, with respect to natural principal parameters every strongly regular
time-like Weingarten surface possesses a natural PDE (3.3) (or equivalently (3.6)).

3.2. TIME-LIKE W-SURFACES WITH $1 = 0.

In this subsection we consider time-like W-surfaces in Minkowski space with
first principal geodesic curvature $1 = 0 and prove the fundamental theorem of
Bonnet type for this class.

Let ℳ : 3 = 3(!, 4), (!, 4) ∈ ' be a time-like W-surface, parameterized by
natural principal parameters. Then we can assume

#

√
6 = 0* , $

√
7 = 0+ ,

where L and C are the functions (3.5) and #, $ are some positive constants. We
note that under the condition $1 = 0 it follows that the function  =  (!) does not
depend on 4.

Considering the system (2.3), we obtain that the compatibility conditions for
this system reduce to only one - the Gauss equation, which has the form:

?($2)− $22 = −"( ) #( ).

Thus we obtain the following Bonnet type theorem for time-like W-surfaces
satisfying the condition $1 = 0:

Theorem 3.7. Let "( ), #( );  ∈ ℐ, be two differentiable functions sat-
isfying "( ) − #( ) ∕= 0, " ′( ) #′( ) ∕= 0 and let  (!, 4) =  (!), (!, 4) ∈ ' be a
differentiable function such that

  ∕= 0,  (!, 4) ∈ ℐ.
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Let (!0, 40) ∈ ',  0 =  (!0, 40) and # > 0 be a constant. If

#
2 02* (C  + L C − C2

 ) = −"( ) #( ), (3.8)

then there exists a unique (up to a motion) time-like W-surface ℳ : 3 = 3(!, 4),
(!, 4) ∈ '0 ⊂ ' with invariants

 1 = "( ),  2 = #( ),

$1 = 0, $2 = # 0* (C) .
(3.9)

Furthermore, (!, 4) are natural principal parameters on ℳ.

Hence, with respect to natural principal parameters every time-like Weingarten
surface with $1 = 0 possesses a natural ODE (3.8).

4. PARALLEL TIME-LIKE SURFACES IN MINKOWSKI SPACE AND THEIR
NATURAL PDE’S

Let ℳ : 3 = 3(!, 4), (!, 4) ∈ ' be a time-like surface, parameterized by
principal parameters and 5(!, 4), 52 = 1 be the unit normal vector field of ℳ. The
parallel surfaces of ℳ are given by

ℳ(%) : 3̄(!, 4) = 3(!, 4) + % 5(!, 4), % = const ∕= 0, (!, 4) ∈ '. (4.1)

We call the family {ℳ(%), % = const ∕= 0} the parallel family of ℳ.
Taking into account (4.1), we find

3̄ = (1− %  1) 3 , 3̄v = (1− %  2) 3v. (4.2)

Excluding the points, where (1−%  1)(1−%  2) = 0, we obtain that the correspond-
ing unit normal vector fields 5̄ toℳ(%) and 5 toℳ satisfy the equality 5̄ = H 5, where
H := sign (1−%  1)(1−%  2). In view of (4.2) it follows that 6̄ < 0 and 7̄ > 0. Hence,
the parallel surfaces ℳ(%) of a time-like surface ℳ are also time-like surfaces.

The relations between the principal curvatures  1(!, 4),  2(!, 4) of ℳ and
 ̄1(!, 4),  ̄2(!, 4) of its parallel time-like surface ℳ(%) are

 ̄1 = H
 1

1− %  1
,  ̄2 = H

 2
1− %  2

;  1 =
H  ̄1

1 + % H  ̄1
,  2 =

H  ̄2
1 + % H  ̄2

. (4.3)

Let& =  1  2, ' =
1

2
( 2 +  2), '

′ =
1

2
( 2 −  2) be the three invariants of the

time-like surfaceℳ. The equalities (4.3) imply the relations between the invariants
&̄, '̄ and '̄ ′ of ℳ(%) and the corresponding invariants of ℳ:

& =
&̄

1 + 2% H'̄ + %2&̄
, ' =

H '̄ + %&̄

1 + 2% H'̄ + %2&̄
, ' ′ =

H '̄ ′

1 + 2% H '̄ + %2&̄
. (4.4)
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Now let ℳ : 3 = 3(!, 4), (!, 4) ∈ ' be a time-like Weingarten surface with
Weingarten functions "( ) and #( ). We suppose that (!, 4) are natural principal
parameters for ℳ. We show that (!, 4) are also natural principal parameters for
any parallel time-like surfaceℳ(%).

Proposition 4.1. The natural principal parameters (!, 4) of a given time-
like W-surfaceℳ are natural principal parameters for all parallel time-like surfaces
ℳ(%), % = const ∕= 0 of ℳ.

Proof. Let (!, 4) ∈ ' be natural principal parameters forℳ, (!0, 40) be a fixed
point in ' and  0 =  (!0, 40). The coefficients 6 and 7 of the first fundamental
form of ℳ are given by (3.1). The corresponding coefficients 6̄ and 7̄ of ℳ(%) in
view of (4.2) are

6̄ = (1− %  1)
2 6, 7̄ = (1− %  2)

27. (4.5)

Equalities (4.3) imply that ℳ(%) is again a Weingarten surface with Weingarten
functions

 ̄1(!, 4) = "̄( ) =
H"( )

1− %"( )
,  ̄2(!, 4) = #̄( ) =

H#( )

1− %#( )
. (4.6)

Using (4.6), we compute

"̄ − #̄ =
H(" − #)

(1− % ")(1− % #)
,

which shows that sign ("̄ − #̄) = sign (" − #).
Further, we denote by "0 := "( 0), #0 := #( 0) and taking into account (3.2)

and (4.5), we compute

√
−6̄ 7̄ ("̄ − #̄) =

√
−67 (" − #) = const ∕= 0,

which proves the assertion.

Using the above statement, we prove the following theorem.

Theorem 4.2. The natural PDE of a given time-like W-surface ℳ is the
natural PDE of any parallel time-like surface ℳ(%), % = const ∕= 0, of ℳ.

Proof. We have to express equation (3.3) in terms of the Weingarten functions
of the parallel time-like surface ℳ(%).

Putting

6̄0 = (1 − %  1(!0, 40))
2 60 = −#

−2 (1− % "0)
2 =: −#̄

−2,

7̄0 = (1 − %  2(!0, 40))
2 70 = $

−2 (1− % #0)
2 =: $̄−2,
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we obtain

#̄
2 exp

(
2

∫ )

)0

"̄ ′I 

"̄ − #̄

)[
#̄′   +

(
#̄′′ − 2#̄′2

#̄ − "̄

)
 2 

]

+ $̄
2 exp

(
2

∫ )

)0

#̄′I 

#̄ − "̄

)[
"̄ ′ vv +

(
"̄ ′′ − 2"̄ ′2

"̄ − #̄

)
 2v

]
− "̄ #̄("̄ − #̄)

= #
2 exp

(
2

∫ )

)0

" ′I 

" − #

)[
#′   +

(
#′′ − 2#′2

# − "

)
 2 

]

+ $
2 exp

(
2

∫ )

)0

#′I 

# − "

)[
" ′ vv +

(
" ′′ − 2" ′2

" − #

)
 2v

]
− " #(" − #).

Hence, the natural PDE of ℳ(%) in terms of the Weingarten functions "̄( ), #̄( )
coinsides with the natural PDE of ℳ in terms of the Weingarten functions "( )
and #( ).

5. TIME-LIKE SURFACES WHOSE CURVATURES SATISFY A LINEAR
RELATION

We now consider time-like W-surfaces, whose three invariants &, ' and ' ′

satisfy a linear relation:

(& = )' + , ' ′ + $, ), ,, $, ( − constants, )2 − ,2 + 4$( ∕= 0. (5.1)

A time-like W-surface with principal curvatures  1 and  2 is said to be linear
fractional if

 1 =
M 2 +N

O 2 +P
, NO −MP ∕= 0. (5.2)

We exclude the case M = P, N = O = 0, which characterizes the points with
'2 −& = 0, and show that the classes of surfaces with characterizing conditions
(5.1) and (5.2), respectively, coincide.

Lemma 5.1. Any surface whose invariants & =  1  2, ' =
1

2
( 1 +  2) and

' ′ =
1

2
( 1 −  2) satisfy the linear relation (5.1) is a linear fractional time-like

Weingarten surface determined by (5.2), and vice versa.

The relations between the constants ), ,, $, ( in (5.1) and M,N,O,P in (5.2)
are given by the equalities:

) = M−P, , = −(M+P), $ = N, ( = O. (5.3)

We denote by " the class of all time-like surfaces with '2 − & > 0, whose
curvatures satisfy (5.1) or equivalently (5.2).
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The aim of our study is to classify all natural PDE’s of the surfaces from the
class ".

The parallelism between two surfaces given by (4.1) is an equivalence relation.
On the other hand, Theorem 4.2 shows that the surfaces from an equivalence class
have one and the same natural PDE. Hence, it is sufficient to find the natural PDE’s
of the equivalence classes. For any equivalence class, we use a special representative,
which we call a basic class. Thus the classification of the natural PDE’s of the
surfaces in the class " reduces to the natural PDE’s of the basic classes.

In view of Theorem 4.2, we prove the following classification theorem.

Theorem 5.2. Up to similarity, the time-like surfaces in Minkowski space,
whose curvatures &, ' and ' ′ satisfy the linear relation

(& = )' + ,' ′ + $, ), ,, $, ( − constants; )2 − ,2 + 4$( ∕= 0,

are described by the natural PDE’s of the following basic surfaces:

(1) ' = 0 :  = 0,, Δ̄. = 0,;

(2) ' =
1

2
:  =

1

2
(1− 0,), Δ̄. = sinh.;

(3) ' ′ = 1 : Δ̄∗(0)) = 2  ( + 2);

(4) ' = , ' ′ (,2 > 1) : Δ̄∗( -) = 2
, (, + 1)

(, − 1)2
 ;

(5) ' = , ' ′ (,2 < 1) : Δ∗( -) = 2
, (, + 1)

(, − 1)2
 ;

(6)

∣∣∣∣∣
' = ,' ′+1

,2 > 1
:  =

(,−1).+2

2
, Δ̄∗(.-)=

,((,−1).+2)((,+1).+2)

2(,−1).
;

(7)

∣∣∣∣∣
' = , ' ′+1

,2 < 1
:  =

(,−1).+2

2
, Δ∗(.-)=

,((,−1).+2)((,+1).+2)

2(, − 1).
;

(8) & = −1 :  = tan., Δ. = − sin.;

(9) & = 2' ′ :  =
.− 4

.− 2
, Δ̄∗(0,) = 2;
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(10)& = , ' ′+$ (, ∕= 0, $ < 0) :

∣∣∣∣∣∣∣∣

 = .+
,

2
, ℐ =

1√−$ arctan
.√−$ ,

Δ̄∗(0- ℐ) = −, $

2

. (, .+ 2 $)

.2 − $
.

Proof. According to the constant O in (5.2), the linear fractional time-like
W-surfaces are divided into two classes: linear fractional time-like W-surfaces, de-
termined by the condition O = 0 and linear fractional time-like W-surfaces, deter-
mined by the condition O ∕= 0.

I. Linear fractional time-like Weingarten surfaces with O = 0.

This class is determined by the equality

)' + , ' ′ + $ = 0, (), $) ∕= (0, 0), )2 − ,2 ∕= 0. (5.4)

For the invariants of the time-like parallel surfaceℳ(%) ofℳ, because of (4.4),
we get the relation

H ()+ 2 % $) '̄ + H , '̄ ′ + $ = −% ()+ % $) &̄. (5.5)

Let Q := sign ()2−,2). Each time choosing appropriate values for the constants
#, $ and  0 in (3.3), we consider the following subclasses and their natural PDE’s:

1) ) = 0, , ∕= 0, $ ∕= 0. Assuming that $ = 1, the relation (5.4) becomes

, ' ′ + 1 = 0.

The natural PDE for these W-surfaces is

(0−- ))  − (0- ))vv =
2

,
 (,  − 2). (5.6)

Up to similarities these time-like W-surfaces are generated by the basic class
' ′ = 1 with the natural PDE

(0))  − (0−))vv = 2  ( + 2), (5.6∗)

which is the case (3) in the statement of the theorem.

2) ) ∕= 0, $ = 0. Assuming that ) = 1, the relation (5.4) becomes

' + , ' ′ = 0.

2.1) , ∕= 0, Q = −1 (,2−1 > 0). Choosing $
2 ,−1

,+1
 
−(-+1)
0 = 1, #

2  -−1
0 = 1,

the natural PDE becomes

(
 −-
)
  
−
(
 -
)
vv

= 2
,(, − 1)

(, + 1)2
 , (5.7)

which is the case (4) in the statement of the theorem.
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2.2) , ∕= 0, Q = 1 (,2−1 < 0). Choosing $
2 ,−1

,+1
 
−(-+1)
0 = −1, #

2  -−1
0 = 1,

the natural PDE becomes

(
 −-
)
  

+
(
 -
)
vv

= 2
,(, − 1)

(, + 1)2
 , (5.8)

which is the case (5) in the statement of the theorem.

2.3) , = 0. Putting  = 0,, we get the natural PDE for time-like surfaces
with ' = 0:

.  − .vv = 0,, (5.9)

which is the case (1) in the statement of the theorem.

3) ) ∕= 0, , = 0, $ ∕= 0. Assuming that ) = 1, the relation (5.4) becomes

' + $ = 0.

Putting ∣' ∣ 0, := ' −  = ' ′ > 0, we get the one-parameter system of
natural PDE’s for CMC time-like surfaces with ' = −$:

.  − .vv = 2 ∣' ∣ sinh.. (5.10)

Up to similarities these time-like W-surfaces are generated by the basic class
∣' ∣ = 1

2 with the natural PDE

.  − .vv = sinh., (5.10∗)

which is the case (2) in the statement of the theorem.

4) ) ∕= 0, , ∕= 0, $ ∕= 0. Assuming that ) = 1 we have

' + , ' ′ + $ = 0, ,2 − 1 ∕= 0.

Let . := 2' ′ =
−2

, + 1
( + $) > 0.

4.1) If Q = −1 (,2 − 1 > 0) and choosing

$
2 =

, + 1

, − 1

( −2
, + 1

( 0 + $)

)-+1

, #
2 =

( −2
, + 1

( 0 + $)

)−(-−1)

,

the natural PDE becomes

(
.−-
)
  
−
(
.-
)
vv

=
,

2 (, + 1)

((, + 1).+ 2 $)((, − 1).+ 2 $)

.
. (5.11)

Up to similarities these time-like W-surfaces are generated by the basic
class ' = , ' ′ + 1, ,2 > 1 with the natural PDE

(
.-
)
  
−
(
.−-
)
vv

=
,

2 (, − 1)

((, + 1).+ 2)((, − 1).+ 2)

.
, (5.11∗)

which is the case (6) in the statement of the theorem.
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4.2) If Q = 1 (,2 − 1 < 0) and choosing

$
2 = −, + 1

, − 1

( −2
, + 1

( 0 + $)

)-+1

, #
2 =

( −2
, + 1

( 0 + $)

)−(-−1)

,

the natural PDE becomes

(
.−-
)
  

+
(
.-
)
vv

=
,

2 (, + 1)

((, + 1).+ 2 $)((, − 1).+ 2 $)

.
. (5.12)

Up to similarities these time-like W-surfaces are generated by the basic
class ' = , ' ′ + 1, ,2 < 1 with the natural PDE

(
.-
)
  

+
(
.−-
)
vv

=
,

2 (, − 1)

((, + 1).+ 2)((, − 1).+ 2)

.
, (5.12∗)

which is the case (7) in the statement of the theorem.

II. Linear fractional time-like Weingarten surfaces with O ∕= 0.

Let O = 1. The equality (5.1) gets the form

& = )' + , ' ′ + $. (5.13)

The corresponding relation for the parallel surface ℳ(%) is

H()+ 2 % $) '̄ + H , '̄ ′ + $ = (1− %)− %2 $) &̄. (5.14)

Each time choosing appropriate values for the constants #, $ and  0 in (3.3), we
consider the following subclasses and their natural PDE’s:

5) ) = $ = 0, , ∕= 0. The relation (5.13) becomes

& = ,' ′ ⇐⇒ *1 − *2 = −
2

,
,

where *1 =
1

 1
, *2 =

1

 2
are the principal radii of curvature of ℳ.

Putting . := 4
 − ,

2  − ,
, the natural PDE of these time-like surfaces gets the

form
(
0,
)
  
−
(
0−,
)
vv
− ,4

8
= 0. (5.15)

Up to similarities these time-like W-surfaces are generated by the basic class
& = 2' ′ with the natural PDE

(
0,
)
  
−
(
0−,
)
vv
− 2 = 0, (5.15∗)

which is the case (9) in the statement of the theorem.
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6) (), $) ∕= (0, 0), )2 + 4$ ≥ 0. The relation (5.14) implies that there exists
a time-like surface ℳ(%), parallel to ℳ, which satisfies the relation (5.4).
Hence the natural PDE of ℳ is one of the PDE’s (5.6) - (5.12).

7) )2 + 4 $ < 0. It follows that $ < 0. The relation (5.14) implies that there
exists a time-like surface ℳ(%) parallel to ℳ, which satisfies the relation

& = ,' ′ + $. (5.16)

7.1) , = 0. The relation (5.16) becomes & = $ < 0, i.e. ℳ is of constant

negative sectional curvature $. Putting . := 2 arctan
 √−$ , we get the

natural PDE of this surface

.  + .vv = −&2 sin.. (5.17)

Up to similarities these time-like W-surfaces are generated by the basic
class & = −1 with the natural PDE

.  + .vv = − sin., (5.17∗)

which is the case (8) in the statement of the theorem.

7.2) , ∕= 0, $ < 0. Choosing  0 =
,

2
, the natural PDE of ℳ becomes

(exp (, ℐ))  − (exp (−, ℐ))vv = −, $

2

. (, .+ 2 $)

.2 − $
, (5.18)

where

ℐ =
1√−$ arctan

.√−$ , . :=  − ,

2
,

which is the case (10) in the statement of the theorem.

The proof of Theorem 5.2 is complete.

6. SUMMARY

Summarizing the results in [6, 7] and in the present paper, we obtain the
following parallel between the natural PDE’s describing linear fractional W-surfaces
in ℝ3, linear fractional space-like and time-like W-surfaces in ℝ3

1, respectively.

(i) The natural PDE for a Weingarten surface in Euclidean space is of the type:

#
2 exp

(
2

∫ )

)0

" ′I 

" − #

)[
#′   +

(
#′′ − 2#′2

# − "

)
 2 

]

− $
2 exp

(
2

∫ )

)0

#′I 

# − "

)[
" ′ vv +

(
" ′′ − 2" ′2

" − #

)
 2v

]
= −"#(" − #),
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or, equivalently,

#
2 02* (C  + L C − C2

 ) + $
2 02+(Lvv + Lv Cv − L2v ) = "( ) #( ).

(ii) The natural PDE for a space-like Weingarten surface in Minkowski space is
of the type:

%2 exp

(
2

∫ )

)0

" ′I 

" − #

)[
#′   +

(
#′′ − 2#′2

# − "

)
 2 

]

−K2 exp
(
2

∫ )

)0

#′I 

# − "

)[
" ′ vv +

(
" ′′ − 2" ′2

" − #

)
 2v

]
= "#(" − #),

or, equivalently,

#
2 02* (C  + L C − C2

 ) + $
2 02+(Lvv + Lv Cv − L2v ) = −"( ) #( ).

(iii) The natural PDE for a time-like Weingarten surface with real principal cur-
vatures in Minkowski space is of the type:

#
2 exp

(
2

∫ )

)0

" ′I 

" − #

)[
#′   +

(
#′′ − 2#′2

# − "

)
 2 

]

+$
2 exp

(
2

∫ )

)0

#′I 

# − "

)[
" ′ vv +

(
" ′′ − 2" ′2

" − #

)
 2v

]
= "#(" − #),

or, equivalently,

#
2 02*

(
C  + L C − C2

 

)
− $

2 02+
(
Lvv + Lv Cv − L2v

)
= −"( ) #( ).

Therefore for the corresponding basic linear fractional surfaces in ℝ3 and ℝ3
1

we obtain the correspondence between their natural PDE’s.
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