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1. INTRODUCTION

We consider the function spaces L;[—fr, 7], 1 <p < oc, and C*[—7, 7|, where

Lil-m.7]={f: R~ R: f(z +2x) = f(a) ae. fl-rr € Ly[-m 7]},
C*'l-m.wl={f e CR): f(z+27) = fla)},

normed, respectively, with the usual L,-norm over the interval -7, 7] for 1 < p <
20, denoted by || - Jf,. and the uniform norm over the interval [—. 7}, denoted by

In a recent paper (see [1]) we have introduced a new modulus of smoothness,
which describes the rate of the best trigonometric approximation. It is defined by

AT e fll,r=12,.

T
o fithi= ok,
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where ,
2r—1

AP f(x) = Z( 1)# (2' N 1) fla+((2r =1)/2 - k)h)

k=0

is the syinmetric finite difference of order 2r — 1,
fr_l(f.l') T)+/ K,,_l T—t)df

and
r—1 (r 1}

_ -1 (r—1} _ 32
Kr-i(t) = Z(Z}—-l)’ . a = Z (Iy---1;)".

1<h < <lj<r—1

It is shown in [1] that for the rate of the best trigonometric approximation
EL(f), = infrer, ||f — Tilp, T» being the set of all trigonometric polynomials
of degree at most n, we have

Ey(flp < Cowy (fin™")p, n27 -1, (1.1)
and
. " 1
wi (fit)hy SCP1 3 (k+ DT 2EL(f)p O0<t< - (12)
r—1<k<1/t '
Moreover, we have w! (f;t), = 0 if and only if f € T,_;. In that sense the new

modulus of smoothness describes the rate of the best trigonometric approxima-
tion more precisely than the classical one. The modulus of smoothness w!(f: t)p
possesses properties similar to those of the classical one, as it is shown in [1].

Let Ly : Lj[-m, 7] = Ly[-m. 7], 1 < p < o0, or Ly : C*[—m, 7] = C*[—7, 7],
be a bounded linear operator that preserves the trigonometric polvnomials of degree
n. Then the well-known Lebesgue inequality

1f=Lafll, <+ | L)ET
and the Jackson-type estimate (1.1) imply
- Lnf“p <Cr 1+ ”Ln”)w?(f: n-_l)p, n>r-l

Similar estimates, using the classical periodic modulus of smoothness, are known.
For instance, G. P. Nevai has proved in [3] the following generalization of a result
of S. M. Nikolskii:

< ) (@) + Owr(fin ),

1f = tnfll < 277w (f: M1/

where t,, f € T,, interpolates the 27-periodic continuous function f in the equidis-
tant nodes & = (T_pn,...,2,), 2 = 2kn/(2n + 1), k = —n,....n, and An(Z) 18
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the Lebesgue constant for the trigonometric Lagrange interpolation. For similar
estimates in uniform norm, concerning the approximation by the partial sums of
the Fourier series, one can refer to [2] and [4].

The trigonometric analogue of the Taylor's formula will allow us to derive
a point-wise estimate of the error f(z) — L,(f.z) for a smooth f. We need to
introduce several notations to state that result. We define the differential operators

(AN e -
DJ-_(E;) LR j=1.2,.., (1.3)

where 7 is the identity. We also put

- d
1 “_‘DII"'D 3
Dy 'y

5MO - Dl * "Dn-

ﬁnf\‘:Dl"'Dk——le-}-l"'Dn? k—_—'l,...,n.
Let us observe that Dpyyg = 0, g € C*"*a,b], if and only if g € T}, in [a,b]. The
following trigonometric analogue of the Taylor’s formula holds true (see 5, §10.8]).

Theorem 1 (Taylor’s trigonometric formula). Let f € C?"+H(A,), where
A, is any of the intervals [c.c + 9], [c — d,¢] or [c—6,¢+ 8] for c € R and § > 0,
and let also

Dyof(e) (-
Tne(f. T) = (n.)-’ +22: (n—=k)l'(n+k)!

x [(k*Doxf(e) = Duof(e)) cosk(x ~ ¢) + kDpy f'(c) sink(z = )], (1.4)

Then toof € Tn, Tol(foc) = f¥)(c), s =0,1,...,2n, and for x € A we have

1 T - N ‘
m/ (1 = cos(z — 1)) Dy f(t) dt. (1.5)

flz) = mnel(fix)+

Let —7 < 2o < - < Tap, < @ be arbitrary nodes. Let us denote by to(f,x)
the unique trigonometric polynomial of degree n, which interpolates f in those
nodes. Then the theorem above easily implies a point-wise estimate of the crror
f(z) = t,(f,x) for a smooth function f.

Proposition 2. Let f € C*"" -7 n]. Then

! " K@) D f)dt, 7€ [-T7],

f(l) - tn(fs 1:) 71' (271 _ 1)” .

where
2n

K(x,t) = (1 - cos{(z - t)+])n - Z(l — cos|{zy — t)+])"tnk(:c)

k=0

and (x — t); = max{x — t.0}.
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The contents of the paper are organized as follows. In Section 2 we collect few
auxiliary results, which are necessary for the proof of the Tavlor's trigonometric
formula. presented in Section 3. Finally, in the last section we derive point-wise
estimates of the error in the trigonometric interpolation and in the approximation
by convolutional linear operators.

2. AUXILIARY RESULTS

Let [a,b] be a finite interval such that 0 € {a,b]. We define the convolutional
operator, known as Duhamel’s convolution, & : Ly[a,b] x Li[a,b] — Li[a.b),

f®glx) = /0 flxz —t)g(t)dt.

It is easy to verify that it possesses the properties:
1. feag=g=®f;
2. fa(g+h)y=Ffrg+ fah
3. fe(g®h)=(f=®g) ®h.

Next we introduce a number of notations. We put o, (z) = sinnz, n =1,2....,
and ¢, = o & - ® oy, ¢, = P, %1, "I;n = &, % 1. The propositions bellow
contain some of the properties of @, &’,-, and &),,, but first we prove the {ollowing
simple lemma.

Lemma 3. Any function of the form

n

flz) =cx +ag + Z(ak cos kx + by sin kx) (2.1)
k=1

has at most 2n+ 1 zeroes in [—x,w), counting the multiplicities, that is. r.1.cosx.
sinz,...,cosnz,sinnx is an extended Chebyshev system in [—7. 7). Hence. for

any choice of —m < x; < - < 1,y < 7 and positive integers vy, ....v, with
vy + -+ vy =2n+ 1 there exists only one function of the form (2.1) with o fived
¢ for which xy is a zero of multiplicity vy, k=1....,m.

Proof. It is enough to prove the first part of the statement. We follow a
standard argument assuming the opposite and making use of the well-known Rolle’s
theorem. So, let us assume that f(z) has at least 2n + 2 zeroes in [—#7. 7). counting
the multiplicities. Then f'(x) has at least 2n + 1 zeroes in [—7, 7), counting the
multiplicities. But f'(z) is a trigonometric polynomial of degree n and therefore
it has at most 2n zeroes in [—m,7), counting the multiplicities. This contradiction
verifies the statement of the lemma. (J
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Proposition 4. We have
(1) D, ®, =nd,_1 and D,1<I>,] = n‘i),,_l for n =2, 3.... :

(it} @, (x) = ¢, sinx(l —cosa)" . where ¢, = —-————, n=12...:
{2n — 1!
1

(2n — 1)!!
(iv) ®,(z) = ,—’—, + ) businkz,

h=1
where {byi} is the unique solution of the linear system

Zl‘bnk - l'

L:l

stbnk =0, s=3,5,....2n—- 1.

(iii) ®,(2) = (1 —cosa)™;

Proof. The first statement of the proposition follows by differentiation of the
recursion relation @, = ¢, ® ®,,_y. Namely, we have

d N2 iN\2 [ .
(—-—) d,(r) = (_(_) / sinnf{z — 1)@, 1 (t)dt = ndi'r/ cosnlr — )P, (t)dt
T Jo

dr dz/ Jq
.
=n®,_(x) - n’ / sinn(x —t)P,-1(t)dt
Jo

=n®,_1(2) —n P, (x).

o~ o~

Thus we have got D,,<I>,, = n@,,_] If we put ¢;{x} = z, then ®,, = &, ® 1 =
<I>,, #1%1=®, £e,. Therefore <I>,, satisfies the same recursion 1olat10n as ¢, with

®,{(xr) = x —sinx mstead of ®,(x) = sinx. Hence we get D&, = nd, ;. This
completes the proof of (i).

To verify (ii), we consider the sequence of trigonometric polynomials
N el _ n
PJz) = cpsinz(l —cosz)" ™", cp = m n>1.

We shall sho\\ that it satisfies the same recursion relation as @, in (i) and P,(0)
0= &,(0), PL(0O)=0= & (0), n>2. Hence, as P; = &, we have P, = &, n
2. Forn > 2

1V It

Pg(l’) = Cn (Sin {1 - cos ;r)n—l)”

. 77— ‘
=c¢psinz(l —cosx)" "% {n® —=3n+ 1+ n°cosz).



Consequently,

D, P,(z) = P!(z) + n*P,(x)
= cpsina(l —cosa)" 2 (n® = 3n + 1+ n’cosx)
| +n e, sine(l —cosx) !
= ¢, (2n° = 3n + 1)sinz(1 — cosx)™ 2

: : -0
=necp-1sinz(l —cosz)" "

=nP,1(x).

We get (iil) by integrating (ii). L
It remains to verify (iv). From (i) it follows D, ®, = n!l. Consequently,
n(r:) = z/n! + ap + ZL_I Qnk COS kx + b,y sinkx) for some constants a,p.bni.

Assertion (iii) implies that ®, is an even function, therefore ®, is an odd one.
This implies that ®,(z) = z/n!+ Y0 buysinkz for some b, € R. Next we have

<I>;l( ) = &,(0) = 0, which implics

Zm - “m

It is easy to see that @‘s’(O) =0, s=2,....2n — 1, as well. For s even this is
obvious. For s odd we can verify it, for instance, by induction on n. For n = 1
the statement is trivial as we have shown above. We assume that <I>m(0) =0, s=
1,...,2n — 1, and shall verify it for n + 1 in the place of n. We differentiate in x
the equdhtx D,,+1‘I’n+;(?) = (n + 1)‘1),1(2) and get for s =1,...,2n ~ 1

S0 (@) + (4 DL (@) = (n+ 1) ().

Then, putting z = 0, we get ‘I’n+1(0) = () consecutively for s = 3.5,.... 2n + 1,
which is what we had to show. Now

stbnA =0,8=3,5,....2n -1,

follows from &, (0) =0,s=3,...,2n—1(n > 1). In passing. let us note that the

lincar system
§ :Abnk =,
n!

Zk bk =0, s =3.5,...,2n—1

has a unique solution due to Lemma 3. This completes the proof of (iv). O
The following representation of @, (xz) has been pointed out to the author by
K. G. Ivanov.
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Proposition 5. The following formula holds :
~ 1 ~ (k—1)!
<I>n(:l‘)=—<.r—z(‘(ﬁ)qm r(l—cosz)" l) (2.
Proof. We just write forn > 1
xr T
Jnlz) :=/ sin®"tdt = —/ sin®* " tdcost
0 0
= —sin®" 1 xcosz + (2n — 1}/ cos” tsin* "V ¢ dt
0
& r
= —sin®" " tzcosz + (2n — 1)/ sin?" "V ¢ dt — (2n — 1)/ sin™ ¢ dt.
0 0

Therefore
Jn (I) - - Sin‘zn_l ICOSI + (271 - 1);]”.._1(1.) - (27’L - l)a]n(l:).

Hence we get the recursion relation

Jn—l(m)s n 21

. |
Jn(z) = —2—n51n2" Lz cosz + -

Consequently, noting that Jy(z) = z, we get

— 1\
Julz) = 5 <((32_‘_;;?$ —sin®* Y2 cosx

B Z 2n2—l 1)( 2712 z 3)4) 2?2— 212-|l-)1) 221 1 cos 1‘)
T n—: n—
_ 1 (H %sinz("‘l)xsin%
- 2;;__12 :| T gz : g; T sm’(" =Y 2 sin 2:5)
- (2?2—;)'1')‘—1( ~ %sin”““” zsin 2z
) SO .
= (2?27_)'1‘)” (.r — % :: g: : z; : ?;:: sin®" U g sin 2;1:)
= (2?27*)'1')” (:r - % kil % sin?*~1) zsin 2:1:)



Kt

I — 1IN - ¢ —1)! ‘
_ (2n ~ 1)!! (:r 1 (A—l)_.-g"*l sin?* =1 7 sin '2.1‘)

(2n)" 2 2 2k 1)1
(=1l Ry
- W—(?l - ; m(l — €S 21) sin 2.):).

Thus we have shown

(2n — 1)1 (21 o (k-1

2n+in! ok 1y Sm 2e(1 — cos 2-1‘)"“)- (2.3)

Julx) =
k=1

To finish the proof, we just write

. 1 T N B 2)1.+1 xf2 on
(I’n(.'l,') o m/(; (1 - COSt) dt = m/o sin" t dt

2n+1

Hence, making use of (2.3), we get (2.2). O

Let [a,b] be a finite interval such that 0 € [a.b]. In [1] we have proved that
Fn: Cla,b] = Cla,b] can be represented in the form

Fo=Ar--- An,

where the bounded linear operators 4; : Cla,b] = C[a,b]. j = 1,2...., are defined
by

A
4(ha) = 1@+ [ @-0fOd =12
0
In the above mentioned investigation we have also shown the following assertion.

Proposition 6. The bounded linear operator A; is invertible and
T
A7 (0,3) = 9lo) = [ sinja - 0g(t) dt.
0
Hence
A7l g.z) = ;/ sinj(x —t)g"(t) dt
J Jo

for g € C*[a,b) with g(0) = ¢'(0) = 0.
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3. THE PROOF OF THE TAYLOR'S TRIGONOMETRIC FORMULA
Now we are ready to prove formula (1.5).

Proof of Theorem 1 [t is enough to prove the assertion of the theorem for
¢ = 0. Hence it will follow for any ¢ € R by translation. Let 7(z) = ag + a) cosr +
bysina 4+ -+ 4+ a,cosnz + b, sinnz be the unique trigonometric polynomial of
degree at most n, which interpolates f in x = 0 with multiplicity 2n + 1, i.e.,
7HH0) = f151(0) for s = 0.1,...,2n. Using

Djcoskr = (j2 = k*)coskx and Djsinkzr = (7% — k*)sin kz,
we get
(n')?ap = Dpo7(0) = Do f(0),
(—1)h- (n = k) (n+ k)! (n!)?

TER =
p_y (n =k {n+ k)
2k

b = Dyt (0) = Dpi f(0), k=1,...,n
Hence 7, 0(f, ) = 7(x).

[t remains to consider the remainder r,,(z) = f(x) — To(f, ). Let us put for
the sake of brevity

T iy ton .
F(z) = / (/ S (/ Dy f(tansn) df-2n+1) e dtz) dt.
0o \Jo 0

Obviously. F € C*"1(Ag) and F*1(0) =0, s = 0,1,....2n. Now r, () = f(z) -
Tholf. ) implies D,,,Hr,l(L) ,H,]f(z), x € Ag. We have proved in [1] that

Qg = anT( ) - nlsf(o) L

(1)

(Fag)?"* Y = Dpiag, g € C*"H(Ao).

Therefore (d/dz)*"*' F,(rp,z) = 5,z+1-r,1( v}, x € Ap. Hence, making use of
r,(f)(O) =0, s=0,1.....2n, we get Fn(ry,z) = F(z). x € Ay, that is,

Al vt .-‘-1,17',, = F. (31)
Proposition 6 states for g € C*(Ag) with g(0) = ¢'(0) = 0 that

— 1 1" ¢
ATlg = 59 ®9" (3.2)

Simple calculations yield for g € C%(Aq) with ¢(0) = ¢’(0) =0

(B ®g)' =P @g", (3.3)
and for any g € C'(Ag)
®p @ g(0) = (2 ®9)'(0) = 0. (3.4)
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Now (3.1) and (3.2) for j = 1 imply
‘42 e Aprp =01 ® F'" = b, ® F".

Next, applying again (3.2) (for j = 2), using (3.4) (for & = 1), and then (3.3) {for
k = 1), we have

1 1
Proceeding in this way, we finally get
1 — {2n) -
7'" = ;z_f(tn ':’_EJ F . (3,0)

To finish the proof, we write

1 T t
7'11(-7:) = - (@"(:IT - t)/ Dn+1f(s) ds‘) dt
n:Jo 0

' (ft Dyt f(s) ds) dd, (z —t)

L B — ) D £(1)

n! Jo
1~ =
—®n ® Dna f(x)-

This completes the proof of the theorem as Proposition 4 (iii) states $,.(x) =
1/(2n— D" (1 - cosa)™. O

Remark 7. An estimate of the remainder. (Again we discuss the case ¢ = 0.)
The mean value theorem implies

ro(x) = ;rgﬁlf—;lr)”/ (1 —cost)™dt, x € Ay, (3.6)

where &, € Ag depends on x. Hence

o ()] D41 floofao) /1(1 ~cost)™dt|, z € Aq (3.7)
= pt@e -0 |, ’ ' '
Now, using the simple inequality 1 — cosz < z°%/2, we get
|' 12714—1 - ‘
Irn{z)] < m“ n+1fllc(ag)s T € Ag. (3.8)
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4. APPLICATION

Formula (1.5) can be useful in expressing the error in approximation by linear
operators that preserves trigonometric polynomials up to a given degree. Indeed, let
Ly:Cl=m. 7] = C[-m,7]besuchthat L, f = fif f € T, and let f € C*"*+1[—7, 7).
Then we have

f=Lnf=~Lx)r.f, (4.1)

where

1 i . |
ralf.2) = [ (1 costa = )" B (0

n!'(2n -1

for some fixed ¢ € [—7.7].
Let —m <2y < -+ < 29, < @ be arbitrary nodes. Then, as it is known, there
exists a unique trigonometric polynomial ¢,,(f.z) of degree n such that t,,(f, z;) =

flxg), k=0,....2n. It can be represented in the form
2n
tn(f:l') = Z f(irk)tnk(f”)\ (4.2)
k=0
where
2n o —
s LT
H sin —
J=0,j#k |
i) = L5 . (4.3)
H sin Tk
' 2
J=0,j%k
Now the considerations in the beginning of this section and (1.5) with ¢ = —7 casily

vield Proposition 2. That proposition implies the following estimates of the error
flz) —t,(f,x) for smooth functions f.

Corollary 8. Let f € C*"*![—x,7]. Then we have for z € [~7, 7]

. S , Wu(f)|15n+1fl|x
(1) Ef(l) tn(fsl)l < 2"(7‘2. — 1)' (271 — 1)

7 (@ —z0) ... (z — 22n)i,

where
2n 2n - 7 -1
~ . Ip —Tj
u(z) = E | I sin d .
k=0 \j=0,j#k

1 - . 2n+17r2#(i')”fjn+1f”'x . & — Xy oy I — Tan
(i) 1f{z) = ta(f.2)] < a(n-1)!2n-1)! ’ 2

for nodes —m+a<zg < - <oy <w—a, a€ (0,m).

Proof. The assertions of the corollary follow easily from the estimate

](1 ~cos((z — )L )" = (1 — cos(xy — t)+])”|
< n2" | cos[(zp — t)4] —cos[(x ~)4]| (4.4)
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and the relation

( r+arp =2t 0 rp—a
—2sin : in kq t<r.xp
Lt
, 2 sin” \ e <t <z
cos[(rp—t)4]—cos[(x—t) ] = < 2 ; (4.5)
J —
—2sin” AZ r <t <y
L0 I > r. .oy

Now (4.4), (4.53) and the inequality |sinz| < [x] imply
(1 = cos[(z — )4 ])" — (cos[(zp — t)])? < 02" Ha = xy .

therefore, using again the inequality |sinz| < |2} and the fact that Z;"O tae(z) = 1.
we get for any x and ¢

2n

K (z,t)] < n2™! Z 2 — zplltnr(@)] < N2 ()2 — xo| - [ = Tan].

k=0
Hence assertion (i) follows. To verify (ii), we just have to notice that if —7 +a <
To < -0 < Tan < T —a, where a € (0,7), and = € [—7, 7], then

o & Tk T
g Sin Cr.—t S
sin ~——— < 5 1 <t<z, and sin ‘. < 3 e <t <y
2 sin — 2 sin —
2 2
These two estimates, (4.4), (4.5) > (2/7)x|. |x] < 7/2,
vield for x € [—7, 7] and any ¢
n2"w |, x—x
|(1 = cos[(z —t)4])" = (cos[(zx — )]} £ sin ~— . E :
a
which, on its turn, implies for z € [-7, 7] and any ¢
2n
. n2tw . T =T
II\ (I’ t)l S a Sl ltnk( 1
k=0
n2"m () . T — Tan
= sin — < sin ———|.
a 2 2

Hence assertion (ii) follows. [J

Remark 9. Our conjecture is that for any fixed 2’ € [, 7] the kernel K (2'. )
does not change its sign in [—m, 7. If that is true, then the mean value theorem
implies the Lagrange-type estimate

5'.'H-lf(fzr),

f(l') - tn(f: 1) = (77.!)2 ““(I)‘ S [—r' Tr]-‘
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where f € C?"*1[—~7, 7], and

n
w(r) =a +ag+ Z(ak cos kx + by sin ka)
k=1

is the only function of this form. which vanishes in the nodes {;1:,_‘}220 and has no
other zeroes in [—7. 7). Actually,

2n

w(z) =1z - Z Trptar(x).

k=0

Let the bounded linear operator L,, : C*[~m, 7} = C*[—m, 7] be of the form

Lo(f.r)= M, = f(z):= /ﬁ Mpla = t)f(t)dt, (4.6)

where M, € Li[—7.x]. For any fixed t € [—7, ] we define the 27-periodic function
Pt R—-R b}

pr(z) =1 —=cos{(z = 2km —t);], x€[(2k—1)x, (2k+ 1)x), k € Z.
It is quite easy to verify the following assertion.

Proposition 10. Let f € C*""[~7 7| be 2n-periodic. Let also the bounded
linear operator L, . defined by (4.6), preserve the trigonometric polynomials of de-
gree n. Then

1
n!(2n — 1!

[(2) = La(foz) = | 16w = Mo % g @)D S
—T
Proof. Naking use of formula (1.5) with ¢ = —x and changing the order of
integration after that. we get easily the estimate

7

: / (1= cos[(x — )4 ))" Dys f(1) dt

f@) = La(f,0) = o

1 : i -
. n! (272‘ o 1)” . v'\/ln(l’ - t)( —7.-(1 - COS[(t’ - u)-i-}) Dn+1f('ll) (IU) dt

1 T n
= @2n— 1) / ((1 ~cosllz 84

—_T

= ’ Mp(x —u)(1 - cos[(u—t)4])" du) 13,,+1f(t) dt.

Thus the proof is completed. O

Immediately, Proposition 10 yields
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Corollary 11. Let f € C?""'[—7, 7] be 2m-periodic. Let also the bounded lin-
car operator L, , defined by (1.6), preserve the trigonometric polynomials of degree
n. Then

n-+l -
"

2 ~
IF = Lafil € =i (1 Ml D f e
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