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In this paper the orbital stability and instability propertics of solitary wave solutions
of a class of nonlinear dispersive svstems are studied. By applyving the abstract results
of Grillakis et al. ([11]}. we obtain the stability of the solitary waves.
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1. INTRODUCTION

In the present paper we consider the stability and instability of solitary wave
solutions ({x — ct), w(x —ct)) for the following system of nonlinear evolution equa-

tiOIlSZ +1
A ‘ PpPTi), =
{ Mug +up + (WPe?P™ ), =0 (1.1)

Muy + v, + (wPtler), =0,

where u(z.t) and v(x,t) are real-valued functions and A is a pscudodifferential
operator of order u > 1 (see (2.1)) and p > 0. This system can also be interpreted
as a coupled version of the generalized Benjamin-Bona-NMahony (BBM) equation

Muy + (alu)), =
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Among the papers devoted to the stability of the BBM equation are [13]. [14] and
(16). When a(u) = u? and M = 1~ 37, it is obtained in [14] that solitary waves
are stable for all p. In [16] this result is extended for a more general class of
pscudodifferential operators.

Here, using the same lines of ideas as in [12] and [16]. we show that if p < p.
then solitary waves are always stable, while if p > p, there is a critical speed cq
such that we have instability for ¢ < ¢p and stability for ¢ > ¢p.

. , ) 2 P
System (1.1) has four natural invariants E(u.v) = - = / uPT P e,
P .

1 2
Viiu,v) = 5/[~u2 + v +uMu+vMelde, Li{uv) = /udr, Ly(u.v) = /'vdr.
Our analysis is based on the invariants E and 17, following the proofs of {16]. [11]
and [9].
This paper is organized as follows. In Section 2 we discuss the existence and

the asymptotic behavior of solutions of {1.1). In Section 3 we state our main
assumptions and prove the stability and instability results.

Notations:

o The norm in H*(R) will be denoted by || - ||s, and || - || will denote the norm in
L*(R).

o We denote X® = H5(R) x H*(R). X = L*(R) x L>(R) and ||f]|x: = {|fII2 + {[9il3
for £ = (f.g).

- X M0
ommo=mwm-L=(o M)'

2. THE EVOLUTION EQUATION

We begin with a discussion of the existence and uniqueness theory of the initial
value problem associated with (1.1). The operator A/ has the form

Mu(g) = (1+ |g[*)a(e). (2.1)

We state the basic theorem which guarantees the existence and uniqueness of so-
lutions of (1.1) in H 7 (R).

Theorem 2.1. If up € XY, then there exists a unigue global solution u of
(1.1) in C{[0,00); X¥) with u{0) = uy. Moreover, the functionals E, V. Iy and I
are constant with respect to t.

Proof. In order to obtain the existence of weak solutions, we consider the

problem
w + Au+Glu) =0, u(0) =ug, (2.2)

where
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_{ AMTlo, 0 o Mo (urerth) 0
A= ( 0 M1, ) and G{u) = ( 0 AL 0, (w147 ) )

Equation (2.2) can be written as an integral equation

t
u=~L{1uy + / Ut — n)G(ulr))dr,
Jo

where U'(t) is a Cy group of unitary operators in X" generated by a skew adjoint
operator 4 with D(A4) = X and uyg € D(4). We solve the integral equation by
the semigroup theory. Since X'V C L™ x L™, it is easy to show that u — G{u)
carries 17 — Y in locally Lipschitzian manner. where Y denotes a Hilbert product
space of D(A4) with the graph norm given by |ju{ly = ||u||x+ + [|Au}|x-. By [15],
Theorem 6.1.4, for any ug € \'” there is some 7' € (0, o¢) so that a unique solution
ul-. t) with initial data ug exists for 0 < ¢ < 7.
Multiplying (1.1) by (w,v) vields

d
%HU(UH,\W = 0.

This implies that u is bounded in X'” and proves the global existence of a weak
solution u for (1.1).

The fact that £ and 1" are constants follows from the local existence. Finally,
if [1{ug. vg) and Io(ug.vg) exist, then I) (u(t), v(t)) and I(u(t),v(t)) do exist and
I (ug. vg) = Li{u(t), v(t)) and In{up, vo) = I»(u(t), v(t)). This follows by integrating
each equation of (1.1} over (a,b) and letting a — —o0, b — o. This completes the
proof of Theorem 2.1. [J

Consider the linear initial value problem associated to Eq. (1.1)

;\['U{ + Uy = 0
Mvy +v, =0 (2.3)
(1(0),v(0)) = (ug,vo) € X

and the related unitary group 17(¢} which is defined by

V(t)fz) = Sp = f(x),

where S; is defined by the oscillatory integral

<o £ -
Si(z) = / o' T T e
e
Therefore the solution of Eq. (2.3} is given by the unitary group W (t) in X" defined
for up = (up. 1) by

Withag = (V(thug(z), V(t)ve(2)).



Theorem 2.2. Let u € XV N (LY(R) x L' (R)) and let u(x.t) be the solution
of (1.1) with initial data uy. Then there exists 0 < n < 1 such that

sup
—x <z x|,

/- u(‘zr.t)d.z:‘ < el + 1), (2.4)

. ,
where the constant ¢ depends only on ug.
To prove Theorem 2.2, we need the following lemma, which is proved in [16].

Lemma 2.1. Let S(t) be the evolution operator to the linear equation
(1+ A"+ 0p)w =0 (S(H)w(0) = w(t)).

Then S(t) : HYN LY — L™ for allt > 0. Moreover, there exist 6 € {0.1) and c >0
such that

L — 1
|S(thwo|~ < et (lwoh + lfwollu), 6= ! :

2

From Lemma 2.1 and Young's inequality for convolution we have
W ()L~ xr~ < et (ol + Jluglixs). (2.5)
Proof of Theorem 2.2. Let z(t) = 117{1)ug. that is
Loz + 0z =0, z{0) = uy.

Then t
u(t) = z(t) - / W(t—r) L7 0, F(u)dr
Jo
t
= z(t) - 01./ W(t—7)L7 ' F(u)dr,
0

where F(u) = (uPoPtl uPtioP).
Let Uz, t) = [*_u(y.t)dy and Z(z.t) = [ __z(y.t)dy. Then

t
Ult)y=Z(t) - / Wt —7)L ' F(u)dr. {2.6)
Jo

We estimate the two terms on the right-hand side of (2.6} separately. First, we
obtain from the equation for z{x,t),

t
z(t) = uy — 8,/ L Yz(r)dr,
0
so that

t
Z(T)=1Uy ~/ ”(T)L_I ugdr

0
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with Up{r) = [_l\ ug(y)dy. Using (2.5), we have
t
1Z{x. 1) < juolpixpr + (*/ (1+7) " dr (L™ g1y pr + [1L 7 ug]fxv )
Jo

<e(l+ (L7 o pror + [1L7 o | xv ),

where 5y = 1 - #. Noticing that [|[L7'ug||ve < ¢f|upf|y+. then
\Z{x. )] < el + )" [uop sy + [[uol[xv).

Let P{r.t) denote the second term on the right-hand side of Eq. (2.6). Then by
(2.5)

t
iP{r.t)] < / W(t—7)L ' Flu)dr

0

t
< / (4t =7) " dr(|L7 F W)l s + 1L F(u)] o).
S0

Since XV C L™ x L™ (v > 3), then |L~'"F(u)|p1z1 is bounded uniformly in
7 by a constant which depends only on up. Next observe that [|[L~'F{u)l|x. <
(lul2. + jv)2 jull xe. Thus

Pl 1)) < (14 )7,

This completes the proof of the theorem. [

3. THE SOLITARY WAVE

We consider a smooth solution of (1.1} of the form (u(x ). v(z, t)) = (p(z —
ct).v(x — ct)) = ®(x — ¢t} that vanishes at infinity. Substituting & in (1.1) and
assuming that o.v. o' 0, " ¢ — 0 as |(| = o, we obtain

N n ) PP+I=
{ cMyg + ¢ + Py 0 (3.1)

—C."\.[?,i' 4+ + ';pp-i-l.h'.,p = 0.

From (3.1} we see that if £ and 17 represent the Frechet derivatives of E. 1,

then
E'(pe.ve) + eV (g, v) = 0. (3.2)

Moreover. if H, is the linearized operator of E' + ¢V around ®,, namely

H, = E"(®,) + ¢ (®,) (3.3)
_ [ e+ {e— 1) - pprier® ~(p+ 1)gPe?
- —(p+1)pPpP cAf + (e = 1) — ppPtlyr=1 )~
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then H. {3,020, 0,0:) = 0.
We now establish our main assumptions on ®. and H, under which we solve the
problem of stability and instability. They are as follows.

Assumption 1. There is an interval (¢;,¢2) C R such that for every ¢ € (¢.¢,)
there exists a solution ®. = (e, ve). ¢ > 0. ©w > 0of (3.2) in X*™*. The curve
} 40 e L' x L.
de

Assumption 2. The zero eigenvalue of the operator H, is simple. H. has a
unique negative simple eigenvalue with an cigenfunction \.. Besides the negative
and the zero eigenvalues, the rest of the spectrum of H, is positive and bounded
away from zero. Morcover, the mapping ¢ = \. is continuous with values in X7
and (1 + if})%'\'c cL'x L' x1 >0, x2>0.

Denote

¢ — @, is C' with values in X" NMoreover, (1 + &)=

d(c) = E(®,) + cV (®,).

After a differentiation with respect to ¢, we have

d'(c) = (E'( (@), T 4 V(@) = V(®), (3.4)
d"(c) = (V'(,), dq’ ey, (3.5)
" de

Next we examine the relation between the convexity properties of the function
d(c) and the properties of the functional E ncar the critical point ®. under the
constraint V' = const.

Theorem 3.3. Let ¢ > 0 be fized. If d'{c) < 0, then there is a curve w — ¥,
which satisfies V{(®.) = V(¥,). &, = V., and on which E(u} has a strict local
mazimum at u = P..

Proof. Following the ideas of Souganidis and Strauss [16]. we note that for

Glw,s) = V(®,+sxe), Gle,0) =1V(P.)and Bg‘ (@ +sxe)(c,0) = (VD) x.) =

(L®., x.) # 0. Therefore, it follows from the implicit function theorem that there
is a C'! function s(w) for w near ¢ such that s(¢) = 0 and G{w, s{w)) = V(®,).

. d
Next we define U, = &, + s{w)y,. It is easy to be seen that — E{V )

du Moze =0
and
LB = (Hy.y)
dlL“‘ W/ wme — YY)
v, d , ,
where y = v | = %@c + s'(¢)xe. So it suffices to show that (H.y.y)< 0.
U |o=c |
We have l l
0= i"‘ (‘I’u)[u..c =(V ((I) ) ‘

dw dw lw=c
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. d -
= (L®e,y) = (L, 72 0c) + 5(c)(L®e, Xe).

-

From (3.5). d"(¢) = —¢'(¢)(L®.. x.). therefore
(Hey.y) = s"()(Hexe y) — (L®e.y) = d"(¢) + s?(e)(Hoxe. xc) < 0.
This proves the theorem. [

We continue our study by specifyving the precise form in which stability and
instability are to be interpreted. Denoting by 74, s € R, the translation operator
ref(x) = f(z + s) for all x € R, we define T'(s)f = (75f,759) for f = (f,g). For
e > 0 consider the tubular neighborhood

U. = {g € X" | ;2&“8 - T(S)(I)cHX" < 5}‘

Definition 3.1. The solitary wave ®, is X'” stable if for every # > 0 there is
d > 0 such that if ug € Us. then (1.1) has a unique solution u(t) € C([0,0c); X'¥)
with u(0) = ug and u(t) € U. for all t € R. Otherwise, ®. is called unstable.

The stability assertion (when d"(¢) > 0) is a special case of [11], so that we
omit the proof. For the instability, we need a series of preliminary results which
can be proved as in the analogous cases of [9]. For this reason we only state them
without proof.

Lemma 3.2. There are an > 0 and a unique C' map o : U, = R such that
foruelU. and r € &:
(1) (u( + O'(u)):a.rq’c) =0, a{®.) = 0;
(i)  alul-+7r)) =afu) -
a‘r@c(' - Q(U))
(u, aizq)c( —a(u)))
Next we define an auxiliary operator B which will play a crucial role in the
proof of instability. If y is as in Theorem 3.3. then (H,y,y) < 0 and (y,L®.) = 0.

(iii) a'(u) =

Definition 3.2. For u € ., define B(u) by the formula

Blu) = y(- - afu)) - (g L0 (-~ afu)

Lemma 3.3. B is a C! function from U, into XV. Moreover. B commutes
with translations, B(®.} =y and (B(u), Lu) = 0 for everyu € U-..

Lemma 3.4. There is a C' functional Y : D. — R, where D, = {v € U.
Vi(v) =1(®.)}, such that if v € D. and v is not a translate of ®., then

E(®,) < E(v) + Y(V)(E (v). B(u)).
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Lemma 3.5. The curve w — W,.. constructed in Theorem 3.3. satisfies
E(W,.) < E(®.) forw#c. V{(¥,.)=V(P.) and (E'(V,.). B(V,)) changes its sign

as ur passes through c.

Theorem 3.4. Assume that Assumptions 1 and 2 hold and d (¢) < 0. Then
the solitary wave ®. is unstable.

Proof. Let £ > 0 be small enough such that Lemma 3.2 and its consequences
apply with U.. To prove instability of ®., it suffices to show that there are some
elements ug € X7 which are arbitrary close to @,, but for which the solution u of
Eq. (1.1) with initial data ug leaves U. in finite time.

By Lemma 3.5. we can find ug € X¥ which is close to @, and satisfies V'(ug) =
Vi(®,.), E(uy < E(®.) and (E'(ug). B(ug)) > 0. For a fixed up. let [0.,) denote
the maximal interval for which u(-, ¢} lies continuously in U.. It suffices to show
that 11 < 20.

In view of Theorems 2.1 and 2.2 u has the following properties:

ue C([0,4): X7}, ulz.0) = ug,

T
sup “/ u(z.f)dzl <eg(1+t"), te0.t),
X

TER |/ -
sup ()]l v < cr.

lE{O.t, }

Let us taI\( 3(t) = of Y(z) = f Ly{p)dp = ]'l y(p)dp + Ny(x). where
N = ( |u ) , and define

-0
At) = Y (2 - 3(t)ul(zr.t)dr. (3.6)

s
Let H be the Heaviside function and v = f (r)dzr. We note that by Assump-

tions 1 and 2, [ (1+ 2} 2 |y (2)|dr < x and the function R(z) = [ y(p}dp—
~H(z) belongs to L? x L*. Thercfore we obtain from Eq. (3.6) that

At) = /(X) R(x — 3(t))ulz, t)de + ~ /‘3& u(x, tyde + /x' Ny(x = 3(t))ulz.t)dr.

S0 34 o
Hence,
1A < |Raful|xv + (co(1+#7) + [ Nuf| x+|[ltul| x-. (3.7)
Now i1 q :
d. L u o du
= o), Ly, + (Y- 8). 5
, du
= {(~{y(-— 3), Luja (u) + Y (- - 3). df>
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= —(B(u). E'(u)).
As 0 < E(®,) — E{ug) = E(®,) — E(u), Lemma 3.3 implies that

0 < Y(u)(E'(u(t)). B(u(t))).

Moreover. since u(t) € U. and Y(®.) = 0, we may assume that Y{u(t)) < 1 by
choosing ¢ even smaller if necessary.
Therefore for all ¢ € [0.¢1), (E'(u(t)). B(u(t))) > E(®.) — F{ug) > 0. Hence
for 0 <t <t
14
"(E? > E(®,) — E(ug) > 0.

Comparing this with (3.7). we conclude that t; < 20. [

pce
5 |

Lemma 3.6. One has d(c) = (Moo, we) + (M de, 0)].

Proof. For A > 0, let ®*(z) = @(i). Then

E(®") + eV (3 = /[ F(® +2<1>A ®Mdx

- / [—F(@Y) + () + SM A9 da

:/ [~ F(®) + S@%)dz + A1- "2/@\%(11:

Next we differentiate this expression with respect to A and evaluate 1t t A=
observing that the left-hand side becomes zero, because E'(®Y) + ¢V/($})
Thus

0 = /[-F(@) + %@’-’ +(1- u)%@.\“d)]d;r,

so that

d(c) = 'u;/@\‘“d)dl

Theorem 3.5. Let Assumptions 1 and 2 hold:
a) if p <y, then ®. is stable for all ¢ > 1;
b) if p > p. there is a cy > 1 such that ®. is stable for ¢ > ¢y and unstable for

1<C<C0.

Proof. Using the homogeneity of M, we can write the solution ¢, as
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where (1,11} is a solution of the system

A = APl
o h b)Y P
A (IR o O 1 vy = U,

which is independent on ¢. Then

d(c) = “7(’ [ / AR + / 1,-'"_\“'1,.(!]

— %b(c_ 1)p 1w,

where b = [ p1A#¢) + [ w1 A"y Differentiating twice with respect to ¢ yields

. e : : 1
where g(¢) = (r+s+1)(r+s+2)c* -2(r+ )(r+s+lct+r(r+1), r=-—-1 s=

1
L1 . . . . : -
~ — —. Whether d"{c) is positive or negative depends on the sign of g(c). Thisis a

2
quadratic function of ¢ with one negative and one positive root, since rir+1) <0
‘ : : 1 1.1 1
and r + s +1 > 0. We call the positive root ¢g. Since ¢(1) = (I_J - -—)(_5 — —+1),
T T

then if p < g, d'(¢) >0forec> 1, andif p > p, d'(c) <0 for 1 < e <o and
d"(¢) > 0 for ¢ > ¢g. Theorem 3.3 is proved. [J
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