ГОДИЩНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 96

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 96

(2,3)-GENERATION OF THE GROUPS $PSL_4(2^m)$

PETAR MANOLOV, KEROPE TCHAKERIAN

We prove that the group $PSL_4(2^m)$, m > 1, is (2,3)-generated.

Keywords: (2,3)-generated group

2000 MSC: main 20F05, secondary 20D06

1. INTRODUCTION

A group G is said to be (2,3)-generated if $G = \langle x,y \rangle$ for some elements x and y of orders 2 and 3, respectively. So far, (2,3)-generation has been proved for a number of series of finite simple groups, for example A_n , $n \neq 6$, 7, 8 (see [2]), $PSL_2(q)$, $q \neq 9$ [3], $PSL_3(q)$, $q \neq 4$ (see [1]), and $PSL_4(q)$, q odd [5]. In a note added in proof to [5], the authors mention that they have recently proved (2,3)-generation for $PSL_4(q)$ also in the case of even q > 2. As we have not been able to find a proof in the literature and as our approach seems to be quite different from that of the authors of [5], here we give a short proof of this fact. Thus we prove the following

Theorem. The group $PSL_4(2^m)$ is (2,3)-generated for any m > 1.

2. PROOF OF THE THEOREM

Let $G = \mathrm{SL}_4(q) = \mathrm{PSL}_4(q)$, where $q = 2^m$. It is well-known that the group $\mathrm{PSL}_4(2) \cong \mathrm{A}_8$ is not (2,3)-generated, so we assume m > 1 in what follows.

The group G acts naturally on a four-dimensional vector space V over the field GF(q) with a fixed basis e_1 , e_2 , e_3 , e_4 . Let ω be a generator of the group $GF(q^3)^*$ and $\alpha = \omega + \omega^q + \omega^{q^2}$, $\beta = \omega^{1+q} + \omega^{q+q^2} + \omega^{q^2+1}$, $\gamma = \omega^{1+q+q^2}$. Then α , β . $\gamma \in GF(q)$ and γ has order q-1 in the group $GF(q)^*$, in particular $\gamma \neq 1$ as q > 2. The polynomial

$$f(t) = (t + \omega)(t + \omega^{q})(t + \omega^{q^{2}}) = t^{3} + \alpha t^{2} + \beta t + \gamma$$

is irreducible over GF(q).

Now, the matrices

$$x = \begin{pmatrix} 0 & \alpha \gamma^{-1} & 1 & \beta \\ 0 & 0 & 0 & \gamma \\ 1 & \beta \gamma^{-1} & 0 & \alpha \\ 0 & \gamma^{-1} & 0 & 0 \end{pmatrix} \quad \text{and} \quad y = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

are elements of G of orders 2 and 3, respectively. Let

$$z = xy = \begin{pmatrix} 0 & 1 & \beta & \alpha \gamma^{-1} \\ 0 & 0 & \gamma & 0 \\ 1 & 0 & \alpha & \beta \gamma^{-1} \\ 0 & 0 & 0 & \gamma^{-1} \end{pmatrix}.$$

The characteristic polynomial of z is $(t + \gamma^{-1})f(t)$ and the characteristic roots γ^{-1} , ω , ω^q , ω^{q^2} of z are pairwise distinct. Then, in $GL_4(q^3)$, z is conjugate to diag $(\gamma^{-1}, \omega, \omega^q, \omega^q)$ and hence z is an element of G of order $q^3 - 1$.

Denote $H = \langle x, y \rangle$, $H \leq G$.

Lemma 2.1. The group H acts irreducibly on the space V.

Proof. Assume that W is a non-trivial H-invariant subspace of V. Let first dim W=1 and $W=\langle w\rangle, \ w\neq 0$. Then x(w)=w, which yields $w=\mu e_1+\nu e_2+(\mu+\gamma^{-1}(\alpha+\beta)\nu)e_3+\gamma^{-1}\nu e_4, \ \mu, \ \nu\in \mathrm{GF}(q), \ \mu\neq 0 \ \mathrm{or} \ \nu\neq 0$. Now $y(w)=\lambda w, \ \lambda\in \mathrm{GF}(q), \ \lambda^3=1$, which produces consecutively $\nu\neq 0, \ \lambda=\gamma^{-1}\neq 1$, whence $\gamma^2+\gamma+1=0, \ \mu=0, \ \mathrm{and} \ \alpha+\beta=\gamma^2$. This yields $f(1)=1+\alpha+\beta+\gamma=\gamma^2+\gamma+1=0,$ an impossibility as f(t) is irreducible over $\mathrm{GF}(q)$.

Let dim W=2. Then the characteristic polynomial of $z_{|W|}$ has degree two and must divide the polynomial $(t+\gamma^{-1})f(t)$, again contradicting the irreducibility of f(t).

Lastly, let dim W=3. The subspace $U=\langle e_1,e_2,e_3\rangle$ of V is $\langle z\rangle$ -invariant. Suppose that $W\neq U$. Then $U\cap W$ is a 2-dimensional $\langle z\rangle$ -invariant subspace of V, which (as shown above) is impossible. Thus W=U, but obviously U is not $\langle x\rangle$ -invariant, a contradiction. The lemma is proved. \square

Lemma 2.2. Let M be a maximal subgroup of G having an element of order

 q^3-1 . Then M is the stabilizer of a subspace W of V with dim W=1 or 3.

Proof. Suppose false. Then the list of maximal subgroups of G [4] implies that one of the following holds:

- 1) $|M| = q^6(q-1)^3(q+1)^2$.
- 2) $|M| = 24(q-1)^3$ if q > 4.
- 3) $|M| = 2q^2(q-1)^3(q+1)^2$.
- 4) $|M| = 2q^2(q-1)(q+1)^2(q^2+1)$.
- 5) $M \cong SL_4(q_0)$ if $q = q_0^r$ and r is a prime, $|M| = q_0^6(q_0 - 1)^3(q_0 + 1)^2(q_0^2 + 1)(q_0^2 + q_0 + 1).$
- 6) $M \cong \operatorname{Sp}_4(q)$, $|M| = q^4(q-1)^2(q+1)^2(q^2+1)$.
- 7) $M \cong SU_4(q_0)$ if $q = q_0^2$, $|M| = q_0^6(q_0 1)^2(q_0 + 1)^3(q_0^2 + 1)(q_0^2 q_0 + 1)$. As $q^3 - 1$ divides |M| and as $(q^2 + q + 1, 2(q + 1)(q^2 + 1)) = 1$, in cases 1), 2), 3), 4), 6) it follows that $q^2 + q + 1$ divides $(q - 1)^2$, $3(q - 1)^2$, $(q - 1)^2$, 1, q - 1, respectively. This is easily seen to be impossible. Similarly, in case 7) it follows that $q_0^2 + q_0 + 1$ divides $q_0 - 1$. In case 5), if r > 2, then $(q^3 - 1, 2(q_0 + 1)(q_0^2 + 1)) = 1$ and hence $q^3 - 1$ divides $(q_0 - 1)^3(q_0^2 + q_0 + 1)$. This is impossible as $(q_0 - 1)^3(q_0^2 + q_0 + 1) < q_0^6 - 1 < q_0^{3r} - 1 = q^3 - 1$. Lastly, in case 5) and r = 2, as $(q_0^2 - q_0 + 1, 2(q_0 - 1)(q_0^2 + 1)) = 1$, it follows that $q_0^2 - q_0 + 1$ divides $q_0 + 1$, which yields $q_0 = 2$ and q = 4. However, then $M \cong SL_4(2) \cong A_8$ has no element of order $4^3 - 1 = 63$, a contradiction. The lemma is proved. \square

We can now complete the proof of the theorem. Assume that $H \neq G$. Let M be a maximal subgroup of G containing H. As M has an element z of order $q^3 - 1$, Lemma 2.2 implies that M is the stabilizer of a subspace W of V with dim W = 1 or 3. But then W is H-invariant, which contradicts Lemma 2.1. Thus H = G and $G = \langle x, y \rangle$ is a (2,3)-generated group.

REFERENCES

- Cohen, J. On non-Hurwitz groups and noncongruence of the modular group. Glasgow Math. J., 22, 1981, 1-7.
- Dey, I. M. S., J. Wiegold. Generators for alternating and symmetric groups. J. Austr. Math. Soc., 12, 1971, 63-68.
- Macbeath, A. M. Generators of the linear fractional groups. Proc. Symp. Pure Math., 12, 1969, 14-32.
- Mwene, B. On the subgroups of the group PSL₄(2^m). J. Algebra, 41, 1976, 79-107.

5. Tamburini, M. C., S. Vassallo. (2,3)-generazione di $SL_4(q)$ in caratteristica dispari e problemi collegati. *Boll. U. M. I.*, (7) 8-B, 1994, 121–134.

Received on January 15, 2003

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., 1164 Sofia BULGARIA

E-mail: kerope@fmi.uni-sofia.bg