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1. INTRODUCTION

Let %l = (N: Ry,..., R;) be a structure with domain the set of all natural num-
bers N, where each R; is a subset of N and "=" and "#” are among R;... .. Ry..

An enumeration f of U is a total mapping from N onto N.

For every 4 C N* define

vl "l) { (f(zl ;f(ma»)) € A}
Let
A = fHR) @@ [ (Ry).

For any sets of natural numbers A and B the set A is enumeration reducible to
B (4 <. B) if there is an enumeration operator I'. such that 4 = I'.(B). By de(A)
we denote the enumeration degree of the set 4. The set A is total if A =, At
where AT = A& (N\A). An enumeration degree is called total if it contains a total
set.

Definition 1.1. The degree spectrum of 2 is the set
DS(A) = {d.(f~1(A)) : f is an enumeration of A}.
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The notion is introduced by [6] for bijective enumerations. In [2, 3, 4, 7] several
results about degree spectra of structures are obtained. In [7] it is shown that if
a € DS(A) and b is a total e-degree, a < b, then b € DS(2). In other words, the
degree spectrum of 2 is closed upwards.

The co-spectrum of the structure  is the set of all lower bounds of the degree
spectra of A. Co-spectra are introduced and studied in [7].

The aim of the present paper is to study a generalization of the notions of
degree spectra and co-spectra for finitely many structures and to give a normal
form of the sets, which generates the elements of the generalized co-spectra in
terms of recursive 7 formulae.

In what follows we shall use the following Jump Inversion Theorem proved
in [8]. Notice that the jump operation "' denotes here the enumeration jump
introduced by Cooper (3].

Given n + 1 sets Bg,....B,, for everv i < n define the set P(Byg,.... Bi) by

means of the following inductive definition:
(i) P(Bo) = By;
(ii) If i < mn, then P(By,...,Bir1) = (P(Bo.,....Bi)) & Biy;.

Theorem 1.1. Letn > k > 0, By. ..., By be arbitrary sets of natural numbers.
Let A C N and let Q be a total subset of N such that P(By,....B,) <. Q and
At <, Q. Suppose also that A £, P(By,...,By). Then there exists a total set F
having the following properties:
(i) For alli <n, B; <, F''l;
(i) For alli,1<i<n, F'V =, F & ®(Bo,...,Bi1)":
(it) F™ =, Q;

(iv) A £, F*).

2. JOINT SPECTRA OF STRUCTURES

Let us fix the structures 2g, ..., %A,.

Definition 2.1. The joint spectrum of g, ..., 2, 1s the set
DS(Ag. Ay, ..., UA,) = {a:ae DS(Ap).a' € DS(Ay),....a"™ € DS(A,)}.

Definition 2.2. Let k < n. The k-th jump spectrum of Uy, ..., 2, is the set

DS, ..., Uy) = {a% 1a € DS(Ao, ..., An)}.

Proposition 2.1. DS (o, ....2A,) is closed upwards, i.e. if a® € DS (Aq,
... Ay), bis a total e-degree and alk) < b, then b € DSy, ..., A, ).

Proof. Suppose that al®) € DS (,...,2,). b is a total degree and b > a'kl,
By the Jump Inversion Theorem 1.1 there is a total e-degree f such that:
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(1) a'¥ < £ for all i < k;

(2) f'*% =b.
Clearly, a'! < ¥ for i < n. Since a? € DS(2;) and £ is total, £ € DS(,),
i < n. Therefore f € DS(Ay,....A,) and hence b = f'*% € DS (A, ..., A,). O

Definition 2.3. Let k < n. The k-th co-spectrum of g, ..., %A, is the set of

all lower bounds of DS, (Ag,...,2,). i.e.

CSi(o.....As) = {b:b € D&(Va € DSk(o, ..., A,))(b < a)}.

Proposition 2.2. Let k <n. Then
CSi(%g..... Wy, Ap) = CSe (™o, ..., Ap).

Proof. Clearly, DS; (g, ..., Ax,....A,) € DS (™. ..., 21 ) and hence

CSp(R™Ap,....A) COCSL(™Uo. ..., A, ..., 2,).

To show the reverse inclusion, let ¢ € CSi(Ug,...,An), ie. ¢ <a® forallac
DS (Ao, ..., A,). Suppose that ¢ & CSg(™Ap,...,A). Then there exist sets C' and
A such that d.(C') = ¢ and d.(A) € DS(™p,...,Ax) and C £, A% . Notice that
PlA, A AN = AW and therefore C £, P(4, A',..., A®), Fix some sets
By,.... By such that d.(B,) € DS(;41),....d.(B_1) € DS(2,,). Applying

the Jump Inversion Theorem 1.1, we obtain a total set F' such that:
(i) For all i <k, AW <, Fli).
(i) Forall j,1 <j<n-k, B; <, Rk},
(iii) C &£, F%.
Since the degree spectra are closed upwards, d.{(F') € DS(2;), i = 0,...,n,
and hence d.(F) € DS(%..... A,). On the other hand, C £, F*) and hence

c € CSi(Ao, ..., 2A,). A contradiction. O

Theorem 2.1. Let 4 CN. Then the following are equivalent:
(1) do(A) € CSp (™o, ..., Ap).
(2) For every k + 1 enumerations fo,..., fi,

A< PUf (o), F7H(UR)))-

Proof. Suppose that A satisfies (2) and consider a b € DS(g,...,%A;). We
shall show that d.(A4) < bkl

Let i < k. Then bV € DS(2;) and hence there exists an enumeration f; such
that b = d,(f71(;)). Clearly, do(A4) < de(P(fy ' (Ao), - -, 7' (Ar))) = bk,

Suppose now that d.(4) € CSE(™Ap,...,Ax) and fo,..., fr are enumerations.
Set B; = f7 ' (A;). i = 0,...,k. Towards a contradiction assume that A £,
PlfoH (Ao), ... ,f,:‘l(Qlk)). By the Jump Inversion Theorem 1.1 there is a total set
F such that: B; <, F\', i < k,and A £, F¥). Clearly, d.(F) € DSi(o,...,U)
and d.(4) £ F*¥. So, d.(4) & CSi (U, ... , ). A contradiction.
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3. GENERIC ENUMERATIONS AND FORCING

3.1. THE SATISFACTION RELATION

Given k + 1 enumerations fg, ..., fA., denote by f the sequence fg..... fir and
set for i < k, P = P(f (o), ..., 1)),
. be a Godel enumeration of the r.e. sets and D, be the

Let Wo,..., W, ..
finite set having canonical code v. . i
For every i < k, e and = in N define the relations f =; F.(x) and f =; =F.(z)
by induction on i:
(i) f o Fe(z) &= (F)((v,2) € W, & D, C f5 ' (Uo));
fEiv Fo(z) < 3v)({v,z) € W, & (Vu € D,)(
u=(0,ep,,) & fl=i Fo, (2,) V

(i1 w= (e, & F R Fo, (z,) V
) u = (2.2.) & Ty € fIL(™Ai41)));
(iii) f = ~Fo(z) &> [} Folx).

From the above definition follows easily the truth of the following

Proposition 3.1. Let A CN andi < k. Then
A<, P = Be)Ad={z:f| F(z)})

3.2. FINITE PARTS AND FORCING

The forcing conditions, which we shall call finite parts, are k-tuples
= (19,...,7) of finite mappings 7o,...,7 of N in N. We shall use the letters

7_-
5,7, p, ji to denote finite parts.
For every i < k, ¢ and z in N and every finite part 7 we define the forcing

relations 7 IF; F.(z) and 7 IF; = F, (2}, following the definition of relations " =;”

Definition 3.1.
(i) Tlky Fo(z) <= (Jv)((v,z) € W, & D, C 75 " (Ao)):
TlFip Fe(z) <= 3v((v.z) e W, &

B (Vu€ D j(u=(0.ey.zy) &FIb; Fo(24) V
(i) w=(1e,a,) & 7lr; =F(z4) V
u=(2,2,) & xy, € 7, (Ai1)))i
(iii) 71k ~F.(z) <= (%2 7)(3 s Fulx)).
Given finite parts § = (60, o 0p)and T = (70,...,7%), let
8§ CT <= 0o C1o,...,0k C 7.
Or). 7= (70,..., i) be

Proposition 3.2. Leti < k.e,z € N and 6 = (b, ...,
finite parts :
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(1) 6 C 7. then & IF; (m)F.(z) = 7 IF; (=) F,(2):

(2) If g = 79.....0; = 7;, then 81k, (D) Fe(z) <= Tk (0)Fe(x).

Proof. The monotonicity condition (1} is obvious.

The proof of (2) is by induction on i. Skipping the obvious case i = (), suppose
that i < k and

Sk () F(z) <= Tk (0)Fe(2).
Let 7; = d;.7 < i+1. From the definition of the relation I it follows immediately
that

Sk Fo(z) <= 7k Fo(x).

Assume that & Ik =F.(z), but 7 #¥,.; =F.(z). Then there exists a finite
part p 2 7 such that p Ity F.(x). Consider the finite part 2 such that p; = pj
for j <i+1,and p; =9; fori +1 < j < k. Clearly, i 2 6 and 1 lF;y, F.(z). A
contradiction. []

Definition 3.2. If d = (dy,....0), 7 = (79....,7) and i < k, define

Let 7 IF7 (=) F.(z) be the same as 7 IF; (—)F, (x) with the exception of
(i) 7l ~Fu(z) < (V52 7)(3 ¥ F.(x)).
As an immediate corollary of the previous proposition, we get the following

Lemma 3.1. For each i < k.e,x € N and 7,
Tk (D) Fe(z) &= 7 (m)Fe(z).

3.3. GENERIC ENUMERATIONS

For any i < k,e,z € N denote by X/, v = {p:plFi Fe(z)}.
If f =(fo.....fr) is an enumeration of 2y, ..., A, then

Definition 3.3. An enumeration f of Ao, ..., %Ay is i- generic if for every j < i
e, r €N, i . ) .
(V7 C f)Epe X}, )T Cp) = (37 C fllF e X[, ).

Lemma 3.2. (1} Let f be an i-generic enumeration. Then
fEi F(z) <= (37 C [)(7 1 Fe(z)).
(2} Let f be an (i + 1)-generic enumeration. Then
fEi-F.(x) <= (37 C )7 Ik ~Fe(a)).
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Proof. Tnduction on i. Clearly, for every f we have
f o Fo(z) <= (37 C f)(F ko Fe(2)).

From the definition of the relations |=; and |F; it follows immediately that if for
some enumeration f we have the equivalences
fEF@) < 37 CHE Ik F()
and ) .
f t:i -F(zr) <= (37 C FHUTIF; ﬁFe(:lr))f
then we have also
fEw Folz) <= (37 C /)7 lFiq Fo(2)).
So, to finish the proof. we have to show that if for some i < k the enumeration
[ is (i + 1)-generic and (1) holds, then (2) holds as well. Indeed. suppose that
f =i »F.(xz). Assume that there is no 7 C f such that 7 I+; —F.{z). Then for
every 7 C f there exists a finite part p 2 7 such that pIF; Fe(z). From the (i +1)-
genericity of f it follows that there exists a finite part 7 C f such that 7 |F; F.(z).
Hence f =, F.(x). A contradiction. i
Assume now that ¥ C f and 7 IF; -F,(z). Assume that f =; F.(z). Then we
can find a finite part jt C f such that glk; F.(x) and 7 2 7. A contradiction. [J

3.4. FORCING K-DEFINABLE SETS

Definition 3.4. The set 4 C N is forcing k-definable on . ... 2y if there
exist a finite part § and e € N such that

r € A <= (37 D )(7 Ik Fo(z)).

Theorem 3.1. Let A CN. If A <, P(f5 (Ao),.... fi (Ax)) for all fi.. ... fi
enumerations of g, ..., ™A, respectively, then A is forcing k-definable on g, .. .. 2.

Proof. Suppose that A is not forcing k-definable on g, ..., Ax. )

We shall construct a (k + 1)-generic enumeration f such that 4 £ 'P{

The construction of the enumeration f will be carried out by steps. On each
step j we shall define a finite part &/ = (§3,...,d7), so that &’ C §/*', and take
fi = U;d! for each i < k.

On the steps j == 3¢g we shall ensure that each f; is a total surjective mapping
from N onto N. On the steps j = 3¢ + 1 we shall ensure that f is (k + 1)-generic.
On the steps j = 3g + 2 we shall ensure that 4 £ 'P{.

Let 6° = (0,...,0). Suppose that &/ is defined.

CASE j = 3q. Forevery i, 0 <i <k, let ; be the least natural number. which
does not belong to the domain of 6{ , and y; be the least natural number, which
does not belong to the range of Jf Let 5{“(:1:,-) = y; and 6{“(1‘) ~ (5{ (z) for
T # T;.

Case j = 3{e,i,2) 4 1,1 < k. Check if there exists a finite part 57 2 87 such
that p IF; F.(x). If so, then let 677! be the least such p. Otherwise let 31 = 4/,
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CAskE j = 3¢ + 2. Consider the set
C = {2: (37 D &)(F IFy Fyla))}.

Clearly, (' is forcing k-deﬁnable on Ag..... A and hence €' # A. Then there
exists an x such that either z € dandx @ Corz € C and z & A. Take 3771 = §J
in the first case.

If the second case holds. then there must exist a p 2 ¢/ such that j b, F,(x).
Let /%! be the least such p.

Let 6/*' = §J in the other cases.

To prove that the so received enumeration f=U jsj is (k + 1)-generic, let us
fix numbers 7 < k, e,z € N and suppose that for every finite part # C f therc
is an extention p IF; F.(x). Then consider the step j = 3(e,i,z) + 1. From the
construction we have that 87+ i+, F.(z).

Suppose there is a ¢ € N, so that 4 = {x : f = F,(z)}. Consider the step
j = 3¢+ 2. From the construction there is an x such that one of the following two
cases holds:

(a) 2 € A and (Y5 2 &) (p Wx Fy(x)). So, 87 Ik ~F,(x). Since fis (k + 1)-
generic, € 4 & f W Fylz). A contladl(‘tlon

(b) o ¢ A & & by F,(z). Since fis (k + 1)-generic, f ¢ Fy(z). A
contradiction. [

4. THE NORMAL FORM THEOREM

In this section we shall give an explicit form of the forcing k-definable on %,
.. A sets by means of positive recursive ¥ formulae. These formulae can be
considered as a modification of Ash’s formulae introduced in [1].

4.1. RECURSIVE £ FORMULAE

Let. for each i < k, L; = {T}...., T} } be the language of 2;. where every TJ?" is
an r;-ary predicate symbol, and L= Lo U---ULg. We suppose that the languages
Lg...., L, are disjoint.

For each i < k fix a sequence Xj...., X! ... of variables. The upper index i
in the variable X’ shows that the posq1blc values of X‘ will be in [;|. By X' we
shall denote ﬁmto sequences of variables of the form /\ SR Y

For each i < k. define the elementary Z:L fonnulae and the Zf formulac by
induction on i, as follows.

Definition 4.1.
(1) An elementary X7 formula with free variables among XY is an existential
formula of the form

Y. 3Y0R(XO YLV,

m

where @ is a finite conjunction of atomic formulac in Lo with variables
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(2) An elementary £, formula with free variables among XY, ... . X" is in

i1
the form
Y0 IV RO, L XL YO T,
where @ is a finite conjunction of ¥ formulae and negations of £ formulae
with free variables among Y°,. ... Y. X% . ... " and atoms of L,.; with
variables among X '*1 Y7i+1
(3) AX] formula with free variables among X9, ..., X" is an r.c. infinitary dis-
junction of elementary ¥ formulae with free variables among X, ... X?

Let ® be a &) formula, i < k, with free variables among XO ..., X" and let
{°....,1" be elements of N. Then by (p,..., ;) = ®(X°/i°,.... X!/#') we shall
denote that @ is true on (g, ...,%;) under the variable assignment v such that
v(X0) = °,...,v(X?) = f'. More precisely, we have the following

Definition 4.2.
(1) If & =3y ... 3y (X% v’ ..., Y0 is a & formula, then

m

(Ap) = ®(X/1) = 3s1...35m (Ao = TN/, Y /51,0, Yo sm)).

(2) If & = 370, IFHg(X0,.. XL T0 Vi) and ¥ = (¢ & o),
where (X, ..., X", Y% ... Y") is a conjunction of 32 formulae and nega-
tions of £} formulae and oY+, X*+1) is a conjuction of atoms of L1,
then

(Qlo, cey QIH-I) '= (I)(‘\_'O/t'ﬁ ce ,X'H_I/EH_I) —

3% 3 (A, .. ) (X0, X E YO0 Y &

(Mip1) | (X /ETL Yirt/5irh),

4.2. THE FORMALLY K-DEFINABLE SETS

Definition 4.3. The set 4 C N is formally k-definable on g, ... %y if
there exists a recursive sequence {®}77) of ¥ formulae with free variables among
WO, ..., W* and elements %, ... * of N such that the following equivalence holds:

€A = (Ao... ) IOV, W,

We shall show that every forcing k-definable set is formally k-definable.

Let for every 7, 0 < i < k, var; be an effective bijective mapping of the natural
numbers onto the variables with upper index ¢. Given a natural number z. by X'
we shall denote the variable var;(z).

Let y; < y» < ... < y; be the elements of a finite set D, let @ be one of the
quantifiers 3 or V, and let ® be an arbitrary formula. Then by Q'(y : y € D)® we
shall denote the formula QY ... QY] ®.
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Proposition 4.1. Let E = (Ey, ..., Ey) be a sequence of finite sets of natural

numbers, where E; = {w{....,wl }. Leti < k,z,e be elements of N. There exists
an uniform effective way to construct a £} formula <I>i . With free variables among

o, W where i P — Lal(w’) s‘urh that for M)my ﬁmte part & = (8o,....61),
(1om(50) Eo,.... dom(é;\) E;.

(Ag.... Ap) | @ (W05 (@), ... . WH/o(0*)) <= I F.(x).

Proof. We shall construct the formula ®3 by induction on 7 following the
definition of the forcing.

(1) Let i = 0. Let V" = {v : (v,2) € W,}. Consider an element v of V. For
every u € D, define the atom IT,, as follows:

(a) Ifu = (j,af.....27 ), where 1 < j < ng and all «f,... , @y are clements of
Eg. then let 1T, = TJO(X?, o .-\'f.’));

(b) Let TT,, = X # X{ in the other cases.

Set H!' — AMED H dnd (I)OEE r = VK'E" Hl»“

(2) Case i+ 1. Let V={v:(v.z) e W,}and v e V.

For everv u € D, define the formula II,, as follows:

(a) If u = (0,e,,x,), then let IT,, = (I)Ee., 2]

(b) If u = (1.e,,x,). then let

I, = - \V (Fye 5\ Eo)...(3'y € Ef \ E))®., ],
E}DEy...E; DE;

where E* = (E},...,E',Eis1,..., E);

(yIfu= (22 ) T, = {J, 1’1“,...,1’“) j < njpq and :v‘“,...,a:f.jl € B,
then let IL, = 77" (XTF1, .. XY,

(d) Let IT,, = @{o} 0o N ﬂcb{@},w in the other cases.

Now let 1, = /\uGD\- 11, and set q)g“.z_w = V,ev Iv. An induction on @ shows
that for every i the E}L formula @7 , . satisfies the requirements of the proposition.(J

Theorem 4.1. Let A C N be forcing k-definable on g, ..., A;. Then A is
formally k-definable on 2q. . ... 2.

Proof. 1f A4 is forcing k-definable on .. ... %, then there exist a finite part
d = (dg.....0,) and e € N such that

r€A &= (37 D0)(FIFr Fu(z)) & (37 D 8)(F I+ Fo(z)).

Let for i = 1.....k, E; = dom(d;) = {wi,...,wi} and let (w}) =¢¢, 5 =1,...,r.
Set E = (Ey....,Ey). From the previous proposition we knou that
(Ao, ..., M) E \/ Iy € E*\EYOh. (WO ... . WH/T) =

OF
(37 D 6)(dom(7) = E*)(7 I}, F.(x)).
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Then for all € N the following equivalence is true:

red = (Ap,.... A = \/ Iy € E*\ [:)@Lér'{ﬁo/'m o IT""!/{-A‘ Y
EDE
From here we can conclude that 4 is formally k-definable on 24g,.... 20, O

3.

=1

3.

Theorem 4.2. Let A CN. Then the following are equivalent:
(1) de(A) € CSp(Ag. . ... 20,0, k< n.

(2) For every enumeration f of Ag..... A, A <, P (An). ..., o).

(3} A is forcing k-definable on g, ... Ay,
(4) A is formally k-definable on Ag, ... A,

Proof. The equivalence (1) <= (2) follows from Theorem 2.1.
The implication (2) = (3) follows from Theorem 3.1.

The implication (3) = (4) follows from the previous theorem.
The last implication (4) = (2) follows by induction on i. 0
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