ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 96

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI" FACULTE DE MATHEMATIQUES ET INFORMATIQUE Tome 96

CO-SPECTRA OF JOINT SPECTRA OF STRUCTURES

ALEXANDRA SOSKOVA and IVAN SOSKOV

We introduce and study the notion of joint spectrum of finitely many abstract structures. A characterization of the lower bounds of the elements of the joint spectrum is obtained.

Keywords: enumeration reducibility, enumeration jump, enumeration degrees, forcing 2000 MSC: 03D30

1. INTRODUCTION

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k)$ be a structure with domain the set of all natural numbers \mathbb{N} , where each R_i is a subset of \mathbb{N}^{r_i} and "=" and "\neq" are among R_1, \dots, R_k .

An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N} .

For every $A \subseteq \mathbb{N}^a$ define

$$f^{-1}(A) = \{ \langle x_1 \dots x_a \rangle : (f(x_1), \dots, f(x_a)) \in A \}.$$

Let

$$f^{-1}(\mathfrak{A}) = f^{-1}(R_1) \oplus \cdots \oplus f^{-1}(R_k).$$

For any sets of natural numbers A and B the set A is enumeration reducible to B $(A \leq_e B)$ if there is an enumeration operator Γ_z such that $A = \Gamma_z(B)$. By $d_e(A)$ we denote the enumeration degree of the set A. The set A is total if $A \equiv_e A^+$, where $A^+ = A \oplus (\mathbb{N}\backslash A)$. An enumeration degree is called total if it contains a total set.

Definition 1.1. The degree spectrum of $\mathfrak A$ is the set

$$DS(\mathfrak{A}) = \{d_e(f^{-1}(\mathfrak{A})) : f \text{ is an enumeration of } \mathfrak{A}\}.$$

The notion is introduced by [6] for bijective enumerations. In [2, 5, 4, 7] several results about degree spectra of structures are obtained. In [7] it is shown that if $\mathbf{a} \in DS(\mathfrak{A})$ and \mathbf{b} is a total e-degree, $\mathbf{a} \leq \mathbf{b}$, then $\mathbf{b} \in DS(\mathfrak{A})$. In other words, the degree spectrum of \mathfrak{A} is closed upwards.

The co-spectrum of the structure $\mathfrak A$ is the set of all lower bounds of the degree spectra of $\mathfrak A$. Co-spectra are introduced and studied in [7].

The aim of the present paper is to study a generalization of the notions of degree spectra and co-spectra for finitely many structures and to give a normal form of the sets, which generates the elements of the generalized co-spectra in terms of recursive Σ^+ formulae.

In what follows we shall use the following Jump Inversion Theorem proved in [8]. Notice that the jump operation "'" denotes here the enumeration jump introduced by Cooper [3].

Given n+1 sets B_0, \ldots, B_n , for every $i \leq n$ define the set $\mathcal{P}(B_0, \ldots, B_i)$ by means of the following inductive definition:

- (i) $\mathfrak{P}(B_0) = B_0$;
- (ii) If i < n, then $\mathcal{P}(B_0, \dots, B_{i+1}) = (\mathcal{P}(B_0, \dots, B_i))' \oplus B_{i+1}$.

Theorem 1.1. Let $n > k \ge 0$, B_0, \ldots, B_n be arbitrary sets of natural numbers. Let $A \subseteq \mathbb{N}$ and let Q be a total subset of \mathbb{N} such that $\mathfrak{P}(B_0, \ldots, B_n) \le_e Q$ and $A^+ \le_e Q$. Suppose also that $A \not\le_e \mathfrak{P}(B_0, \ldots, B_k)$. Then there exists a total set F having the following properties:

- (i) For all $i \leq n$, $B_i \leq_e F^{(i)}$;
- (ii) For all $i, 1 \leq i \leq n$, $F^{(i)} \equiv_e F \oplus \mathcal{P}(B_0, \dots, B_{i-1})'$;
- (iii) $F^{(n)} \equiv_e Q$;
- (iv) $A \not\leq_e F^{(k)}$.

2. JOINT SPECTRA OF STRUCTURES

Let us fix the structures $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$.

Definition 2.1. The joint spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set $DS(\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_n) = \{ \mathbf{a} : \mathbf{a} \in DS(\mathfrak{A}_0), \mathbf{a}' \in DS(\mathfrak{A}_1), \ldots, \mathbf{a}^{(\mathbf{n})} \in DS(\mathfrak{A}_n) \}.$

Definition 2.2. Let $k \leq n$. The k-th jump spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set $DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n) = \{\mathbf{a}^{(\mathbf{k})} : \mathbf{a} \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)\}.$

Proposition 2.1. $DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)$ is closed upwards, i.e. if $\mathbf{a}^{(\mathbf{k})} \in DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)$, \mathbf{b} is a total e-degree and $\mathbf{a}^{(\mathbf{k})} \leq \mathbf{b}$, then $\mathbf{b} \in DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)$.

Proof. Suppose that $\mathbf{a}^{(\mathbf{k})} \in DS_k(\mathfrak{A}_0, \dots, \mathfrak{A}_n)$, \mathbf{b} is a total degree and $\mathbf{b} \geq \mathbf{a}^{(\mathbf{k})}$. By the Jump Inversion Theorem 1.1 there is a total e-degree \mathbf{f} such that:

- (1) $\mathbf{a^{(i)}} \leq \mathbf{f^{(i)}}$ for all $i \leq k$;
- (2) $\mathbf{f}^{(k)} = \mathbf{b}$.

Clearly, $\mathbf{a^{(i)}} \leq \mathbf{f^{(i)}}$ for $i \leq n$. Since $\mathbf{a^{(i)}} \in DS(\mathfrak{A}_i)$ and $\mathbf{f^{(i)}}$ is total, $\mathbf{f^{(i)}} \in DS(\mathfrak{A}_i)$, $i \leq n$. Therefore $\mathbf{f} \in DS(\mathfrak{A}_0, \dots, \mathfrak{A}_n)$ and hence $\mathbf{b} = \mathbf{f^{(k)}} \in DS_k(\mathfrak{A}_0, \dots, \mathfrak{A}_n)$. \square

Definition 2.3. Let $k \leq n$. The k-th co-spectrum of $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is the set of all lower bounds of $DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$, i.e.

$$CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n) = \{\mathbf{b} : \mathbf{b} \in \mathfrak{D}_e \& (\forall \mathbf{a} \in DS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_n)) (\mathbf{b} \leq \mathbf{a}) \}.$$

Proposition 2.2. Let $k \leq n$. Then

$$CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k,\ldots,\mathfrak{A}_n)=CS_k(\mathfrak{A}_0,\ldots,\mathfrak{A}_k).$$

Proof. Clearly,
$$DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_k, \ldots, \mathfrak{A}_n) \subseteq DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$$
 and hence $CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_k) \subseteq CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_k, \ldots, \mathfrak{A}_n)$.

To show the reverse inclusion, let $\mathbf{c} \in CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$, i.e. $\mathbf{c} \leq \mathbf{a}^{(\mathbf{k})}$ for all $\mathbf{a} \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_n)$. Suppose that $\mathbf{c} \notin CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$. Then there exist sets C and A such that $d_e(C) = \mathbf{c}$ and $d_e(A) \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$ and $C \not\leq_e A^{(k)}$. Notice that $\mathfrak{P}(A, A', \ldots, A^{(k)}) \equiv_e A^{(k)}$ and therefore $C \not\leq_e \mathfrak{P}(A, A', \ldots, A^{(k)})$. Fix some sets B_1, \ldots, B_{n-k} such that $d_e(B_1) \in DS(\mathfrak{A}_{k+1}), \ldots, d_e(B_{n-k}) \in DS(\mathfrak{A}_n)$. Applying the Jump Inversion Theorem 1.1, we obtain a total set F such that:

- (i) For all $i \le k$, $A^{(i)} \le_e F^{(i)}$;
- (ii) For all $j, 1 \le j \le n k$, $B_j \le_e F^{(k+j)}$;
- (iii) $C \not\leq_e F^{(k)}$.

Since the degree spectra are closed upwards, $d_e(F^{(i)}) \in DS(\mathfrak{A}_i)$, i = 0, ..., n, and hence $d_e(F) \in DS(\mathfrak{A}_0, ..., \mathfrak{A}_n)$. On the other hand, $C \not\leq_e F^{(k)}$ and hence $c \notin CS_k(\mathfrak{A}_0, ..., \mathfrak{A}_n)$. A contradiction. \square

Theorem 2.1. Let $A \subseteq \mathbb{N}$. Then the following are equivalent:

- (1) $d_e(A) \in CS_k(\mathfrak{A}_0, \dots, \mathfrak{A}_k)$.
- (2) For every k + 1 enumerations f_0, \ldots, f_k ,

$$A \leq_{\epsilon} \mathcal{P}(f_0^{-1}(\mathfrak{A}_0), \dots, f_k^{-1}(\mathfrak{A}_k))).$$

Proof. Suppose that A satisfies (2) and consider a $\mathbf{b} \in DS(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$. We shall show that $d_e(A) \leq \mathbf{b}^{(\mathbf{k})}$.

Let $i \leq k$. Then $\mathbf{b}^{(i)} \in DS(\mathfrak{A}_i)$ and hence there exists an enumeration f_i such that $\mathbf{b}^{(i)} = d_e(f_i^{-1}(\mathfrak{A}_i))$. Clearly, $d_e(A) \leq d_e(\mathfrak{P}(f_0^{-1}(\mathfrak{A}_0), \ldots, f_k^{-1}(\mathfrak{A}_k))) = \mathbf{b}^{(k)}$.

Suppose now that $d_e(A) \in CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$ and f_0, \ldots, f_k are enumerations. Set $B_i = f_i^{-1}(\mathfrak{A}_i)$, $i = 0, \ldots, k$. Towards a contradiction assume that $A \not\leq_e \mathcal{P}(f_0^{-1}(\mathfrak{A}_0), \ldots, f_k^{-1}(\mathfrak{A}_k))$. By the Jump Inversion Theorem 1.1 there is a total set F such that: $B_i \leq_e F^{(i)}$, $i \leq k$, and $A \not\leq_e F^{(k)}$. Clearly, $d_e(F) \in DS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$ and $d_e(A) \not\leq F^{(k)}$. So, $d_e(A) \not\in CS_k(\mathfrak{A}_0, \ldots, \mathfrak{A}_k)$. A contradiction. \square

3. GENERIC ENUMERATIONS AND FORCING

3.1. THE SATISFACTION RELATION

Given k+1 enumerations f_0, \ldots, f_k , denote by \bar{f} the sequence f_0, \ldots, f_k and set for $i \leq k$, $\mathcal{P}_i^{\bar{f}} = \mathcal{P}(f_0^{-1}(\mathfrak{A}_0), \ldots, f_i^{-1}(\mathfrak{A}_i))$.

Let W_0, \ldots, W_z, \ldots be a Gödel enumeration of the r.e. sets and D_v be the finite set having canonical code v.

For every $i \leq k$, e and x in \mathbb{N} define the relations $\bar{f} \models_i F_e(x)$ and $\bar{f} \models_i \neg F_e(x)$ by induction on i:

(i)
$$\bar{f} \models_{0} F_{e}(x) \iff (\exists v)(\langle v, x \rangle \in W_{e} \& D_{v} \subseteq f_{0}^{-1}(\mathfrak{A}_{0}));$$

 $\bar{f} \models_{i+1} F_{e}(x) \iff (\exists v)(\langle v, x \rangle \in W_{e} \& (\forall u \in D_{v})($
 $u = \langle 0, e_{u}, x_{u} \rangle \& \bar{f} \models_{i} F_{e_{u}}(x_{u}) \lor$
 $u = \langle 1, e_{u}, x_{u} \rangle \& \bar{f} \models_{i} \neg F_{e_{u}}(x_{u}) \lor$
 $u = \langle 2, x_{u} \rangle \& x_{u} \in f_{i+1}^{-1}(\mathfrak{A}_{i+1}));$

(iii) $\bar{f} \models_i \neg F_e(x) \iff \bar{f} \not\models_i F_e(x).$

From the above definition follows easily the truth of the following

Proposition 3.1. Let $A \subseteq \mathbb{N}$ and $i \leq k$. Then

$$A \leq_e \mathcal{P}_i^{\bar{f}} \iff (\exists e)(A = \{x : \bar{f} \models_i F_e(x)\}).$$

3.2. FINITE PARTS AND FORCING

The forcing conditions, which we shall call *finite parts*, are k-tuples $\bar{\tau} = (\tau_0, \ldots, \tau_k)$ of finite mappings τ_0, \ldots, τ_k of \mathbb{N} in \mathbb{N} . We shall use the letters $\bar{\delta}, \bar{\tau}, \bar{\rho}, \bar{\mu}$ to denote finite parts.

For every $i \leq k$, e and x in \mathbb{N} and every finite part $\bar{\tau}$ we define the forcing relations $\bar{\tau} \Vdash_i F_e(x)$ and $\bar{\tau} \Vdash_i \neg F_e(x)$, following the definition of relations " \models_i ".

Definition 3.1.

(i)
$$\bar{\tau} \Vdash_0 F_e(x) \iff (\exists v)(\langle v, x \rangle \in W_e \& D_v \subseteq \tau_0^{-1}(\mathfrak{A}_0));$$

 $\bar{\tau} \Vdash_{i+1} F_e(x) \iff \exists v(\langle v, x \rangle \in W_e \&$

(ii)
$$(\forall u \in D_v)(u = \langle 0, e_u, x_u \rangle \& \bar{\tau} \Vdash_i F_{e_u}(x_u) \lor u = \langle 1, e_u, x_u \rangle \& \bar{\tau} \Vdash_i \neg F_{e_u}(x_u) \lor$$

$$u = \langle 2, x_u \rangle \& x_u \in \tau_{i+1}^{-1}(\mathfrak{A}_{i+1}));$$

(iii)
$$\bar{\tau} \Vdash_i \neg F_e(x) \iff (\forall \bar{\rho} \supseteq \bar{\tau})(\bar{\rho} \not\Vdash_i F_e(x)).$$

Given finite parts $\bar{\delta} = (\delta_0, \dots, \delta_k)$ and $\bar{\tau} = (\tau_0, \dots, \tau_k)$, let

$$\bar{\delta} \subseteq \bar{\tau} \iff \delta_0 \subseteq \tau_0, \dots, \delta_k \subseteq \tau_k.$$

Proposition 3.2. Let $i \leq k, e, x \in \mathbb{N}$ and $\bar{\delta} = (\delta_0, \dots, \delta_k), \ \bar{\tau} = (\tau_0, \dots, \tau_k)$ be finite parts:

- (1) $\bar{\delta} \subseteq \bar{\tau}$, then $\bar{\delta} \Vdash_i (\neg) F_e(x) \Longrightarrow \bar{\tau} \Vdash_i (\neg) F_e(x)$;
- (2) If $\delta_0 = \tau_0, \dots, \delta_i = \tau_i$, then $\bar{\delta} \Vdash_i (\neg) F_e(x) \iff \bar{\tau} \Vdash_i (\neg) F_e(x)$.

Proof. The monotonicity condition (1) is obvious.

The proof of (2) is by induction on i. Skipping the obvious case i = 0, suppose that i < k and

$$\bar{\delta} \Vdash_i (\neg) F_e(x) \iff \bar{\tau} \Vdash_i (\neg) F_e(x).$$

Let $\tau_j = \delta_j, j \leq i+1$. From the definition of the relation \Vdash_{i+1} it follows immediately that

$$\bar{\delta} \Vdash_{i+1} F_e(x) \iff \bar{\tau} \Vdash_{i+1} F_e(x).$$

Assume that $\bar{\delta} \Vdash_{i+1} \neg F_e(x)$, but $\bar{\tau} \not\Vdash_{i+1} \neg F_e(x)$. Then there exists a finite part $\bar{\rho} \supseteq \bar{\tau}$ such that $\bar{\rho} \Vdash_{i+1} F_e(x)$. Consider the finite part $\bar{\mu}$ such that $\mu_j = \rho_j$ for $j \leq i+1$, and $\mu_j = \delta_j$ for $i+1 < j \leq k$. Clearly, $\bar{\mu} \supseteq \bar{\delta}$ and $\bar{\mu} \Vdash_{i+1} F_e(x)$. A contradiction. \square

Definition 3.2. If
$$\bar{\delta} = (\delta_0, \dots, \delta_k)$$
, $\bar{\tau} = (\tau_0, \dots, \tau_k)$ and $i \leq k$, define $\bar{\delta} \subseteq_i \bar{\tau} \iff \delta_0 \subseteq \tau_0, \dots, \delta_i \subseteq \tau_i, \delta_{i+1} = \tau_{i+1}, \dots, \delta_k = \rho_k$.

Let $\bar{\tau} \Vdash_i^* (\neg) F_e(x)$ be the same as $\bar{\tau} \Vdash_i (\neg) F_e(x)$ with the exception of

(iii)
$$\bar{\tau} \Vdash_i \neg F_e(x) \iff (\forall \bar{\rho} \supseteq_i \bar{\tau})(\bar{\rho} \not\Vdash_i^* F_e(x)).$$

As an immediate corollary of the previous proposition, we get the following

Lemma 3.1. For each $i \leq k, e, x \in \mathbb{N}$ and $\bar{\tau}$,

$$\bar{\tau} \Vdash_i (\neg) F_e(x) \iff \bar{\tau} \Vdash_i^* (\neg) F_e(x).$$

3.3. GENERIC ENUMERATIONS

For any $i \leq k, e, x \in \mathbb{N}$ denote by $X^i_{\langle e, x \rangle} = \{ \bar{\rho} : \bar{\rho} \Vdash_i F_e(x) \}.$

If $\bar{f} = (f_0, \dots, f_k)$ is an enumeration of $\mathfrak{A}_0, \dots, \mathfrak{A}_k$, then

$$\bar{\tau} \subseteq \bar{f} \iff \tau_0 \subseteq f_0, \dots, \tau_k \subseteq f_k.$$

Definition 3.3. An enumeration \bar{f} of $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$ is *i-generic* if for every j < i, $e, x \in \mathbb{N}$,

$$(\forall \bar{\tau} \subseteq \bar{f})(\exists \bar{\rho} \in X^j_{\langle e, x \rangle})(\bar{\tau} \subseteq \bar{\rho}) \Longrightarrow (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \in X^j_{\langle e, x \rangle}).$$

Lemma 3.2. (1) Let \bar{f} be an i-generic enumeration. Then $\bar{f} \models_i F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_i F_e(x)).$

(2) Let f be an (i + 1)-generic enumeration. Then

$$\bar{f} \models_i \neg F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_i \neg F_e(x)).$$

Proof. Induction on i. Clearly, for every \bar{f} we have

$$\bar{f} \models_0 F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_0 F_e(x)).$$

From the definition of the relations \models_i and \Vdash_i it follows immediately that if for some enumeration \bar{f} we have the equivalences

$$\bar{f} \models_i F_e(x) \iff (\exists \tilde{\tau} \subseteq \bar{f})(\tilde{\tau} \Vdash_i F_e(x))$$

and

$$\bar{f} \models_i \neg F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_i \neg F_e(x)).$$

then we have also

$$\bar{f} \models_{i+1} F_e(x) \iff (\exists \bar{\tau} \subseteq \bar{f})(\bar{\tau} \Vdash_{i+1} F_e(x)).$$

So, to finish the proof, we have to show that if for some i < k the enumeration \bar{f} is (i+1)-generic and (1) holds, then (2) holds as well. Indeed, suppose that $\bar{f} \models_i \neg F_e(x)$. Assume that there is no $\bar{\tau} \subseteq \bar{f}$ such that $\bar{\tau} \Vdash_i \neg F_e(x)$. Then for every $\bar{\tau} \subseteq \bar{f}$ there exists a finite part $\bar{\rho} \supseteq \bar{\tau}$ such that $\bar{\rho} \Vdash_i F_e(x)$. From the (i+1)-genericity of \bar{f} it follows that there exists a finite part $\bar{\tau} \subseteq \bar{f}$ such that $\bar{\tau} \Vdash_i F_e(x)$. Hence $\bar{f} \models_i F_e(x)$. A contradiction.

Assume now that $\bar{\tau} \subseteq \bar{f}$ and $\bar{\tau} \Vdash_i \neg F_e(x)$. Assume that $\bar{f} \models_i F_e(x)$. Then we can find a finite part $\bar{\mu} \subseteq \bar{f}$ such that $\bar{\mu} \Vdash_i F_e(x)$ and $\bar{\mu} \supseteq \bar{\tau}$. A contradiction. \square

3.4. FORCING K-DEFINABLE SETS

Definition 3.4. The set $A \subseteq \mathbb{N}$ is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$ if there exist a finite part $\bar{\delta}$ and $e \in \mathbb{N}$ such that

$$x \in A \iff (\exists \bar{\tau} \supseteq \bar{\delta})(\bar{\tau} \Vdash_k F_e(x)).$$

Theorem 3.1. Let $A \subseteq \mathbb{N}$. If $A \leq_e \mathcal{P}(f_0^{-1}(\mathfrak{A}_0), \ldots, f_k^{-1}(\mathfrak{A}_k))$ for all f_0, \ldots, f_k enumerations of $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$, respectively, then A is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$.

Proof. Suppose that A is not forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$.

We shall construct a (k+1)-generic enumeration \bar{f} such that $A \not\leq \mathcal{P}_k^{\bar{f}}$.

The construction of the enumeration \bar{f} will be carried out by steps. On each step j we shall define a finite part $\bar{\delta}^j = (\delta_0^j, \dots, \delta_k^j)$, so that $\bar{\delta}^j \subseteq \bar{\delta}^{j+1}$, and take $f_i = \bigcup_j \delta_i^j$ for each $i \leq k$.

On the steps j=3q we shall ensure that each f_i is a total surjective mapping from \mathbb{N} onto \mathbb{N} . On the steps j=3q+1 we shall ensure that \bar{f} is (k+1)-generic. On the steps j=3q+2 we shall ensure that $A \not\leq \mathcal{P}_k^{\bar{f}}$.

Let $\bar{\delta}^0 = (\emptyset, \dots, \emptyset)$. Suppose that $\bar{\delta}^j$ is defined.

Case j=3q. For every $i, 0 \le i \le k$, let x_i be the least natural number, which does not belong to the domain of δ_i^j , and y_i be the least natural number, which does not belong to the range of δ_i^j . Let $\delta_i^{j+1}(x_i) = y_i$ and $\delta_i^{j+1}(x) \simeq \delta_i^j(x)$ for $x \ne x_i$.

Case $j=3\langle e,i,x\rangle+1,\,i\leq k$. Check if there exists a finite part $\bar{\rho}\supseteq\bar{\delta}^j$ such that $\bar{\rho}\Vdash_i F_e(x)$. If so, then let $\bar{\delta}^{j+1}$ be the least such ρ . Otherwise let $\bar{\delta}^{j+1}=\bar{\delta}^j$.

Case j = 3q + 2. Consider the set

$$C = \{x : (\exists \bar{\tau} \supseteq \bar{\delta}^j)(\bar{\tau} \Vdash_k F_q(x))\}.$$

Clearly, C is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$ and hence $C \neq A$. Then there exists an x such that either $x \in A$ and $x \notin C$ or $x \in C$ and $x \notin A$. Take $\bar{\delta}^{j+1} = \bar{\delta}^j$ in the first case.

If the second case holds, then there must exist a $\bar{\rho} \supseteq \bar{\delta}^j$ such that $\bar{\rho} \Vdash_k F_q(x)$. Let $\bar{\delta}^{j+1}$ be the least such $\bar{\rho}$.

Let $\bar{\delta}^{j+1} = \bar{\delta}^{j}$ in the other cases.

To prove that the so received enumeration $\bar{f} = \bigcup_j \bar{\delta}^j$ is (k+1)-generic, let us fix numbers $i \leq k, e, x \in \mathbb{N}$ and suppose that for every finite part $\bar{\tau} \subseteq \bar{f}$ there is an extention $\bar{\rho} \Vdash_i F_e(x)$. Then consider the step $j = 3\langle e, i, x \rangle + 1$. From the construction we have that $\bar{\delta}^{j+1} \Vdash_i F_e(x)$.

Suppose there is a $q \in \mathbb{N}$, so that $A = \{x : \overline{f} \models_k F_q(x)\}$. Consider the step j = 3q + 2. From the construction there is an x such that one of the following two cases holds:

- (a) $x \in A$ and $(\forall \bar{\rho} \supseteq \bar{\delta}^j)(\bar{\rho} \not\Vdash_k F_q(x))$. So, $\bar{\delta}^j \Vdash_k \neg F_q(x)$. Since \bar{f} is (k+1)-generic, $x \in A \& \bar{f} \not\models_k F_q(x)$. A contradiction.
- (b) $x \notin A \& \bar{\delta}^{j+1} \Vdash_k F_q(x)$. Since \bar{f} is (k+1)-generic, $\bar{f} \models_k F_q(x)$. A contradiction. \square

4. THE NORMAL FORM THEOREM

In this section we shall give an explicit form of the forcing k-definable on \mathfrak{A}_0 , ..., \mathfrak{A}_k sets by means of *positive* recursive Σ_k^+ formulae. These formulae can be considered as a modification of Ash's formulae introduced in [1].

4.1. RECURSIVE
$$\Sigma_{\kappa}^{+}$$
 FORMULAE

Let, for each $i \leq k$, $\mathcal{L}_i = \{T_1^i, \dots, T_{n_i}^i\}$ be the language of \mathfrak{A}_i , where every T_j^i is an r_j^i -ary predicate symbol, and $\mathcal{L} = \mathcal{L}_0 \cup \dots \cup \mathcal{L}_k$. We suppose that the languages $\mathcal{L}_0, \dots, \mathcal{L}_k$ are disjoint.

For each $i \leq k$ fix a sequence $\mathbb{X}_0^i, \ldots, \mathbb{X}_n^i, \ldots$ of variables. The upper index i in the variable \mathbb{X}_j^i shows that the possible values of \mathbb{X}_j^i will be in $|\mathfrak{A}_i|$. By \bar{X}^i we shall denote finite sequences of variables of the form X_0^i, \ldots, X_l^i .

For each $i \leq k$, define the elementary Σ_i^+ formulae and the Σ_i^+ formulae by induction on i, as follows.

Definition 4.1.

 An elementary Σ₀⁺ formula with free variables among X̄⁰ is an existential formula of the form

$$\exists Y_1^0 \dots \exists Y_m^0 \Phi(\bar{X}^0, Y_1^0, \dots, Y_m^0),$$

where Φ is a finite conjunction of atomic formulae in \mathcal{L}_0 with variables among $Y_1^0, \ldots, Y_m^0, \bar{X}^0$;

(2) An elementary Σ_{i+1}^+ formula with free variables among $\bar{X}^0, \dots, \bar{X}^{i+1}$ is in the form

$$\exists \vec{Y}^0 \dots \exists \vec{Y}^{i+1} \Phi(\vec{X}^0, \dots, \vec{X}^{i+1}, \vec{Y}^0, \dots, \vec{Y}^{i+1}),$$

where Φ is a finite conjunction of Σ_i^+ formulae and negations of Σ_i^+ formulae with free variables among $\bar{Y}^0, \ldots, \bar{Y}^i, \bar{X}^0, \ldots, \bar{X}^i$ and atoms of \mathcal{L}_{i+1} with variables among $\bar{X}^{i+1}, \bar{Y}^{i+1}$;

(3) $A \Sigma_i^+$ formula with free variables among $\bar{X}^0, \ldots, \bar{X}^i$ is an r.e. infinitary disjunction of elementary Σ_i^+ formulae with free variables among $\bar{X}^0, \ldots, \bar{X}^i$.

Let Φ be a Σ_i^+ formula, $i \leq k$, with free variables among $\bar{X}^0, \ldots, \bar{X}^i$ and let $\bar{t}^0, \ldots, \bar{t}^i$ be elements of \mathbb{N} . Then by $(\mathfrak{A}_0, \ldots, \mathfrak{A}_i) \models \Phi(\bar{X}^0/\bar{t}^0, \ldots, \bar{X}^i/\bar{t}^i)$ we shall denote that Φ is true on $(\mathfrak{A}_0, \ldots, \mathfrak{A}_i)$ under the variable assignment v such that $v(\bar{X}^0) = \bar{t}^0, \ldots, v(\bar{X}^i) = \bar{t}^i$. More precisely, we have the following

Definition 4.2.

(1) If $\Phi = \exists Y_1^0 \dots \exists Y_m^0 \Psi(\bar{X}^0, Y_1^0, \dots, Y_m^0)$ is a Σ_0^+ formula, then

$$(\mathfrak{A}_0) \models \Phi(\bar{X}^0/\bar{t}^0) \iff \exists s_1 \dots \exists s_m (\mathfrak{A}_0 \models \Psi(\bar{X}^0/\bar{t}^0, Y_1^0/s_1, \dots, Y_m^0/s_m)).$$

(2) If $\Phi = \exists \bar{Y}^0 \dots \exists \bar{Y}^{i+1} \Psi(\bar{X}^0, \dots, \bar{X}^{i+1}, \bar{Y}^0, \dots, \bar{Y}^{i+1})$ and $\Psi = (\varphi \& \alpha)$, where $\varphi(\bar{X}^0, \dots, \bar{X}^i, \bar{Y}^0, \dots, \bar{Y}^i)$ is a conjunction of Σ_i^+ formulae and negations of Σ_i^+ formulae and $\alpha(\bar{Y}^{i+1}, \bar{X}^{i+1})$ is a conjunction of atoms of \mathcal{L}_{i+1} , then

$$(\mathfrak{A}_0, \dots, \mathfrak{A}_{i+1}) \models \Phi(\bar{X}^0/\bar{t}^0, \dots, \bar{X}^{i+1}/\bar{t}^{i+1}) \iff \\ \exists \bar{s}^0 \dots \exists \bar{s}^{i+1} ((\mathfrak{A}_0, \dots, \mathfrak{A}_i) \models \varphi(\bar{X}^0/\bar{t}^0, \dots, \bar{X}^i/\bar{t}^i, \bar{Y}^0/\bar{s}^0, \dots, \bar{Y}^i/\bar{s}^i) \& \\ (\mathfrak{A}_{i+1}) \models \alpha(\bar{X}^{i+1}/\bar{t}^{i+1}, \bar{Y}^{i+1}/\bar{s}^{i+1})).$$

4.2. THE FORMALLY K-DEFINABLE SETS

Definition 4.3. The set $A \subseteq \mathbb{N}$ is formally k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$ if there exists a recursive sequence $\{\Phi\}^{\gamma(x)}$ of Σ_k^+ formulae with free variables among $\bar{W}^0, \ldots, \bar{W}^k$ and elements $\bar{t}^0, \ldots, \bar{t}^k$ of \mathbb{N} such that the following equivalence holds:

$$x \in A \iff (\mathfrak{A}_0 \dots \mathfrak{A}_k) \models \Phi^{\gamma(x)}(\bar{W}^0/\bar{t}^0, \dots, \bar{W}^k/\bar{t}^k).$$

We shall show that every forcing k-definable set is formally k-definable.

Let for every $i, 0 \le i \le k$, var_i be an effective bijective mapping of the natural numbers onto the variables with upper index i. Given a natural number x, by X^i we shall denote the variable $var_i(x)$.

Let $y_1 < y_2 < \ldots < y_k$ be the elements of a finite set D, let Q be one of the quantifiers \exists or \forall , and let Φ be an arbitrary formula. Then by $Q^i(y:y\in D)\Phi$ we shall denote the formula $QY_1^i\ldots QY_k^i\Phi$.

Proposition 4.1. Let $E = (E_0, \ldots, E_k)$ be a sequence of finite sets of natural numbers, where $E_j = \{w_0^j, \ldots, w_{s_i}^j\}$. Let $i \leq k, x, e$ be elements of \mathbb{N} . There exists an uniform effective way to construct a Σ_i^+ formula $\Phi_{\bar{E},e,x}^i$ with free variables among $\bar{W}^0, \ldots, \bar{W}^k$, where $W_j^i = var(w_j^i)$, such that for every finite part $\bar{\delta} = (\delta_0, \ldots, \delta_k)$, $dom(\delta_0) = E_0, \dots, dom(\delta_k) = E_k,$

$$(\mathfrak{A}_0,\ldots,\mathfrak{A}_k)\models\Phi^i_{\bar{E},\epsilon,x}(\bar{W}^0/\delta_0(\bar{w}^0),\ldots,\bar{W}^k/\delta_k(\bar{w}^k))\iff \bar{\delta}\Vdash_i^*F_e(x).$$

Proof. We shall construct the formula $\Phi^i_{\bar{E},e,x}$ by induction on i following the definition of the forcing.

- (1) Let i = 0. Let $V = \{v : \langle v, x \rangle \in W_e\}$. Consider an element v of V. For every $u \in D_v$ define the atom Π_u as follows:
- (a) If $u = \langle j, x_1^0, \dots, x_{r_j}^0 \rangle$, where $1 \leq j \leq n_0$ and all $x_1^0, \dots, x_{r_j}^0$ are elements of E_0 , then let $\Pi_u = T_j^0(X_1^0, \dots, X_{r_i}^0)$;
 - (b) Let $\Pi_u = X_0^0 \neq X_0^0$ in the other cases.

Set $\Pi_v = \bigwedge_{u \in D_v} \Pi_u$ and $\Phi^0_{\bar{E},e,x} = \bigvee_{v \in V} \Pi_v$.

(2) Case i + 1. Let $V = \{v : \langle v, x \rangle \in W_e\}$ and $v \in V$.

For every $u \in D_v$ define the formula Π_u as follows:

- (a) If $u = \langle 0, e_u, x_u \rangle$, then let $\Pi_u = \Phi^i_{\bar{E}, e_u, x_u}$;
- (b) If $u = \langle 1, e_u, x_u \rangle$, then let

$$\Pi_u = \neg \left[\bigvee_{E_0^* \supseteq E_0 \dots E_i^* \supseteq E_i} (\exists^0 y \in E_0^* \setminus E_0) \dots (\exists^i y \in E_i^* \setminus E_i) \Phi_{\bar{E}^*, e_u, x_u}^i \right],$$

- where $\bar{E}^* = (E_0^*, \dots, E_i^*, E_{i+1}, \dots, E_k);$ (c) If $u = \langle 2, x_u \rangle$, $x_u = \langle j, x_1^{i+1}, \dots, x_{r_j}^{i+1} \rangle$, $j \leq n_{i+1}$ and $x_1^{i+1}, \dots, x_{r_j}^{i+1} \in E_{i+1},$ then let $\Pi_u = T_i^{i+1}(X_1^{i+1}, \dots, X_{r_i}^{i+1});$
 - (d) Let $\Pi_u = \Phi^i_{\{\emptyset\},0,0} \wedge \neg \Phi^i_{\{\emptyset\},0,0}$ in the other cases.

Now let $\Pi_v = \bigwedge_{u \in D_v} \Pi_u$ and set $\Phi_{\bar{E},e,x}^{i+1} = \bigvee_{v \in V} \Pi_v$. An induction on i shows that for every i the Σ_i^+ formula $\Phi_{\bar{E},e,x}^i$ satisfies the requirements of the proposition.

Theorem 4.1. Let $A \subseteq \mathbb{N}$ be forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$. Then A is formally k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$.

Proof. If A is forcing k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$, then there exist a finite part $\bar{\delta} = (\delta_0, \dots, \delta_k)$ and $e \in \mathbb{N}$ such that

$$x \in A \iff (\exists \bar{\tau} \supseteq \bar{\delta})(\bar{\tau} \Vdash_k F_e(x)) \iff (\exists \bar{\tau} \supseteq \bar{\delta})(\bar{\tau} \Vdash_k^* F_e(x)).$$

Let for i = 1, ..., k, $E_i = \text{dom}(\delta_i) = \{w_1^i, ..., w_r^i\}$ and let $\delta(w_j^i) = t_j^i$, j = 1, ..., r. Set $\bar{E} = (E_0, \dots, E_k)$. From the previous proposition we know that

$$(\mathfrak{A}_0,\ldots,\mathfrak{A}_k)\models\bigvee_{\bar{E}^*\supseteq\bar{E}}\exists(y\in\bar{E}^*\setminus\bar{E})\Phi^k_{E^*,e,x}(\bar{W}^0/\bar{t}^0,\ldots,\bar{W}^k/\bar{t}^k)\iff$$

$$(\exists \bar{\tau} \supseteq \bar{\delta})(\operatorname{dom}(\bar{\tau}) = \bar{E}^*)(\bar{\tau} \Vdash_k^* F_e(x)).$$

Then for all $x \in \mathbb{N}$ the following equivalence is true:

$$x \in A \iff (\mathfrak{A}_0, \dots, \mathfrak{A}_k) \models \bigvee_{\bar{E}^* \supseteq \bar{E}} \exists (y \in \bar{E}^* \setminus \bar{E}) \Phi^k_{E^*, \epsilon, x} (\bar{W}^{*0}/\bar{t}^0, \dots, \bar{W}^k/\bar{t}^k).$$

From here we can conclude that A is formally k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$. \square

Theorem 4.2. Let $A \subseteq \mathbb{N}$. Then the following are equivalent:

- (1) $d_e(A) \in CS_k(\mathfrak{A}_0, \dots, \mathfrak{A}_n), k \leq n$.
- (2) For every enumeration \bar{f} of $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$, $A \leq_e \mathcal{P}(f_0^{-1}(\mathfrak{A}_0), \ldots, f_k^{-1}(\mathfrak{A}_k))$.
- (3) A is forcing k-definable on 𝔄₀,..., 𝔄_k.
- (4) A is formally k-definable on $\mathfrak{A}_0, \ldots, \mathfrak{A}_k$.

Proof. The equivalence $(1) \iff (2)$ follows from Theorem 2.1.

The implication $(2) \Rightarrow (3)$ follows from Theorem 3.1.

The implication $(3) \Rightarrow (4)$ follows from the previous theorem.

The last implication $(4) \Rightarrow (2)$ follows by induction on i. \square

REFERENCES

- Ash, C. J. Generalizations of enumeration reducibility using recursive infinitary propositional sentences. Ann. Pure Appl. Logic, 58, 1992, 173–184.
- Ash, C. J., C. Jockush, J.F. Knight. Jumps of orderings. Trans. Amer. Math. Soc., 319, 1990, 573-599.
- Cooper, S. B. Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ₂ sets are dense. J. Symbolic Logic, 49, 1984, 503–513.
- Downey, R. G., J. F. Knight. Orderings with α-th jump degree 0^(α). Proc. Amer. Math. Soc., 114, 1992, 545-552.
- Knight, J. F. Degrees coded in jumps of orderings. J. Symbolic Logic, 51, 1986. 1034–1042.
- 6. Richter, L. J. Degrees of structures. J. Symbolic Logic, 46, 1981, 723-731.
- Soskov, I. N. Degree spectra and co-spectra of structures. Ann. Sof. Univ., 96, 2003 (submitted).
- Soskov, I. N. A jump inversion theorem for the enumeration jump. Arch. Math. Logic, 39, 2000, 417–437.

Received on February 5, 2003

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., 1164 Sofia BULGARIA E-mail: asoskova@fmi.uni-sofia.bg soskov@fmi.uni-sofia.bg