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1. INTRODUCTION

Only finite non-oriented graphs without multiple edges and loops are consid-
ered. We call a p-clique of the graph G a set of p vertices each two of which are
adjacent. The largest positive integer p such that G contains a p-clique is denoted
by cl(G). A set of vertices of the graph G none two of which are adjacent is called
an independent set. In this paper we shall also use the following notations:

e V(G) is the vertex set of the graph G}

E(G) is the edge set of the graph G;

N(v), v € V(G) is the set of all vertices of G adjacent to v;
G[V], V C V(G) is the subgraph of G induced hy V;

X(G) is the chromatic number of G;
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e I, is the complete graph on n vertices;
e (), is the simple cycle on n vertices.

The equality C,, = vz ...v, means that V(C,) = {v1,....v,} and
E(C,) = {|vi,vit1)yi=1,...,n = 1} U {[v, vn]}

Let G, and G5 be two graphs without common vertices. We denote by G + G’
the graph G for which V(G) = V(G1) U V(G2) and E(G) = E(G1)U E(G2) U E
where E' = {lriy] i 2 € V(G)),y € V(G2)}.

Let G and H be two graphs. We shall say that H is a subgraph of G and we
shall denote H C G when V(H) C V(G) and E(H) C E(G).

Definition 1.1. A 2-coloring
E(G) = E; U Es, E\NE; =1, (1.1)
is called a blue-red coloring of the edges of the graph G (the edges in E) are blue
and the edges in E» are red).
We define for blue-red coloring (1.1) and for an arbitrary vertex v € V(G)
Ni(v) ={x e N(v) | [v,z] € E;}, i=1,2;
Gi(v) = G[N;(v)).
Definition 1.2. Let H be a subgraph of G. We say that H is a monochromatic
subgraph in the blue-red coloring (1.1)if E(H) C Ey or E(H) C E,. If E(H) C E,

we say that H is a blue subgraph, and if E(H) C E, we say that H is a red
subgraph.

Definition 1.3. The blue-red coloring (1.1) is called (p.g¢)-free, if there are
no blue p-cliques and no red g¢-cliques. The symbol G — (p,q) means that any
blue-red coloring of E(G) is not (p,q)-free. If G — (p,q) then G is called edge
Folkman (p, g)-graph.

Let p, ¢ and r be positive integers. The Folkman number F(p,¢;r) is defined
by the equality

F(p,q:r) =min{|V(G)| : G — (p,q) and cl(G) < r}.
In [1] Folkman proved that |
F(p,q:r) exists <= r > max{p,q}.

That is why the numbers F(p,q;r) are called Folkman numbers. Only few
Folkman numbers are known. An exposition of the results on the Folkman numbers
was given in [6]. In [6] we computed a new Folkman number, namely F(3, 4;8) = 16.
This result is based upon the fact that K, + Cs + Cs + C5 — (3,4), which was
announced without proof in [6]. In this paper we give a detailed proof of this fact.
So, the aim of this paper is to prove the following
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Main Theorem. Let G = K, + C-'él) +CP 4+ where (3'5(1), Céz), C§3) are
copies of the 5-cycle Cs. Then G — (3,4).

2. AUXILIARY RESULTS

Lemma 2.1. Let E(G) = E;UE; be a (3,4)-free red-blue coloring of the edges
of the graph G. Then:

(a) Gi(v) is a red subgraph. v € V(G);

(b) (E(G2(v))NE)U(E(G2(v))NEy) is a (3, 3)-free red-blue coloring of E(Ga(v)).
v € V(G). Thus Ga(v) 4 (3,3).

Proof. The statement of (a) is obvious. Assume that (b) is not true. Then, since
there is no blue 3-clique, G2(v) contains a red 3-clique. This red 3-clique together
with the vertex v form a red 4-clique, which is a contradiction. 0

Corollary 2.1. Let E(G) = E; UE; be a (3,4)-free blue-red coloring of E(G).
Then:

(a) cl(Gi(v)) <3, ve V(G);
(b) cl(G2(v)) <5, v e V(G);
(C) Gz(v) Z K3+ Cs, v € V(G).

Proof. The statement of (a) follows from Lemma 2.1(a). The statements of (b) and
(c) follow from Lemma 2.1(b), since K¢ — (3,3), [4] and K3 + C5 — (3,3), [2]. O

Lemma 2.2 ([5]). Let G = Cs + H, where V(H) = {2,y,2} and E(H) =
{[x,y],[z,2]}. Let E(G) = E1UE> be a (3,3)-free blue-red coloring of E(G). Then
H is monochromatic in this coloring.

Lemma 2.3 ([3]). Let G = C; + K2 and E(G) = E; U E; be a (3,3)-free
blue-red coloring of E(G) such that E(Cs) C E;. Then E(K,) € E;.

Lemma 2.4. Let G = K1+C§])+C§2)+C§3). where Cél), C’ém, C'é‘o') are copies
of the 5-cycle Cs and V(K,) = {a}. Let E(G) = E; U E; be a blue-red coloring of
E(G) such that cl(G(a)) < 3 and Go(a) 4 (3,3). Then, up to numeration of the
5-cycles C’él), 05(2) and Cés) . we have:

(a) Ni(a) > V(CLV) and Ny(a) N V(CL?) is an independent set;

(b) Na(a) D V(Cés) ) and Na(a) N V(C,—Sz) ) is not an independent set.
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1 2 3
Proof. Let Cé ) V] V2 U3 U4 Vs, c! ) = U UU3U4Us and C;(, ) = wywswzwaws. We

I

shall use the following obvious fact
x(Cs) = 3. (2.1)
It follows from (2.1) that
Ni(a)n V(Céi)) or Na(a) N V(C’ ) is not an independent set, i = 1, 2, 3 (2.2)

By (2.2) and Corollary 2.1(b), at least one of the sets Na(a) N V(C’_gi)), 1=1,2,3,
is an independent set. Thus, at least one of the sets N;(a) N V(Cg()” ),i=1,2,3,is
not an independent set. Without loss of generality we can assume that

Ni(a) N V(Cél)) is not an independent set. (2.3)

It follows from Corollary 2.1(a) and (2.3) that Ny(a) N V(C’éz)) = 0 or Ni(a)N
V(C)) = 0. Let for example N (a) N V/( 3y = 0. Then

Na(a) > V(CP). (2.4)

We have from (2.3) and Corollary 2.1(a) that N1 (a) N V(C(z)) is an independent
set. Thus, it follows from (2.1) that Na(a ﬁV(C‘5 is not an independent set. This
fact, together with (2.4) and Corollary 2.1(c), gives Na(a) N V/( f(,l)) = (. Hence,
Ni(a) 2 V(C‘é})). The Lemuna is proved. [

Lemma 2.5. Let G = K, + Cél) + C(z) C,EB), where Céi). i =1,2,3, are
copies of the 5-cycle Cs. Let E(G) = E, U E2 be a blue-red coloring such that
some of the cycles C(l’ Cm Cm is not monochromatic. Then this coloring is not

(3, 4)-free.

Proof. Let V(K;) = {a}, C = U Uol3V4Vs5, C’éz) = U UU3U4U5 and Cg’)
wwowszwaws. Assume the opposite, ie. E(G) = E; U E5 is (3,4)-free. Then b
Corollary 2.1(a) we have cl(G:(a)) < 3 and by Lemma 2.1(b) we have G(a) 4
(3,3). Thus, according to Lemma 2.4 we can assume that

Ni(a) 2 V(C_él)) and Ny(a) N V(C )) is independent; (2.5)
Ns(a) 2 V(C'§3)) and Na(a) N V(C’5 )} is not independent. (2.6)

It follows from (2.5) and Lemma 2.1(a) that
E(C5") € En. (2.7)

We have from the statement of the Lemma 2.5 that at least one of the cycles
C(’) ¢ = 1,2, 3, is not monochromatic and since E(C( )) C FE, it remains to consider
the following two cases:
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Case 1. ,5()2) is not monochromatic. Let for example [ui,us] € E; and
(u1,u2] € Ey. If uy,us, us € Na(a) by (2.6) we have Ga(a) D C§3) + Gluy, ug, us).
It follows from Lemma 2.2 that G3(a) contains a monochromatic 3-clique. This
contradicts Lemma 2.1(b). So, at least one of the vertices u;, uz, us belongs to
Ni(a). Therefore, we have the following subcases:

Subcase la. uy € Ni(a). Since there are no blue 3-cliques it follows from (2.5)
that

Na(uy) > V(CSV). (2.8)

As [uy, al, [uy,us) € E; and cl(G(uy)) < 3 (see Corollary 2.1(a)), the set Ny(uy)N
V(C’{(,B)) is independent. Therefore, Ng(ul)ﬂV(C§3)) is not independent. This fact,
together with [uy,us] € Ey and (2.8), gives Go(uy) D K3 + Cé”, which contradicts
Corollary 2.1(c).

Subcase 1b. uz € Ny(a) and u; € Ny(a). Since there are no blue 3-cliques it
follows from (2.5) that

Na(ug) > V(CM). (2.9)
If Na(up)N V(Cél]) contains two adjacent vertices then these vertices together with
uy and up form a red 4-clique according to (2.7) and (2.9). Hence Na(u; )ﬂV(C,(,”) is
independent and, therefore, N, (ul)ﬂV(Cél)) is not independent. Since us € N;(uy)
and cl(G;(u;)) < 3 (see Corollary 2.1(a)) we have Ny(u;) N V(Cf,s)) = (). Hence

Na(ur) > V(C). (2.10)

By (2.6) and (2.10)
V() C Na(ur) N Na(a).

Since [a,u;] € Ey and there are no red 4-cliques we obtain that
E(C”) ¢ E. (2.11)

As there are no blue 3-cliques from (2.11) it follows that Nj(ug) N V(Cé3)) is in-
dependent. Therefore, Na(uq) N V| §3)) contains two adjacent vertices. This fact,
together with [u;,us] € E; and (2.9), gives Ga(ug) D K3 + C},l), which contradicts
Corollary 2.1(c).

Subcase Ic. us € Ni(a) and ui,us € No(a). Since a,uy € No(uy), it follows

from Corollary 2.1(b) that at least one of the sets Na(u;) N V(C'él)) and No(up)N
V(C’E(,s)) is independent. Hence at least one of the sets N;(u;) N V(CE(,I) )y Ni(ui)N

V(CE(,S)), is not independent. Assume that N(u;) N V(Cél) ) is not independent.
This fact, together with us € Ny(u;) and Corollary 2.1(a), implies

Na(u1) > V(CP). (2.12)

As [a,u1,uz] is a red 3-clique and [a,u;,uz, w;] is not a red 4-clique, i = 1,...,5,
it follows from (2.6) and (2.12) that [ug,w;] € Ey, i = 1,...,5, i.e. Ni(u2) D
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V(C5(3)). We have from Lemma 2.1(a) that E(Cg&)) C E,. Thus, according to (2.6)
and (2.12), the vertices a and u; together with two adjacent vertices of C§3) form
a red 4-clique, which is a contradiction.

Let us now consider the situation when N;(u;) N V(C’éa) ) is not independent.
Corollary 2.1(a) and us € Ny(u;) imply

Na(up) D V(CM). (2.13)

If Ng(ul)ﬂV(Céa)) # 0 then from @, us € Na(u;) and (2.13) it follows that Ga(u1) D
K3 + C’él), which contradicts the Corollary 2.1(c). Hence Na(u;) N V(C},")) = (),
Le.

Niy(u) > C8. (2.14)

Since there are no blue 3-cliques, we obtain from (2.14) and Lemma 2.1(a):
E(C) C B, (2.15)

If N2(U2)0V(Cé3)) is not independent then according to (2.6) and (2.15) an edge in
Na(uz) ﬂV(Cés)) together with a and u3 form a red 4-clique. Let Na(u2)N V(Cf(,3))
be independent. Then N;(ug) N V(C§3) ) is not independent. Thus, it follows from
Corollary 2.1(a) that Ny(u2)N V(Cél)) is independent and Nj(uz) N V(Cs(”) is not
independent. Then an edge in Na(uz) N V(Cél)), together with the vertices u; and
ug, form a red 4-clique, according to (2.7) and (2.13), which is a contradiction.

Case 2. C’és) is not monochromatic but C§2) is monochromatic. Without
loss of generality we can assume that [wy,ws] € Ey and [w;,ws] € E;. Since
a,wz € Na(wy) it follows from Corollary 2.1(b) that at least one of the sets No(w;)N
V(Cf(,”) and Naz(wy) N V(Céz)) is independent. Hence at least one of the sets
Ny(wy) N V( 5(,1)), Ni(wy) N V(Cé” ) is not independent. We shall consider these
possibilities:

Subcase 2a. Nl(wl)ﬂV(Cg(,l)) is not independent. Since [w;,ws] € E; it follows
from Corollary 2.1(a) that N;(w1) N V(C) = 0, ie.

Na(w;) > V(CP). (2.16)

By Lemma 2.1(b) G2(w) ) does not contain a monochromatic 3-clique and Gy (w) D
Cé2) + [a,wz). Since C? is monochromatic and [a,ws] € E3, it follows from
Lemma 2.3 that
EC?) C B,. (2.17)
We see from (2.6), (2.16) and (2.17) that the vertices a and w,, together with an
edge of 05(2) form a red 4-clique, which is a contradiction.
Subcase 2b. Nl(wl)ﬂV(Céz)) is not independent. Since ws € Nj(w,) it follows
from Corollary 2.1(a) that :
No(uy) D V(CM). (2.18)
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Corollary 2.1(c) and Ga(w1) D C{Y + [a,w2) = Ko + C5") imply
Ni(wy) D V(CP). (2.19)
Lemma 2.1(a) and (2.19) give
E(C?) C B,. (2.20)
Since there are no blue 3-cliques and [w;,ws] € E) it follows from (2.19) that
Na(ws) D V(CE?). (2.21)

We see from (2.6), (2.20) and (2.21) that the vertices a and ws together with an
edge of Céz) form a red 4-clique which is a contradiction. 0

3. A PROPERTY OF THE GRAPH C5 4+ Cs + Cs

Let G = Cm ng) + Cés) where C{"), i = 1,2, 3, are copies of the 5-cycle Cs.

Let us consider the blue-red coloring where F, = E(Cél)) U E(Céz)) U E(C,()s)). It
is clear that this coloring is (3,4)-free. Thus G # (3,4). However the following
theorem holds:

Theorem 3.1. Let G = C(l) +C(2) C(s) where C('), i=1,2,3, are copies of
the 5-cycle Cs. Let E(G) = Ey U E5 be a blue-red coloring such that E(C(l)) C Es,
E(Cm) C E; and E(C(3)) C E,. Then this coloring is not (3,4)-free.

Proof. Assume the opposite, i.e. t,hat there are no blue 3-chques and no red 4-
cliques. Let C( ) = 1111)2'031)41)5, C’r = U3 UU3U4Us, C'5 = W WoW3WeWs. Since
the cycles C’( ) and C are blue and there are no blue 3-cliques, the sets Ny (v;) N
V(Céz)) and N;(v;) N V(Cé‘f”) are independent. Thus, we have

IN2(0) NV(CEP) 23, |Na(w)NV(CP)) >3, i=1,...,5. (3.1)
It follows from (3.1) that
No(z) N No(y) N V(CEY #£0, i=2,3, z,yeV(C). (3.2)
Let z,y € V(C'é])). We define

Bi(z,y) = {v € V(C) | [z,2], [y, v] € Ea},
By(z,y) = {v e V(C) | [z,], [y, v] € Ea}.

We see from (3.2) that

Bi(z,y) #0, i=12, z,yeV(C"). (3.3)
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We shall prove that
if [x,y] € E(Cél)) then B;(r,y) is independent, ¢ = 1, 2. (3.4)

Assume the opposite and let for example v',v” € Bi(z,y) and [u/,u"] €
E( 5(,2)). By (3.3) there exists w € Ba(z,y). Since there are no blue 3-cliques,
then at least one of the edges [u’, w], [u”,w] is red. Hence [z,y, v/, w] or [z,y,u”, w]
is a red 4-clique, which is a contradiction.

Let u’ and u” be adjacent vertices in C{*. Since [u/,u"] € E; and there are
no blue 3-cliques, we have '

M) NNy (") nv(CM) = 0.
Thus |Ny(u') N V(Cél))l <2or |N(u")n V(C’é”)] < 2. Hence
IN2(') NV (CEV)| = 3 or [Na(u”) N V(CV)| > 3. (3.5)

So, (3.5) holds for every two adjacent vertices in C’é2). Hence [Na(u)N V(Cél))l >3
holds for at least three vertices in c§2’. Thus, there exist two adjacent vertices in
Céz), for example u; and uy, such that

N2(ur) NV (C)| > 3 and [Na(uz) nV(C)| > 3. (3.6)

If the both inequalities in (3.6) are strict then Na(u;) N Na(ug) N V(C'él)) contains
two adjacent vertices v’ and v". Since u),u2 € B(v',v”) then this contradicts (3.4).
Thus, we may assume that lNg(ul)ﬁV(Cé]))l = 3. Hence Ng(ul)ﬂV(Cél)) contains
two adjacent vertices, for example v and v4. Now we shall prove that the third
vertex in Na(up) N V(Cél)) is the vertex v;. Assume the opposite. Then v, €
Na(u1) N V(CEV) or vs € Ny(ur) N V(CEY). Let v2 € Ny(uz) 0 V(CEY). Then
v1,v5 € Ni(w). Since vy,vs,u3 € Ny(u;) it follows from Corollary 2.1(a) that
Nl(ul)ﬁV(Cés)) = . Thus, G2(u;) contains C'é3)+[v3, vs) = K2+Cj5. According to
Lemma 2.1(b) G2(u1) does not contain monochromatic 3-cliques. As E(Cés)) CFE
and [vs,v4] € E,, this contradicts Lemma 2.3. We proved that vo ¢ No(uy).
Analogously we prove that vs ¢ No(u1). So,

v1,v3,v4 € Na(uy) and vg,vs € Ny(uy). (3.7)

By (3.3) we can assume that w) € Ba(vs,vs). Since [v3,vq,u;, w1] is not a red

4-clique, we hhve
[u1,w1] € Ey. (3.8)

As there are no blue 3-cliques and [u1,vs), [u1,vs] € E, it follows that [wy,v,),
[w1,v5] € E,. Taking into consideration w; € By(vs,v4), we have

[wl,v,;] € Ez, 1= 2,3, 4, 5. (39)
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By (3.3) there is u € B;(v2,v3). Since [v2,u1] € Ey then u # u;. We shall prove
that w = u3 or u = uy. Assume the opposite. Then u = uy or u = us. Let, for
example, u = uy. Since [v2,v3,u2,w;] is not a red 4-clique, it follows from (3.9)
and us € By(vy,vs) that [u2, w1} € E;. We obtained the blue 3-clique [uy, ug, unl,
which is a contradiction. This contradiction proves that « = ug or u = uq. We can
assume without loss of generality that u = uz. We have

[u:;,wl] € E;, (310)

because [vo, v3,u3,w] is not a red 4-clique. By (3.3) there exists u € B (v4, v5).
Repeating the above considerations about u € B;(vs,v3) we see that u = u3 or
U= uy.

Case 1. u = uy. Since [vg,vs,wy,u4] is not a red 4-clique, we have [ug, w1} €
E). Hence [u3,u4,w1] is a blue 3-clique, which is a contradiction.

Case 2. u = us. In this case we have us € By(vq,v3) N By(vg,vs), ie.

[u;;,fu,;] € Fr, 1=23,4,5. (3.11)

As [vy,w).u3] is not a blue 3-clique, it follows from (3.10) that [v;,u3] € E> or
[vl,wI] € Es.

Subcase 2a. [vi,us) € Ea. By (3.11) No(uz) D Cé”. Since there are no blue

3-cliques N>(u3) contains two adjacent vertices w’,w” € V(C},B)). Thus Ga(uz) D
'_5,1) + [w',w"]. By Lemma 2.1(b) G2(u3) contains no monochromatic 3-cliques.
This contradicts Lemma 2.3 because E(Cs()l)) C E5 and [u',w"] € E;.

Subcase 2b. [vi,w1] € E;. By (3.9) we see that Na(w;) D V(Cs(,l)). Since
there are no blue 3-cliques Ny(w;) contains two adjacent vertices u’, u"” € V(C‘}gz)).
Hence Ny(wi) D C’él) + [/, "] which contradicts Lemma 2.3.

The theorem is proved. O

4. PROOF OF THE MAIN THEOREM

1 2 3
Let CE(, ) = V1 Vo34 Us, Cé ) = U U U3 U4US, Cé ) = wiwawswaws and V(K,) =

{a}. Assume the opposite, i.e. there exists a (3,4)-free blue-red coloring E; U Es

of the edges of K; + Cél) + Cf(,?) + Céa). By Lemma 2.4 we can assume that:

Ni(a) 5 V(CV) and Ni(a) NV (CE?) is independent; (4.1)
Na(a) D V( ,és)) and Na(a)N V(Cé2)) is not independent. (4.2)

We shall prove that

E(CY")YC By, i=1,2,3. (4.3)
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By (4.1) and Lemma 2.1(a), E (C(”) C FE,. According to Lemma 2.5 each of
the 5-cycles Cég) and C,(,3) is monochromatic. By (4.2) Ga(a) D C;Es) + e where
e € E(C(z)) By Lemma 2.1(b) G2(a) contains no monochromatic 3-cliques. Thus,
it follows from Lemma 2.3 that the edge e and the 5-cycle C{*) have the same color.
Therefore, the 5-cycles Cj () and C' ! are monochromatic of the same color. Thus, it

follows from Theorem 3.1 that E( C(z) ¢ E, and E(Cm ¢ E;. We proved (4.3).
Now we shall prove that

Na(a) = V(CEP)u v (C). (4.4)
Assume the opposite. Then it follows from (4.2) that Ny(a) N V(C ?) # 0. Let for
example u; € Ny(a) N V(C( ) ), i.e. [u1,a] € Ey. We see from (4.1) that
[a,uz] € Es. (4.5)
As there are no blue 3-cliques by (4.1) and [u;,a] € E; we obtain

Na(ur) > V(C§). (4.6)

We see from Corollary 2.1(a) that at least one of the sets No(u 2)ﬂV(C ) Na(uz)N
V(C ) is not independent. If Nj(ug) N V(C ) is not independent, it follows
from (4.6) and (4.3) that the vertices u; and uy together with an edge of Cé” form
a red 4-clique. If Ny(uy) N V(Cf(,sj) is not independent, by (4.3), (4.5) and (4.2),
the vertices a and ug together with an edge of C§3) form a red 4-clique. This

contradiction proves (4.4).
It follows from (4.4) and Lemma 2.1(b) that

Cf(,m + Céa) contains no monochromatic 3-cliques. (4.7)

Now we obtain from (4.7) and (4.3)

Na(z) NV(CSY) is independent, z € V(C?); (4.8)
Na(z) N V(C’ém) is independent, =z € V(C’éq) ). (4.9)

Let us note that
Ni(z) N V(CV) is independent, z € V(Cyuv(C®). (4.10)

Indeed, let for example z € V(C(z’ ). By (4.8), Ni(z)nV(C (3)) is not independent.
This fact and Corollary 2.1(a) prove (4.10).
We shall prove that

Ni(z)n V(Cég)), x € V(C’él)) is not independent <= N(z) D V(Cm (4.11)
Ni(z)nV( §3)), x € V(Cél)) is not independent <= N,(z) D V(Céz)). (4.12)
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The statements (4.11) and (4.12) are proved analogously. That is why we shall
prove (4.11) only. Let Ni(z) N V(Cr(, ). x € V( “)) be not independent. Since
[x,a] € Ey, it follows from Corollary 2.1(a) that N](T) N V(C(s)) =, i.e. Na(z) D

V{( 3)) Now let Na(xr) D V(C’S”), x 6 V(C5 ) Assume that N)(x) N V(C'S)z))
is independent. Then Na(z) N V(C,-, ) is not independent. Since C‘é ) is red,

Ga(z) D K3 + Cr(,3) which contradicts Corollary 2.1{c). So, (4.11) and (4.12) are
proved. Using (4.11) and (4.12) we shall prove that

Ni(z)n V(C_é')) 1 = 2,3, is independent, z € V(Cr])) (4.13)

Assume that (4.13) is wrong and let, for example, Ny(vi) N V(Cém) be not inde-
pendent (remind that C';(,l) = v102030405). Then by (4.11) Na(vi) D V(C_S,'”). If
Ng(vg)ﬁV(Céa)) is not independent then v; and vy together with two adjacent ver-
tices from Ng( v 2)ﬂV( C:(,a)) form a red 4-clique, which is a contradiction. Therefore,
Ni(v2)N V( ) is not independent. Thus (4.12) gives Na(v2) D V(C ) Repeat.-
ing the above Conbnderatlons about the vertex v, on vy we obtain Na(vs) D V(C} ”)

In the same way it follows from Ny(v3) D V(C“)) that Ng(’U4) D V(C’(z)) At the
end it follows from Na(vy) D V(CéQ)) that Nay(vs) D V(C5 ). So, we proved that

Na(v1) N Na(vs) D V(C).

Thus, it follows from (4.3) that v; and vs, together with an edge of | form a
red 4-clique, which is a contradiction. This contradiction proves (4.13). According
to (4.13) it follows from (4.11) and (4.12) that

No(z) 2V(CE), i=2,3, zeV(C). (4.14)

Let z € V(CP) U V(Cm) By (4.10) |Ni(z) N V(C’m)l < 2. Thus, we have the
following possibilities:
Case 1. Ni(z)N V(C“)) 0 for some vertex x € V(C’m) U V(C§3)). Let, for
example, Ny(u;) N V(C(l)) ) (remind that Céz) = uyUgU3U4Us ). Then No(uy) D
(C'm) We see from (4.10) that Na(uz) N V(C(l)) is not independent. Thus u;

and us, together with two adjacent vertices from Na(ug) N V(C“)) form a red
4-clique, which is a contradiction.
Case 2. |[Ni(z) N V(C’Sl))| = 1 for some vertex z € V{( 2)) U V(C(J)) Let,

for example, |Ny(uy) N V( )| = 1. Without loss of generality we can consider
[u1,v1] € Ey and [ug,v;] € Ez, i = 2,3,4,5. According to (4.14) we can assume
that [vy,w1] € E1. Since there are no blue 3-cliques, [wr,w1] € E;. It follows

from (4.10) that Nao(w,) N V(C’él)) contains two adjacent vertices. As

Na(wy) NV(CY) € No(ur) N V(CEY) = {2, v, v4,v5}

£
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we see that u; and w; together with two adjacent vertices in {ve,v3,v4,v5} form a
red 4-clique, which is a contradiction.

Case 3. |[Ny(z) N V(C';,”)| = 2 for every x € V(C,(,z)) U V(Cém). According
to (4.8) Ni(u;)nV( -§3)) is not independent. Thus, we can assume that w,,ws €

Ni(u) nV(CP), ie.
[U], w]],[ul,UJ2] € El' (415)

It follows from (4.13)
Ny (wi) N Ny(wg) NV(CY) = 9. (4.16)
In the case considered we have
Vi) NV(CED)] = [N (wz) 0 V(CE)] = [N (un) nV(CED)] = 2.
We obtain from (4.16) |
Ni(ur) O Ni(wi) nV(CSY) # 0 or Ny(u) 0Ny (we) N V(CED) # 0.

By (4.15) there is a blue 3-clique, which is a contradiction.
The Main Theorem is proved.

5. EXAMPLE OF FOLKMAN EDGE (3,5)-GRAPH WITHOUT 13-CLIQUES

Using the Main Theorem we shall prove the following

Theorem 5.1. Let G = K, +C§1)+C§2)+C§3)+C§4) where C}E"), i=1,...,4,
are copies of the 5-cycle Cs. Then G — (3,5).

In order to prove Theprem 5.1 we shall need the following

Lemma 5.1. Let E(G) = E\ U E, is a (3,5)-free blue-red coloring of E(G).
Then:

(a) Gi(v). v € V(G). is a red subgraph;

(b) (E(G2(v))NE)U(E(G2(v))NE,) is a (3,4)-free blue-red coloring of E(G3(v)).
v € V(G). Thus. Ga2(v) 4 (3,4).

Lemma 5.1 is proved in the same way as Lemma 2.1.

Corollary 5.1. Let E(G) = E;UE, be a (3,5)-free blue-red coloring of E(G).
Then:

(a) cl(Gi(v)) < 4.v e V(G);
(b) cl(G2(v)) <8.ve V(G);
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(c) Ga(v) 2 K4+ Cs + Cs;
(d) G2(U) D K+ Cs+ Cs + Cs.

Proof. The statement (a) follows from Lemma 5.1(a). The statement (b) fol-
lows from Lemma 5.1(b) and Kg — (3,4), [4]. The statement (c) follows from
Lemma 5.1(b) and K4 + C5 + Cs — (3,4), [8]. The statement (d) follows from
Lemma 5.1(b) and the Main Theorem. [

Proof of Theorem 5.1. Assume the opposite, i.e. there exists a blue-red coloring
E(G) = Ey U E,, which is (3, 5)-free. Let V(Ky) = {a1,a2,a3,0a4}.

Case 1. There exists a; € V(Kj) such that |[Ny(a;) N V(K4)| = 3. Let, for
example, [a1, as], [a1,a3), [a1,a4] € Eq. By Corollary 5.1(a) at most one of the sets
Ni(a,) N V(C;-S')), i =1,2,3,4, is not empty, i.e. Na(a)) contains at least three of
the cycles Cé'), i=1,2,3,4. Let, for example,

No(ay) > V(CP)yuv(cPyuv ().

By Corollary 5.1(a) it follows that NV, (al)ﬂV(C’él) ) is independent. Thus, N2(ai)N
V(Cf(,l)) # (). We obtained that Ga(a;) D K +C§2) +Cé3) +C, which contradicts
Corollary 5.1(d).

Case 2. There exists a; € V(K4) such that |Ny(a;) N V(Ky)| = 2. Let, for
example, [a1,as], [a1,a3] € E1 and [a;1,a4] € E». Since [a1,a4] € E if the sets
No(ay) N V((f_éi)), i = 1,2,3,4, are not independent then Gz(a;) D Ky, which
contradicts Corollary 5.1(b). Hence, at least one of the sets N; (a;) N V(Cé”), § =
1,2, 3,4, is not independent. Let, for example, N, (al)ﬂV(C_Sf)) be not independent.
According to Corollary 5.1(a) it follows from this fact and [a1, a2}, [a1,as] € Ey that
Ni(a) NV(C)N0, i = 2,3,4, ie. Na(ar) D V(CSY), i = 2,3,4. As [a1,a4] € Ep we
have Ga(a;) D Ky + C},z) + C‘S,:’) +C" | which contradicts Corollary 5.1(d).

Case 3. There exist a; € V(K4) such that [Ni(a;) N V(K4)| = 1. Let, for
example, [a1,a2] € Ei and [a1,a3], [a1,04] € Es. We see from Corollary 5.1(a)
that at least three of the sets Na(ap) N V(Céi)), i = 1,2,3,4, are not indepen-
dent. Let, for example, Na(a1) N V(C), Na(ar) nV(CY) and Na(ar) NV (C5")
be not independent. Since [a1,as], [a1,a4] € E; it follows from Corollary 5.1(b)
that Ni(a;) D V(Cél)). According to Lemma 5.1(a) it follows from this fact and
[a1,az] € E; that at least two of the sets Ni(a1) N V(Céi)); i = 2,3,4, are empty.
Therefore, we can assume that Na(a;) D V(C'g”) and Na(a;) D V(C§4)). Since
Na(ay) N V(C?)) is not independent we have Ga(ar) D Ka + V(CSY) + V(C5Y),
which contradicts Corollary 5.1(c).

Case 4. E(K,) C E,. Since [a1,a;] € Ey, i = 2,3,4, it follows from Corol-
lary 5.1(b) that at least two of the sets Ny(ay) N V|( éi)), 1 = 1,2,3,4, are not
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independent. Let, for example, N;(a) ﬂV(Cg(,”) and N 1(a1)r‘|V(C§2)) be not inde-
pendent. Then by Corollary 5.1(a) N, (a; )ﬂV(Cg”) = () and N, (al)ﬂV(C}ff)) = {),
le.

Na(a1) 2 V(G5 uv(cs?). (5.1)
Since [a;,a;] € Es, i = 2, 3,4', it follows from (5.1) and Corollary 5.1(c) that
Na(ay) N V(Cé”) = () and Na(a;) N V(C’sm) = (. That is why, we have from (5.1)
Ni(ar) = V(C5Y)yuv(CE?). (5.2)

As the vertices ay, a2, a3, a4 are equivalent, in this case the above considerations
prove that

Ni(a;), 1= 1,2,3,4, is a union of two of the cycles Cr“), C’((Q) C'(” C§4). (5.3)
Lemma 5.1(a) and (5.2) imply
(l) + ("(2) is a red subgraph. (5.4)
Since there are no red 5-cliques, we see from (5.4) that
Ni(a) NV(CP) # B or Ni(a;) nV(CP) #£0, i=2,3,4.
Thus, by (5.3) we have
Ni(a:) 2 V(€Y or Ny(a:) D V(CP), i=2,3,4. (5.5)
Hence, we can assume that

Ni(az) 2 V(CL") and Ny (a3) D V(CY). (5.6)

Let Cé” = v1v2v3v405. By (5.3) we have the following possibilities:

Subcase 4a. Ni(ayg) D V(C(l)). According to (5. 6) and (5.2) [vy,ai] € En,
i = 1,2,3,4. Hence, by Corollary 5.1(a) N;(v;) N V(05 ) =0,i = 23,4, ie.
Ga(v1) D O3 + CF + 8. By (5.2) [v1, v2) € En. Thus, Ga(v1) D K1 + C‘2)
C(q) + C‘.(‘”, which contradicts Corollary 5.1(d).

Subcase 4b. Nl(a4)ﬂV(C(l)) =0, re. Na(aq) D V(C; )) We have, from (5.2)
and (5.6), [v1,a;] € Ey, i =1, 2 3, and [v1,a4] € E3. By Coro]lary 5.1(a), at least
two of the sets Ny(v1) N V(C5 , 1 = 2,3,4, are empty. Thus, we can assume that

Ga(vy) > C® + Y. (5.7)

It follows from Corollary 5.1(a) that Ny(v;) N V(C’ )) is independent. Hence,
Nao(v1)N V(Ci )) is not independent. This fact, together with [vq,v], [v1,a4] € Ey

and (5.7), gives Ga(vy) D K4 + C( M4 C,M), which contradicts Corollary 5.1(c).
This contradiction finishes the proof of Theorem 5.1. [J
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Since cl(G) = 12 and |V (G)| = 24, Theorem 5.1 implies
Corollary 5.2. F(3,5;13) < 24.

Lin proved in [7] that F(3,5;13) > 18. In [9] Nenov improved this result,
proving that either Ky + Cs + Cs — (3,5) or F(3,5:13) > 19.
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