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For a graph G the symbol G — (p,p) means that in every 2-coloring of the vertices of
G, there exists a monochromatic p-glique. The vertex diagonal Folkman numbers
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1. NOTATIONS

We consider only finite non-oriented graphs without loops and multiple edges.
We call a p-clique of a graph G a set of p vertices, each two of which are adjacent.
The largest positive integer p such that the graph G contains a p-clique is denoted
by cl(G).

In this paper we shall use also the following notations:

V(G) - the vertex set of G;

E(G) — the edge set of G;
G - the complementary graph of G;
G[X], X € V(Q) - the subgraph of G, induced by X;
G - X, X C V(G) - the subgraph of G, induced by V(G)\ X;
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K, - the complete graph on n vertices;

F¢(v) - the neighbors of v in G;

C, - the simple cycle on n vertices;

a(G) - the independence number of G, i.e. ®(G) = cl(G);

Aut(G) — the group of all automorphisms of G.

Let G; and G2 be two graphs without common vertices. We denote by G1+G>
the graph G for which V(G) = V(G1) U V(G2) and E(G) = E(G,) U E(G3) U F/,
where E' = {[z,y] : z € V(G1),y € V(G2)}.

Let G1,G5,...,Gi be graphs and V(G )NV(G;) =0, i 7& j. We denote by
k

U G, the graph G for which V(G) = U V(G;) and E(G) = U E(G)).

=1

The Ramsey number R(p, g) is the sma]lebt natura.l number n such that for an
arbitrary n-vertex graph G either ¢l(G) > p or a(G) > q.

2. RESULTS

Definition 2.1. Let G be a graph and p, ¢ be positive integers. A 2-coloring
VIG) =WV uVo, Vinle =0

of the vertices of G is said to be (p,q)-free, if V; contains no p-cliques and Vs
contains no g-cliques of G. The symbol G * (p, ¢) means that every 2-coloring of
V(G) is not (p, g)-free. The vertex Folkman numbers are defined by the inequality

F,(p,q;s) = min{|V(G)| : G = (p,q) and cl(G) C s}.

The numbers F,(p, p: s) are called diagonal Folkman numbers.

In this paper we consider the diagonal Folkman numbers F,(p,p:p+ 1). Only
two exact values of these numbers are known:

Fy(2,2;3) = 5; (2.1)

Fy(3,3;4) = 14, [5] and [14]. (2.2)

The equality (2.1) is well known and easy to prove. The inequality F,(3,3;4) <
14 was proved in [5], and the inequality F,(3,3;4) > 14 was verified by means of
computer in [11].

The following bounds are known for these numbers:

Fo(p,pip+1) < (2pl(e-1)] -1, p>2, [4];

Fo(p,psp+1) < |ple] =2, p>3, [6].
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In [10] N. Nenov significantly improved these values proving that

35
Fy(p,pip+1) < 54-19!, p=4 (2.3)

The inequality (2.3) was proved using the following
Theorem 1. F,(p+ 1,p+ Lip+2) < (p+ DF(p,pip+1), p 22

As this result was only stated in [10], we shall supply the proof of Theorem 1
here. In this paper we shall improve the inequality (2.3) by proving the following

1
Theorem 2. F,(p,pip+1) < -1—31)!, p > 4.

Theorem 2 is proved by induction on p. As the inductive step follows trivially
from Theorem 1, it remains to prove only the inductive base p = 4, i.e.

Theorem 3. F,(4,4;5) < 26.

We shall note that from Theorem 1 it follows that F,(4,4;5) < 35, [9]. In [9]
it was also proved that F,(4,4;5) > 16.

Let G and G, be two graphs and V(G) % V(G,) be a homomorphism of
graphs (i.e. if [a,b] € E(G), then [p(a),o(b)] € E(G,)). If ViU Va is a (p, q)-free
2-coloring of V(¢(G)), then it is easy to see that ¢~} (V]) U~ (V2) is a (p, q)-free
2-coloring of V(G).

That is why we have the following

Proposition 2.1[10]. Let G and Gy be graphs and V(G) 2 V(Gy) be a
homomorphism. Then from G = (p, q) it follows G = (p,q).

3. PROOF OF THEOREM 1

In the case when p < 3 Theorem 1 follows from (2.1), (2.2) and Theorem 3. So
we can now consider p > 4. Let G be a graph such that G = (p,p), cl(G) = p and

\V(G)| = Fu(p.pip+1). (3.1)
We consider the graph
P =G, UG2U...UGp+] UK,,+1,

where each of the graphs G;, i = 1,2,...,p+ 1 is an isomorphic copy of G and
V(Kps1) = {a1,...,ap31}. The graph P is obtained from P by connecting the

vertex a; with every vertex from G;, i = 1,...,p+1. The graph L is obtained from
P by adding a new vertex b such that

p+1

ruv) = J V(G
=1
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We shall prove that
LS (p+1,p+1). (3.2)

Assume the opposite and let V; U Vs be a (p + 1,p + 1)-free 2-coloring of L.
Without loss of generality we can consider b € V). Define the sets

W, = V(G’,:)U{b,ai}, t=1,....p+ L.

It is clear that L[W;] = K2 +G;, where V(K,) = (b,a;). As G = (p,p) we have
a; € Vi, i =1,2,...,p+ 1. We have obtained that V| contains the (p + 1)-clique
{ai,...,ap+1}, which is a contradiction. Thus (3.2) is proved.

From the definition of L and ¢l(G) = p we have

cd(G)=p+ 1. (3.3)

From (3.1) we have
V(L) = (p+ 1)Fu(p,pip+1) +p+2. (3.4)
In each of the graphs G;, i = 1,...,p (i.e. without Gp4+1) we choose vertices

zi,yi € V(G;) such that [z;,y;] € F(G;) (as G; is not a complete graph then such
vertices exist). Define the sets:

Xi=T¢ () U{a;} U {b} (3.5)
and
}: = I“G,.(y,j) U {ai} U {b}, g == 1,...,]).
From cl(G;) = p it follows that ', (z;) and ', (y;) do not contain p-cliques.
As the vertices b and a; are not adjacent we have
X; and Y; do not contain (p + 1)-cliques for i = 1,...,p. (3.6)
Let us note that
()= X, and T (y:) = Yi. (3.7)

We denote by R the graph that is obtained from L by deleting the vertices
zi,¥i, t = 1,...,p and the edges connecting them and by adding two new vertices
x and y such that

Cr UX,, Tr(y) = (3.8)

=1

II'C'e

It is clear that
[V(R)| = [V(L)| - 2(p — 1).

From the last equality and (3.7) we have

IV(R)| =(p+1)F(ppip+1) —p+4.
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As p > 4, we have
V(R)| < (p+ 1)F,(p,p;p+1). (3.9)
We shall show that
c(R) <p+2. (3.10)

Assume the opposite, i.e. cl(R) > p+2 and let 4 be a (p+ 2) - clique of the graph
R. As L — {z,y} is a subgraph of the graph L and cl(L) = p+ 1, it follows that
r € Aory € A. Without loss of generality we can assume that x € A. We consider
the (p + 1) - clique A’ = A — x. From (3.8) it follows that

P
AclJxni=1,..p (3.11)

=1

As |A’| = p+ 1 from (3.11) it follows that some of the sets X; contain two vertices
from A’. Without loss of generality we can assume that X contains two vertices
from A’. As b and a; are not adjacent in R, from (3.5), i = 1 it follows that there

is a vertex w such that
we A'NCg, (x1).

As
Crw)NV(Gi—z;i—yi)=0,i=2,...,p+1

and az,...,ap41 ¢ I'r(w) it follows that AnNV(G; ~z; —y) = 0,1 > 2, and
az,...,ap41 Q A
As
Le,(zi) C V(Gi — zi — vi),
we conclude that

ANX;=0or AnX;={b},i=2,...,p+1.

Hence from (3.11) it follows that A’ C X, which contradicts (3.6). Thus (3.10)
is proved.
Consider the mapping V(L) % V(R), which is defined as follows:

") . .
v, 1fU7éiU1‘.,”U=féy-i, = 132)"'7p;

@ @ :
Ty =T, Y Y, i=12,...,p.

From (3.7) and (3.8) it follows that ¢ is a homomorphism from L to R. From
(3.2) and proposition (2.1) we have R — (p + 1,p+1). This fact and (3.10) give

Fy(p+1,p+1;p+2) <|V(R)].

This inequality and (3.9) complete the proof of the theorem.
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4. (4,4)-FREE 2-COLORING OF THE GRAPH OF GREENWOOD AND
GLEASON

The complementary graph of the graph of Greenwood and Gleason Q is given
on figure 1. This graph has the property

a@Q =2 d@=4 [2. (41)

Fig. 1. Graph Q — Q

Using this graph Greenwood and Gleason proved that R(3,5) = 14.
In [7] N. Nenov proved that

Q = (3,4). (4.2)
It is easy to see that 2-coloring
V(Q) = {v1,v2,v3,v4, v5, v, v0,v10} U {v7, U8, 011, 119, 13 ) (4.3)

is (4,4)-free and hence Q 4 (4, 4).
The complementary graph () contains the 13-cycles:

C(l) _ .
13 = {vlsvi’s173,1'4»”5,'”():v7’081v9)v109U11a7~’12’le}a

C(Q) _ . )
13 = {'Ul:vfh Ull~v3,UBaUIS»vSaUlOa'U2»'U7svl2a'U4aUQ}-

Let us note that E(Q) = E(C{Y) U E(C?).
These two cycles are equivalent as the mapping

A (VI V2 V3 Vg Vs Vg V7 Vg Vg V)9 V11 V2 N3
Ur Us Vi1 V3 Vg Vi3 Us Uyg V2 Uy V2 4 Vg

= (v1)(v2, v6, V13, v9)(v3, Vi1, V12, v4) (Vs, vg, V10, U7)
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is an automorphism of @ (and hence of Q) and ¢ (C“)) Cf;), Y (C(2)) 5;’ :
We shall also need the cyclic automorphism of Q:

f"" vy Vg V3 Uy Vs Usg Uy Uy o V10 Ty V2 Ui3
Vy U3 Vg Us Vg V7 Vg V9 Vo Vi1 Ui2 V13 (] ’

A straightforward computation shows that

Pt =E. (4.4)

Let (p,€) be the subgroup of Aut(Q), generated by ¢ and §. From (4.4) it
follows that (£) is a normal subgroup of (,£). Hence from (4.4) it also follows that
Hp, &) = acts transitively on @Q, we have |Aut(Q)| = 13|St(v1)].
It is easy to see that |St(v;)| = 4 and hence |Aut(Q)| = 52. Thus we proved the
following

Proposition 4.1. Aut(Q) = (¢, §).

From this and (4.4) we obtain:

Proposition 4.2. Each element of Aut(Q) is of the kind el where 0 < k <
3, 0< 1< 12.

Define the following sets:
M = {'Ul s U2, U3, U4, Us, Ug, V9, le}a

S = {U] y U2,U3,04, Us, U7, 'L’g}.
We shall use and prove the following propositions:

Proposition 4.3. Let V; UV be a (4.4)-free coloring of V(Q) such that
\Vi| = 8 and |Va| = 5. Then there exists ¢ € Aut(Q) such that Vi = ¢Y(M).

Proposition 4.4. Let V; UV, be a (4.4)-free coloring such that |Vi| = 7 and
|Va| = 6. Then there exists ¥ € Aut(Q) such that either Vi C (M) or Vi = (S).

Define the following sets:
My = {v1,v2,v3, V4, U5, Vg, Vg, V10 } = M,

M, = {v1,v2,v3, 04,05, V, V10,11 } = E9% (M),
My = {vy,v6,v11, V3, Vs, V13, V2, U7} = @(M),
My = {vy,v6,v11, V3, Vs, V13, V7, Vi2} = ¢} (M),
So = {v1,v2,v3, 04,06, 07,9} = 5
S1 = {v1,v2,3,v4, 6,07, v12} = §p(S),

S2 = {vlav21v3a v4av93vllavl'2} = 534{72(8)’
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S3 = {v1,v2, V3,04, V6, V11, 12} = E20°(5).

Using Propositions 4.2, 4.3 and 4.4 it is easy to prove

Proposition 4.5. Let Vi UV, be a (4,4)-free coloring of V(Q). Then there
exists an integer 0 < k < 12 such that V; C €*M; for some 0 <i < 3 or Vi C £XS;

for some 0 <17 < 3.

In order to prove these propositions we shall need the following lemmas:

Lemma 4.1. If C is a simple 4-cycle and if C' is an induced subgraph of Q
then there exists ¥ € Aut(Q). such that C = ¢ ({v1,v2,v6,v7}).

Lemma 4.2. [f D is a simple chain of length 4 and if vy is the starting point
of D and vs - the endpoint of D, then

1) D -7 {?)1,'09,’010,’05} or

2) D = {vy,v9,v4,05} oOr

3) D = {’01,‘02,’010,05}.

Lemma 4.3. If D is a simple chain of length 4, and if v, is the starting point
and vy — the endpoint, then

1) D = {v1,113,v12,07} or

2) D= {'L’l, U113, ‘l)8$L'7} or

3) D = {’Ul, Vg, Uy, v-,-}.

Lemmas 4.2 and 4.3 are trivial and their proof is a straightforward check of all
possibilities.

Lemma 4.4. If Q contains an induced subgraph isomorphic to Cagyy for some
positive integer s, then this subgraph contains at least 3 consequent vertices in at

least one of the two cycles: C\3) and C'2) of Q.
Lemma 4.5. Q does not contain an induced subgraph isomorphic to Cs.

_ Lemma 4.6. If C is a simple 5-cycle, which is an induced subgraph of
Q. then there is v € Aut(Q) such that C = v ({v1,v2,v3,v4,v9}) or C =
¥ ({v1,v2,v3,v8,v9 }).

The detailed proofs of all the propositions and lemmas from this paragraph
with the exception of lemmas 4.2 and 4.3, which are obvious, will be supplied in
part 7.
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5. DESCRIPTION OF THE MAIN CONSTRUCTION

We consider two isomorphic copies Q and Q’ of the graph Q (see Fig. 1).
Denote

V(Q) = {""lev2s'U3av4aUSavﬁaU7,'v&U.‘)a'le’Ull»l’l%vl:}}a

1
V(Q ) = {'LU],'UQ, wsy, Wy, Ws, We, Wy, W, Wy, Wi, W1, W12, 'U)]g},

We consider the graph L such that V(L) = V(Q)UV(Q'). E(L) will be defined
below.
We define

I'L(un) NV(Q) = (M) = {v1,v6,v11, V3, Us, V13, V2, V7 }.

Pr(w)NV(Q) =& (Tr(w))NV(Q)), 1 <1 <13,

E' = {[wiv;] | wi € V(Q'), v; € T(wi) NV(Q)}.
Now we define the edge set of L:

E(L)=EQUEQ)VE"

We extend the automorphism £ of Q which is defined above to a mapping from
L to L, namely:

£ = (1’1,1’2,1)3,04, 1’5’Uo,v’r,i’s’vgsvm,vl1,012,?)13)(101,wz,ws’wrx,ws’wm’u-’?,

Wy, Wy, Wig, Wi, Wiz, W13).

From the construction of L it is easy to see that this extension of § is an
isomorphism of L, which we shall also denote by &.

As L has 26 vertices, it will be enough to prove that L — (4,4) and cl(L) < 5,
in order to prove Theorem 3.

6. PROOF OF THEOREM 3

We shall first prove that cl(L) < 5. Assume the opposite. Let S be a 5-clique
in L. As Q and @’ are isomorphic, by (4.1) we have cl(Q) = cl(Q') = 4. Hence
S¢Z Q and S ¢ Q. Therefore we have the following 4 cases:

First case. |SNQ| =4, [SNQ'| =1.
Using & without loss of generality we can consider w; € S.
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But 'z (w1) NQ = (M), which is isomorphic to M, which has no 4-cliques by
(4.3).

Second case. |[SNQ|=1, |SNQ| = 4.
Now using &, without loss of generality we can consider that vy € S. From the
construction in Section 5 via trivial computation it follows that

L) NQ" = {wy,wig, wi2, wy, wg, wr, wy, ws)

= <P3 ({‘ll‘l y W2, W3, Wy, W5, Wg, Wy, wm}) .
This subgraph is isomorphic to M, which has no 4-cliques by (4.3).

Third case. |SNQ| =3, [SNQ'| = 2.
Using &, without loss of generality we can consider w, € S. Again using & we
reduce this case to the following subcases:

Subcase 3.1. SN Q" = {w;,w3}. Now from the construction in Section 5 we

have:
Pp(w) NTp(wa) NQ = {vg,v3,v8, 113},

which has no 3-cliques.

Subcase 3.2. SN Q' = {wi,w;}. Now
Fp(wr) NTr(ws) NQ = {1, v6, 011,03},

which has no 3-cliques.

Subcase 3.3. SN Q" = {w,ws}. Now
Fr(wi) NTp(ws) NQ = {v11,v6,v7, v2},

which has no 3-cliques.

Subcase 3.4. SN Q" = {w;,wr}. Now
Cr(un)NTr(wr) NQ = {v7,v8,v13,v1, 6},

which is isomorphic to C; and has no 3-cliques.

Fourth case. [SNQ'|=3,|SNQ|=2.
Using &, without loss of generality we can assume that v; € S. Again, using &,
we reduce this case to the following subcases:

Subcase 4.1. SN Q = {v1,v3}. Now from the construction in Section 5 we
have: :
Fr()NTp(vs) NQ" = {wy, we, wa, w2},

which has no 3-cliques.
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Subcase 4.2. SNQ = {v1,v4}. Now
FL(vl) M FL('IL;) N Q = {u,v2,-w7,w4,w]2},

which has no 3-cliques.

Subcase 4.3. SN Q = {vi,vs}. Now
Cr(v) N p(vs) N Q" = {wi3, w2, ws, wa},

which has no 3-cliques.

Subcase 4.4. SN Q = {vy,v7}. Now
Cp(u)NTu(ve) nQ = {’lL’l,U’lg,wx,‘lL’7,u'2}.

which is isomorphic to C5 and therefore has no 3-cliques.

Thus we have completed the proof of the fact that cl(L) <5

It remains to prove L — (4,4) only.

Assume that V; U Vs is a (4,4)-free vertex coloring of L. Then Vi N Q and
Vo N Q must be a (4,4)-free vertex coloring of Q. Then, according to Proposition
4.5 and having in mind that £ can be continued to an automorphism of L, we have

the following five groups of cases (totally 32 cases).
First group of cases: when thereis 0 < n <12, n € N, such that Vin@ C
£"(My). Thus without loss of generality we can assume that V1 N Q C M.

Case 1.1. When V| D M = {vy, v2, V3, Vs, Us, Vg, Vg, V10 },
Vo D {wvy,v8, 011,12, v13}. Now we have:
vg, U2, V5 € Vi, therefore wg € Vo, w3 € Vy;
19,4, 5 € Vi, therefore wy € Vo,
Vg, V2,6 € Vi, therefore wg € Va;
wg, ws, w3 € V,, therefore wiy € Vi;
wg, Ws, v7 € Vo, therefore ws € V.

Now ws, wis, v1, vy is a 4-clique in V;. We have completed the proof of case
1.1. Note that vy € V, and vy € V> because of the 4-cliques v7,vq,v11,v13 and
v4, V7,011, V13. Therefore we have only 6 other cases in this group of cases:

Case 1.2. Replace vy, i.e.
Vi D {ve, vz, v1, Vs, Vg, Vg, V10 }, Vo D {v1, 07,08, 011,12, 013}

We have {vg, v2,v6} C ViNT'L(wg) and {vy, v8,v11} C VaNI'z(wo). So whatever
the color of wy, elther {wo,v1,v8,v11} or {wg,vg,v2,vs} is a monochromatic 4-
clique.
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Case 1.3. Replace vy, i.e.

Vi D {1, v3, 04,05, 06,9, 10}, Va D {vg, v7, U, U1, 012,013 } -

We have vp,vg, 11y € Vo NI p(wy) and vg,v3,v5 € Vi N T 1 (we).
So whatever the color of wg, either {wg,vy,vg,v11} or {wg,ve,v3,v6} is a
monochromatic 4-clique.

Case 1.4. Replace vs, i.e.
1/l D {'U],'UQ, Uy, Us, 'U(;,'Ug,'l)]()}, V2 2 {1'39 1)7,'1)8,'1’]1,?)12,’013}-

The proof is similar to the one in case 1.1. We have:

v, 12,05 € Vi, therefore wg € Va, ws € Va;
va,v4,06 € Vi, therefore ws € Va;
vg, v, 6 € Vi, therefore wg € Va;
vr,ws, wg € Vo, therefore wy € Vi;
ws, ws, Wy € Vo, therefore wio € V.

Now wq, w2, vy, vy 1s a 4-clique in V.
Note that the proof was precisely the same as the one of case 1.1.

Case 1.5. Replace vs, i.e.
iD {Ula'UQa7’3;”4»”6’1’93'”10}, V2D {05,07,'08,011,012,013} .

Now {vs,v-;,vu} c Vs ﬂFL(‘w,r,) and {'02,‘1)4,'06} cW ﬂFL(ws).
Now whatever the color of ws, either {ws,vs, v, v6} or {ws,vs,v7,v11} is a
monochromatic 4-clique.

Case 1.6. Replace vg, i.e.

Vi D {1, v2,v3,v4, 05,09, v10}, Vo D {vs,vr,v8, 011,012,013} -

We have:
1,3, 019 € Vy, therefore wg € V5;

vy, U, v5 € Vi, therefore wg € Vo,

U6, Ug, V12 € Vo, therefore wy € Vis
wq,vg, 11 € V,, therefore wyy € Vi
wr, w1, v4 € V), therefore ws € Vo,
ws, we, Vg € Vo, therefore wny € Vi;

wi2,v1,04 € Vq, therefore wy € V5.
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Now {ws,ws, ws,v7} is a 4-clique in V5.

Case 1.7. Replace vy, i.e.
Vi D {v1,v2, 03,14, U5, 06,09}, Vo D {v7,v8, V19,011, V12, 13} -

We have vy, 010,013 € Vo NT'(wg) and vy, v2,v5 € Vi NT 1 (wg).

Now whatever the color of wg, either {wsg, vz, v10,v13} or {ws,ve,ve,v5} is a
monochromatic 4-clique.

Second group of cases: when there is 0 < k < 12, k € N such that ¥, N
Q C &*(M,;). Without loss of generality we can assume that Vi N Q C M, =
{vy, v9,v3,v4, 05, Vg, V10, v11 }. We have the following cases.

Case 2.1.
‘/l D {01»2)231’3a1’43051v63 v].()svll}’ VZ D {U7,'U8,'U9,'U12,'Ul3} .

We have:
V11,4, V2 € V;, therefore wyg € V5

v11, V5,01 € Vq, therefore wqy € V5.

Now {uw10, w12, v, v12} is a 4-clique in V5.
Now note that vy;,v3 € Vo because of the 4-cliques {v7,vg,v13,v11} and
{va,v7,v9,v13}. So only 6 other cases are possible in this group.

Case 2.2. Replace vy, i.e.
Vi D {v2,v3,v4,05, 06, v10, V11 }, Vo D {v1,v7,08, V9,012, V13} .

We have:
U1, Vg, 12 € Vo, therefore wy € Vi;

v7, V9, V13 € Vo, therefore wg € Vi;

Vi1, 04,02 € V), therefore wig € Va;
wig, Vg, V12 € Vo, therefore wis € Vi;
wo, wy, w2 € Vi, therefore wg € Vo;

vz, Vg, U109 € V1, therefore wqg € Vo;

vg, Wg, we € Vo, therefore wy € Vi;

V10,4, € V), therefore wy € Vs;
Wy, We, Wi € Vo, therefore wyz € Vj.

Now {ws3, w3, v2,v5} is a 4-clique in Vj.

Case 2.3. Replace v,, i.e.

Vi D {v1,v3, v4, 05,06, 010,011 }, Va D {v2,v7,08, 09,012,113} .
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We have:
va, V9, V12 € Vo, therefore w,y € Vi:

vz, v9, 013 € Vo, therefore ws € Vi;
vr, v9, 13 € V3, therefore wy € V.
Now {ws, w7, wg,v4} is a 4-clique in V;.

Case 2.4. Replace 14, i.e.
Vi DA, va,vs, 05, 06, V10, 11}, Va D {va,v7, 08,09, V12,013 } .

We have:
10,06, v3 € Vi, therefore wg € V5;

v11, V2,05 € V;, therefore ws € V2

2:11,.1.:5,1.'1 € V;, therefore wiy € Vs
vz, V9, V13 € Vo, therefore wy; € Vi;
wyg, Vg, V12 € Vo, therefore wig € Vi;
ws, Wy, Wy € Vo, therefore ws € Vi;
wy, Wy, w3 € Vi, therefore wyz € Vs,

wsy, v3,v5 € Vi, therefore wg € V5.

Now {we, w13, v7,v13} is a 4-clique in V5.

Case 2.5. Replace vs, i.e.
Vi D {v1,v2,v3, 04,06, V10,011 }, Vo D {5, v7, 8,09, 012, 13} .

We have:
vy, v, 011 € Vi, therefore wyo € Vo

t11, V4,9 € V7, therefore wyg € V5.
Now {wig, w12, v9,v12} is a 4-clique in V5.
Case 2.6. Replacing vg, i.e.

Vi D {v1,v2,v3,v4, 05, v10,v11 }, Vo D {vg, vz, vs, V9, V12, 013} .

The proof is word by word the same as the proof of case 2.5.

Case 2.7. Replacing v, i.e.
Vi D {v1,v2,v3,v4,v5, 06,011 }, Va2 D {v7,vs,v9,v10,v12, 113} .

The proof again is word by word the same as the proof of case 2.5.
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Third group of cases. Let there be such 0 < k < 12, k € N, such that
ViNQ C €¥(M;). As ¢ is an automorphism of L, we can consider without loss of
generality V; N Q C M, = {v1,v6,v11,V3, Vs, V13, V2, U7 }.

Case 3.1. Let
Vid {vlavﬁ,vlla7—’35'"8"0133'02,U7}a VoD {v4,'U5,U9,010,v12}'

We have:
vy, v11,v8 € Vq, therefore wg € Vo,

ve, V3,013 € Vi, therefore wg € Va;
vo,v6, 113 € V1, therefore w3 € Va;
v7, V1,03 € Vq, therefore wy € V.

Now {ws, ws, we, w3} is a 4-clique in V5.
Now note that vs, vy € Vo because of the 4-cliques {v3,vs,v9,v12} and
{v2,vs,v9,v12}. So we have only 6 other cases in this group.

Case 3.2. Replace vy, i.e.
Vi O {vg, 011,03, U8, 113, V2,v7}, Va D {v1,v4,v5,v9, V10, V12} .

Now vy, 5,112 € Vo NT 1 (w;3) and vo, v, v13 € Vi3 NI (wi3) so whatever the
color of w3 either {wy3,vy,vs,v12} or {w;3,v2,v6,v13} will be a monochromatic
4-clique.

Case 3.3. Replace vg, i.e.

Vi D {v1,v11,vs, 08,013, V2,v7}, Vo D {ve,v4, Vs, V9, V10,V12} -

We have:
V4, Vg, V19 € Vo, therefore wy € Vi3

v1,011,v8 € V4, therefore wg € Va;
vr,v11,v13 € V;, therefore wg € Va;
v7,v1,v3 € Vp, therefore wy € Vo;
wo, we, wg € Vy, therefore wy3 € Vi;
wy, w13,V € V}, therefore wy; € Vs.
Now {wr, w9, vs, ve} is a 4-clique in V5.

Case 3.4. Replace vy, i.e.

Vi D {v1,ve,v3, 8,013, V2,07 }, Vo D {v11,v4, V5,9, V10, Vi2} .
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We have, similarly to case 3.1:
ve, V3, V13 € Vi, therefore wg € Va;

va, v, Vs € V1, therefore wg € Va;

v7, 01,03 € Vq, therefore wy € Vs

Vg, Vg, V13 € V1, therefore wyz € V5. .
Now wy, wg, we, w13 € Vo is a monochromatic 4-clique.

Case 3.5. Replace vg, i.e.
Vi D {vy,v6, 011,03, 013, 02,07}, Vo D {USavtia'Uf)stsleale}- .

Now wvg, vs, 112 € VoNI', (we) and vg, v, v13 € ViNT' L (wg). Whatever the color
of wg, either {ws, vs, vs,v12}, or {ws, Vs, V3, v13} Will be a monochromatic 4-clique.

Case 3.6. Replace vy3, i.e.

Vi D {v1,v6,v11, 03,8, V2, 07}, Vo D {v13,v4, 05,09, v10,012} -

We have:
v1, V11,08 € Vi, therefore wy,wg € V5;

v7,v1,v3 € V7, therefore wy € Vo,
vs, V12, V9 € Vo, therefore wyp € Vi;
V13, V10, V4 € Vo, therefore wqy, w3 € V).
Subcase 3.6.1. Let wg € V). Now wg,v3,v6 € V1, therefore wy € V5.

Also wg, w3, w12 € V1, hence wyg € V5.
Now. {wy0, w4, v10,v4} is a 4-clique in V5.

Subcase 3.6.2. Let wg € V.

We have ws, wg, w9 € Vo, hence wyz € V.
Now w3,v1,v7 € Vi, therefore wy € V,.
From ws, ung3,vo € V; follows wyg € Va.
Now {w7,w10,'012,v9} is a 4—clique.in V2

Case 3.7. Replace vy, i.e.

Vi D {vi,vs,v11,v3, U8, 013, V2}, Vo D {v7,v4,vs,vg,vlo,vlz}-

We have:
v, Vs, V11 € Vi, therefore wg € Va;

v, Vg, V13 € Vi, therefore w3 € Vo,

vg, U3, 13 € V1, therefore wg € Va;
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we, Wo, w3 € Vo, therefore wo € Vi;
v7, 05,09 € Vo, therefore wg € Vi;
v7, V4,010 € Vo, therefore wy € Vi;

wo, w5, wg € Vi, therefore wy, € V.

Now {v10, w13, w11, we} is a 4-clique in V3.

Fourth group of cases.

Assume there is k € N, 0 < k < 12 such that Vi N Q C ¢F(M;3). As £ is
an antomorphism, without loss of generality we can assume that Vi N Q C M3 =
{v1,v6,v11, V3, V8, V13, V7, Vi2}.

Case 4.1. Let

Vi D {v1,ve,v11,v3, Vs, 113, V7, V12}, Vo D {vs,vio, Vs, Vg, U2}

We have:
v1,v11,08 € V4, therefore wg € Vo;

ve, V3, v13 € V1, therefore we € Vo;

v7,v1,v3 € Vi, therefore wyp € Vo;
wo, we, wg € Vo, therefore wia, w3 € Vi;

wg, V4,2 € Vo, therefore ws € V.

Now {ws, w12, vg,v12} is a 4-clique in V3.
Now note that vy, vi2 € Vo because of the 4-cliques {vy2,v2,v5,v9} and
{v11,v2,v5,v9}. So we have 6 more cases in this group of cases.

Case 4.2. Replace vy, i.e.

Vi D {ve, v11, U3, V8, V13, V7, V12}, Vo D {v1,vs5,v10, V4, Vg, U2} .

We have:
V12,8,V € Vi, therefore wg, wy € Va;

v, Us, Vg € Vo, therefore ws,wg € Vi;
U1, U4, V10 € Vo, therefore wy € Vi;

wy, V3,V € V1, therefore w, € Va;
Subcase 4.2.1. Let wy; € V;. We have:
wy, wg, wy € Vi, therefore wy € Va;

wo, Vg, V4 € Vo, therefore ws € Vi;

ws, Vg, 9 € Vo, therefore wg € Vj.
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Now {w;1,ws,we,v1;} is a 4-clique in Vj.

Subcase 4.2.2. Let wy; € Vo. We have:
wy, wr,wy € Vo, therefore wy € Vi

ws, vg, V12 € V7, therefore wio € Vo;
ws, wy, vy € Vi, therefore wy, € Vs.

Now {wsa,w12,v1,v4} is a 4-clique in Va.
Thus case 4.2 is over.

Case 4.3. Replace vg, i.e.
Vi D {wv1,v11,vs, v, 013,07, 12}, Vo D {vs,v10,v4, 09,2, 06} .

Now vg,v6,v9 € VaNT'(wg) and vy, vs,v11 € Vi NI (we). Whatever the color
of wg, either {wq,v2, v, ve}, or {wg,v1,vs,v11} is a 4-clique.

Case 4.4. Replace vs, i.e.

ViD> {’1’1,1}6,1}11,Ua,vxa,v'r,’vl'z}, Vo D {vs,vs,v10,v2, 04,09} .

We have:
vy, V11,08 € Vq, therefore wg € Vs;

vy, 11,13 € Vi, therefore wg € Va;
v1,v12, U8 € V], therefore we € Vo
wo, We, Wy € Vg, therefore wqo, w13 € Vi3
wy, v9,vs € Vo, therefore ws € V.
Now {ws, w2, v6,v12} is a 4-clique in V.

Case 4.5. Replace vg, i.e.
Vi D {v1,v6, 011,03, 013, 7,12}, Va D {vs,v10,v4, %, V2, Vs } .

Now vg, va,v4 € Vo NI (w2) and vy, vy, v3 € Vi N (w2). Whatever the color
of ws, either {wo,vs, v2,v4}, or {we,v1,vs3,v7} is a 4-clique. :

Case 4.6. Replace vy3, i.e.

Vi O {v1,v6,v11,v3,8,07,v12}, Vo D {v13,vs,v10,V2,04,V9} .

We have:
vy, V11,08 € V), therefore wg € Vs;

v12,v3, 0 € V1, therefore wg € Va;

v7,v1,v3 € Vi, therefore wy € Vs,
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wo, we, wo € Vo, therefore wip € Vi;
wa, vy, V4 € Vo, therefore ws € V).
Now {ws, w2, v6, 012} is a 4-clique in Vj.

Case 4.7. Replace vy, i.e.

Vi D {v1,v6,v11, 03,08, 013, v12}, Va2 D {vs,v10,v4, 09, 02,07} .

We have:
vy, vg, U1 € Vi, therefore wg € Vs;

vy, 08, V2 € V3, therefore wo € Vo
v3, g, v13 € V1, therefore wg € Vi
un, g, we € Vo, therefore wys € Vi;
vy, 7,019 € Vo, therefore wsy € V.

Now {ws, w2, v6.v12} is a 4-clique in Vj.
Fifth group of cases.
Now we assume thereisk € N, 0 < k< 12and 0<i <3that QNV; = S;.

We have the following possibilities:

Case 5.1.

ViD {'l’_l,'v2,va,v4,'1*6,‘07,1)9}, Vo D {Us,vs,vlo,vu,vu,vm}.

We have:
vy, vy, v7 € Vq, therefore wy € Vs;

vy, g, 07 € Vi, therefore wy; € Vo

v3, v, v € V3, therefore wyg € Vo;

vy, Vg, Vg € V), therefore wy € V5.
Now {w;,wy, w7, wyp} is a 4-clique in V5.

Case 5.2.
ViD {'1’1,’02,03»7’4,06,07,1’12}, Vo D {vs, vs,v9, v10,v11, 13} -

Now vs,vg,v11 € Vo NTp(we) and vz, ve,v12 € Vi NI (wg). Whatever the
color of wg, either {wg,vs,vs,v11}, or {we,vs,vs,v12} will be a monochromatic a
4-clique.

Case 5.5.

‘/1 2 {'Ul,'l.’Q, VU3, V4, Vg, Vi1, Ul2}a ‘/2 2 {'U5,'U6,'U7,'U8, V10, 'U]:;} .
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Now v, vg,v1; € VI NT 1 (wg) and vg, vg,v10 € Vo NIy, (wg). Now whatever the
color of wg, either {wq, v, v9,v11}, or {wy, v6, v, v19} will be a monochromatic a
4-clique.

Case 5.4.
ViD {’Ul, v, U3, V4, vﬁ,vn,vu} VoD {’Ur U7, Vg, ’09,1710,’01-;}
‘e have:
vy, 03, U2 € Vi, therefore wy € Vs;
vy, 4,011 € Vi, therefore wy € Vi
vy, Vg, 12 € Vi, therefore wg € Vo
Vo, v, V12 € V), therefore wiy € V5.

Now {w;3,ws, wy,we} is a 4-clique in V5.
The above considerations, Proposition 4.5 and the fact that £ is an automor-
phism of L prove Theorem 3.

7. PROOFS OF THE PROPOSITIONS AND LEMMAS FROM SECTION 4

Proof of Lemma 1. Let C' be the wanted 4-cycle. Then using ¢ without loss
of generality we have:

|E(C) N E(C)] > |EC)NEC?)], ie.
|E(C)NE(CY)) > 2.

Case 1. If |[E(C)Nn E(C “))l = 4, then using £ we may assume that C =
{v1,v2,v3,v4}, but Q ({v1,v2,v3,v4}) is not a simple 4-cycle.

C‘aee 2. If IE(C)QE(C(I) )| =3. As 3 > 2, then there are two edges in E(C')N
E(C 13 ) with a common vertex. Then using £ we may assume that {v,,v2,v3} C
V().

But I'5(v1) UT'G(vs) = {v2} and hence this case is impossible.

Case 3. If |E(C)n E( C’m )| = 2. If there are two adjacent edges in E(C) N
E(C ), then using & we would have {v;,ve,v3} C V(C), which is impossible as

mentioned above. Then the two edges in E(C) N E(C’{:l,)) are not adjacent. Using
§ we can assume that {v;,v2} C V(C). Now we must have at least one edge from
vy or vg in E(C) N Hs.

The possibilities are vyvg, v1vg, V2019, U2U7.

Thus we obtain two 4-cycles {v1,v2,v10,v9} and {vq,v2,v6,v7}, which are
equivalent: ¢ ({vy,ve,v10,v9}) = {v1, v, v7,02}.
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Thus the lemma is proved. O
The proofs of Lemma 4.2 and 4.3 are trivial.

Proof of Lemma 4.4. As E(Q) = E(C,( ',) )UE(C(2)) and using ¢ we can consider
that |E(Cassr) N E(CH)] > |E(ng+1 YN E(C2N).

Therefore |E(Cags+1) N E( | > + 1 and as 2s + 1 is odd we have at least
two adjacent edges in E(Cas41) ﬂ E(C13 ). 4

Proof of Lemma 4.5. Assume that C' is an induced subgraph of @, isomorphic
to C7. Using the previous lemma and & we obtain {vy,vs,v3} C V(C7).
Assign V(C) = {vy, v2,v3,a,b,c,d}.

Then
d = l“a(v])/{’uz} = {‘1’5, vg, v13} (7.1)

a < F-Q(‘Ug)/{’l)g} = {04,”03,1’]1}
Now let us observe that

(" does not contain 4 consequent vertices

7.2
in any of the cycles (”f; and C(Z) (7.2)

Indeed, if (7.2) is not correct, using ¢ and &, we can assume that {vy, vo, v, vs}
C V(C). But each vertex of Q is adjacent to at least one of these 4 vertices. As '
has 7 vertices, it cannot be a simple cycle. Thus (7.2) is proved.

From (7.2) we have that d # vi13,a # v4.

Case 1. Let a = vg. Now b # vg as vy, vq, V3, Vs, Vg is a simple 5-cycle.

Also b # 113 by (7.2).

As b e Fa(a)/{’v_‘;}"—' {v7,v9,v13} it Temains b = vy, but vy, v7 € E(Q), which
is a contradiction.

Case 2. Let a = vy;.

Then b € F-Q—(v“)/{v,g} = {'U10,'U12,’U6}.

As vg, 11, 010, v2 € E(Q), it follows b = vy

Now ¢ € I‘g(v]g)/{vn} = {v13,v4,v7}.

But vi3, vy, v4, U3, 07, v2 € E(Q), which is a contradiction.

The lemma is proved. O |

Proof of Lemma 4.6.

From Lemma 4.4, using &, we have {vy,ve,v3} C V(C). Assign V(C) =
{v1,v2,v3,¢,d}.

If C contain 4 consequent vertices on one of the two cycles Ci;l;) C ,(2;) I
without loss of generality V (C) = {v1,v2,v3,v4,d}, then

de€ FQ“(U]) N Fa(‘l).-i) = {”Ug}.

Hence C = {v,v2,v3,v4,09} and we are through.
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So we can consider

C" does not contain 4 consequent vertices (7

7.3
on any of the cycles C{ 1,), C(2) )

Then ¢ # vy, d # 113.
Case 1. If ¢ = v1;. Then

d € Tg(vin) NTg(v1) = {ve},

and hence
C = {v,v2, 03,06, 011} = ¢~ €3 ({1, v, v3, 04,9 }),

and we are through.

Case 2. If ¢ = vg. Then
de Fa(l’g) M Fa(m) = {vg, 13},

but d # v13 and hence C' = {vy, v9,v3,vs,v9}. The lemma is proved. ]
Propositions 4.1 and 4.2 are trivial.
Before proving proposition 4.3 we shall introduce the following notation.
Assign:
p; =87t j=1,...,13

(i.e. ¢ = 1 — we shall continue to use both o and ¢; farther).

=95 i=1,...,13

2
=93
(we have = 7, in these assignments).
The "geometric” mterpretatlon of these automorphisms is the following:
@, replaces (“” and C“ , leaving the vertex v; fixed;
7; is a reﬂectlon around the vertex v;.

Proof of Proposition 4.3. From the statement of the theorem, we have |Q[V;]| =
8, a(Q[V1]) < 4, d(Q (Q[V1]) = 2. We shall use the classification of all such graphs,
given on p.194 in [3].

Note that all the three Lonﬁguratlons contain a simple 4-cycle wywowsw,4 and
two simple 4-chains wjabws, wocdwy. We already know from Lemma 4.1 that
any sunple 4-cycle can be obtained from {v;,vg,v7,v2} via an automorphism 1 €
Aut(Q). So without loss of generality we have {vy,vs,v7,06} C V;. Now using
v = &(mws) and Lemma 4.2, we have the following possible simple 4-chains
vocdug: |

1) vaviovn1V6  2) vovioUsUs  3) U3V V. (7.4)
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Using Lemma 4.3 we have the following possibilities for vabvy:
1) mviavi2v7  2) viv13U8V7 3) vy veURLY.
Combining (7.4) and (7.5), we have:

— 9 1\
Vi = {v1, 113, V12, 07, V2, V10, 11, V6 } = § mo(M):
i= {1’24’10,”11-06,1’1,U13,v8,U7}-

Now Vi = {v3, 14, v5,v9, 012} contains 4 clique v3vsv9v12.

Vi = {v2,v10, V11, U, V1, V9, Vs, U7} = £ (M);
Vi = {va, 110, Vs, Vs, V1, V13, V12, U7} = £ 1p(M);
4 = {2, v10, V5, V6, V1, 13, Vs, U7} = € pmo(M);
Vi = {v2,v10, V5, Vg, V1, V9, Vs, 07} = £ Muo(M);
Vi = {va, 3,011, V6, V1,013, V12, 07} = £ (M);

Vi = {va,v3, V11, Vs, V1, V13, Vg, U7} = @(M);
Vi = {v2, 3, V11, V6, V1, V9, Vg, v7} = Epmo(M).

Proposition 4.3 is proved. [

. Proof of Proposition 4.4. From the statement of the theorem it follows that
QVi]l = 7, a(Q[V1]) < 4, cl(Q[Vi]) = 2. We shall use the classification of all such

graphs on p.194 in [3].

We shall need the following corollary from this classification, which can be

easily proved independently:
If G is a graph with |G| = 7, a(G) < 4, cl(G) = 2.

Now G contains either C7 or C5 as an induced subgraph.

Now from (7.6) and Lemma 4.5 we see that Q[V;] contains an induced subgraph,

isomorphic to C5. From Lemma 4.6 we have the following cases:

Case 1. Let Vi D {vy,v2,v3, 04,08, Vg}.
Now we have as v,vs is (4,4)-free:

v1, V4,08 € Vi, therefore vyg,v11 € Vo

v, 4,08 € V, therefore vg,vy1 € V.

Then for the seventh vertex of Vi we have the following possibilities:

U5, U7, V13, V12

If the seventh vertex of V; is vs or vy3, then Vi C {13, v1,v2,v3, 04,05, g, Vg } =

§7H(M).
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If the seventh vertex is either v7 or vy2, then V} C {v1, v2, V3,04, V7, V8, V9, V12 } =
§p(M).

Case 2. Let V) D {vy,v9,v3,v8,v9}.

Now we assume that v, € V5 (otherwise we fall in the conditions of the previous
case).

We can consider v13 € V5.

Otherwise, i.e. if vi3 € Vi, then n2(V}) would be a 7-vertex subgraph of @
with the wanted properties and 72(V)) C {v1, v2, v3, v4, v8, v} and this lead to the
previous case.

Now note that vqvrvi1v13 is a 4-clique in Q. As el(Q[V2]) < 4 and as we already
proved vy, v13 € Vo then v7 € Vi or v11 € V}. From the clasification on p.192 in [3]
we see that there must be an edge outside the 5-cycle. So we have the following
possibilities for the remaining 2 vertices of Vi: vrvg; v7v12; V1106 V110125 V11 V10,

We have

Subcase 2.1.
— ¢£—D
Vi = {v1,v2,v3, 06,07, 08,09} C {v6, V7,08, V9, V11, 01,02, 03} = E 5 pmio(M).

Subcase 2.2.
) ‘ o5 '
Vl = {'“ls U2, U3, Vg, Ug, Ug, vll} g {‘vﬁa U7,'US,'UQ,'U]],'U},'Uz,T’.'}} - £ <10"710(1Lf)

Subcase 2.3.
Vi = {v1,v3,v7,v8,v9,v12} C {v1, 02, v3,v4,v7, 08,9, V12 } = Ep(M).

Subcase 2.4. Vi = {vy, vy, v3,vs,9,v11,v12}. Now Vz = {vy4,vs,v6,v7, v10, 13}
and hence G(V2) contains the 4-clique vy4, v7, v19, V13.

Subcase 2.5.

— . ) . —_ =D ;
Vi = {v1,v2,v3,v8, v10,v11} C {ws, Vg, V10, V11, V1, V2, Vs, Vs, } = € Op(M).
Case 2 is over.

Case 3. Let Vi D {v1,ve,v3,v4,v9}, but vg & Vi, i.e. vg € Va.

Using 79 we can consider as in the previous case that vig € Va.

As there must be an edge outside the 5-cycle we have the following possibilities
for the other vertices in Vy: vsv13; vsvs; Ve11; UsU7; V11012; V12013, V1207

Subcase 3.1.
Vi = {v13,v1,v2,v3,v4, 05,09} C {113, 01,02, V3, V4, V5,08, 09} = EL(M).

Subcase 3.2. A
Vi = {v1,v2,v3,v4,vs, 06,09} C {v1,v2,v3, v4, Vs, Vg, V9, 010} = M.

Subcase 3.3. |
Vi = {1, v2,v3,v4,v6,v9,v11} C {v1,v2, 03, v4, V6, Vo, V10, V11 } = E30m10(M).

Subcase 3.4.
Vi = {v1,v2,v3,v4,06,07,09} = S).

Subcase 3.5.
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Vi = {v1,v2,v3, 04,09, V11, V12} = 53'\02(5)-

Subcase 3.6.
—_— 7 \ ’ ; — '_2 ;
Vi = {v12, 113, 01, V2, V3, Vs, Vg } C {12,V3, V1, V2, V3, V4, V8, Vo } = & “Nio(M).

Subcase 3.7.
Vi = {Ul‘ 1’2»'03,U-I,UT»U‘_)»Ulz,U?} C {’Ul,Uz,’L‘:s»v-a,’l)?,vs,vrz} = §p(M).
This proposition is proved. O

Proof of Proposition 4.5. As R(3,4) = 9 we have two possibilities only: |Vi| =

8, |Va| = 5 and |Vi| = 7, |Vi| = 6

10.

Ann.

Now Proposition 4.5 follows from (4.4) and propositions 4.1, 4.3, 4.4. O
All statements from Section 4 are proved.
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