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We investigate Mushielak-Orlicz sequence spaces €4 with a dual £3, which is stabilized
asymptotic £~ with respect to the unit vector basis. We give a complete characteriza-
tion of the bounded relatively weakly compact subsets K C f4. We prove that fg is
saturated with asymptotically isometric copies of €1 and thus f4 fails the fixed point
property for closed, bounded convex sets and non—expansive (or contractive) maps on
them.
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1. INTRODUCTION

The notion of asymptotic £, spaces first appeared in [14], where the collection
of spaces that are now known as stabilized asymptotic ¢, spaces were introduced.
Later in [13] more general collection of spaces, known as asymptotic ¢, spaces, were
introduced. Characterization of the stabilized asymptotic £, MO sequence space
was given in [5]. It is found in [17] that if the dual of a MO sequence space {4
is stabilized asymptotic € space with respect to the unit vector basis then {4 is
saturated with complemented copies of ¢, and has the Schur property.
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A characterization of the relatively weakly compact sets in an Orlicz spaces
Lar[0, 1}, such that the function N complementary to M satisfies lim_. o L,\(();—')l =
for some 1 < A < oo is given in {2]. Using the technique of [2] and [17] we generalize
this result for MO sequence spaces. More precisely we characterize the relatively
weakly compact sets of a MO sequence space €, and its dual ¢} is stabilized
asymptotic £, space with respect to the unit vector basis.

. In the second part of this note we prove that MO spaces £ with stabilized
asymptotic £, dual are saturated with asymptotically isometric copies of #;. The
notion of asymptotically isometric copy of ¢, in a Banach space appeared in [7]
and is used to investigate the fpp for non—expansive mappings of the non-reflexive
subspaces of L[0, 1]. Using the ideas of [1], [7] and [17] we show that any subspace
of £5 contains an asymptotically isometric copy of ), provided that £} is stabilized
asymptotic £, space with respect to the unit vector basis and as a consequence of
(7] this class of MO sequence spaces fails the fpp for closed, bounded, convex sets
in £3 and non—expansive maps on them. Let us mention that such a conclusion
could have been drawn directly by using the recent characterization of the MO
sequence spaces f¢ having fpp given in [16]: An MO sequence space has fpp for
closed bounded convex sets and non-expansive maps on them iff it is reflexive. The
examples at the end show that sometimes to check reflexivity is more difficult than
to check that €} is stabilized asymptotic £, with respect to the unit vector basis,
due to the engagement of several constants in the definition of the d—condition for

a MO function .

2. PRELIMINARIES

We use the standard Banach space terminology from [11], Let us recall that
an Orlicz function M is even, continuous, non-decreasing convex function such
that M(0) = 0 and lim;_.. M(t) = oc. We say that M is non-degenerate Orlicz
function if M (t) > 0 for every t > 0. A sequence ® = {®;}°, of Orlicz functions
is called a Musielak-Orlicz function or MO function in short.

The MO sequence space {3, generated by a MO function ® is the set of all real
sequences {z;}5<, such that 377, ®;(Az;) < oo for some A > 0. The Luxemburg’s
norm in f4 is defined by

oK
|zl = inf {7' >0: ) ®(xi/r) < 1} .
i=1
We denote by he the closed linear subspace of fg, generated by all + =
{z:}72; € €y, such that Y-, ®;(Azx;) < oc for every A > 0.
If the MO function ® consists of one and the same function A one obtains the
Orlicz sequence spaces £; and h,y.
Let 1 < p;, i € N be a sequence of reals. The MO sequence space £, where
® = {t}X, is called Nakano sequence space and is denoted by £y, 1. In [4] it was
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proved that two Nakano sequence spaces £(;,, £(4,} are isomorphic iff there exists
0 < C < 1 such that

xX
ZC]”Pi‘QJI < 00.
i=1

An extensive study of Orlicz and MO spaces can be found in [11] and [15].

Definition 2.1. We say that the MO function ® satisfies the 62 condition at zero
if there exist constants K,3 > 0 and a non-negative sequence {cn}n=y € €1 such

that for everyn € N
B, (2t) < KD () + cn

provided t € [0, ®;(3)].

The spaces € and hg coincide iff ® satisfies the d, condition at zero.

Recall that given MO functions ® and ¥ the spaces {4 and fy coincide with
equivalence of norms iff ® is equivalent to ¥, i.e. there exist constants K, 3 > 0 and
a non-negative sequence {c,}>, € {,, such that for every n € N the inequalities

O, (Kt) U, (t)+¢n, and U, (Kt) < Pp(t) + cn

hold for every t € [0, min(®,;}(3), ¥, (3))], [9] and [12].

Throughout this paper M will always denote Orlicz function while ¢ - an
MO function. As the properties we are dealing with are preserved by isomorphisms
without loss of generality we may assume that ® consists entirely of non-degenerate
Orlicz functions, such that for every i € N the Orlicz function ®; is differentiable,
®.(0) = 0 and ®;(1) =1 [17]

Definition 2.2. For an Orlicz function M. such that limy_o M(t)/t = 0 the func-
tion
N(z) = sup{t|z| — M(t) : t > 0},

is called function complementary to M.

Definition 2.3. The MO function ¥ = {¥;}32,. defined by
V;(z) = sup{tlr| — ®;(t) : t > 0},5 =1,2,...n, ...

is called complementary to ®.

Let us note that the condition lim;_q M(t)/t = 0 secures that the complementary
function N is always non-degenerate. Observe that if N is function complementary
to M, then M is complementary to N and if the MO function ¥ is complementary
to the MO function ®, then ® is function complementary to ¥. Throughout this
paper the function complementary to the MO function @ is denoted by V.
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It is well known that h}; = €x and hy = €y. Well known equivalent norm in
{g is the Orlicz norm ||z||§ = sup{Z?:I Ty - Z;::l U;(y;) < l}, which satisfies
the inequalities (see e.g.[10])

I-lle <I- 1€ <20 lle

We will use the Holder’s inequality: $_°¢ im1 Tyl £ lz||$ lly]lw, which holds for
every z = {1;}72, € €p and y = {y;} 72, € ly, where ® and ¥ are complementary
MO functions.

By {e;}72, and {ej}72, we denote the unit vector basis in he and hy re-
spectively. For a Banach space X with a basis {v;};2, and element z € X, r =
S0, xiv; we define suppz = {i € N : z; # 0}. We write n < z if n < mm{suppr}
and z < y if max{suppr} < min{suppy}. We say that z is a block vector with
respect to the basis {v;}3°, ifz = Y7 i=p TiVi for some finite p and ¢ and we say
" that z is a normalized block vector if 1t is a block vector and ||z|| = 1.

Definition 2.4. A Banach space X is said to be stabilized asymptotic € with
respect to a basis {v;}<,. if there exists a constant C' > 1, such that for every
n € N there ezxists N € N. so that whenever N < z; < ... < z, are successive
normalized block vectors. then {x;}, are C-equivalent to the unit vector basis of
. e

>

The following characterization of the stabilized asymptotic £, MO sequence
spaces is due to Dew:

— max |a;| <

< C max |a;l.
C 1<i<n 1<i<n

Proposition 2.1.(Proposition 4.5.1 [5]) Let ® = {®;}72, be a MO function. Then
the following are equivalent:

(1) he is stabilized asymptotic £ (with respect to its natural basis {€;}°%, ):

(ii) there exists A > 1 such that for all n € N, there exists N € N’ such that
whenever N <p < q and 3°3_ ®;(a;) < 1. then

> ®j(a;/)) < %

J=p

An easy sufficient condition for he to be stabilized asymptotic £, with respect
to the unit vector basis is the following

Proposition 2.2. (Proposition 4.5.3 [5] ) Let px(j) = inf{®;(\t)/®;(t) : t > 0}.
If im @y(j) = oo for some A > 1 then he is stabilized asymptotic €~ with respect
J—20

to the unit vector basis.
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Let X be a Banach space. By Y — X we denote that Y is isomorphic to a
subspace of X .

Definition 2.5. We say that a collection K C he has equi-absolutely continuous
norms if

for every ¢ > 0 there is N € N such that sup{|| X_p_, zrer| : & = {zx}2, € K} <
¢ for every n > N.

Definition 2.6. We say that a Banach space (X, | -|l) is asymptotically isometric
to €y if it has a normalized basis {v, };° | such that for some sequence {\n}oo,
increasing to 1 we have

2 o0
Z An‘tn‘ < Z thtn (1)
n=1 n=1
fOT all Ir = Z:tx':l tn'vn e X-
Whenever (X, | - ||) contains a normalized sequence {z™}2%, satisfying (1)

then the closed linear span of {x\™}><, is asymptotically isometric to ¢,

We say that X is saturated with subspaces with the property (*) if in every
infinite dimensional subspace Z of X there is an infinite dimensional subspace Y
of Z isomorphic to a space with the property (*).

3. WEAKLY COMPACT SETS OF MO SEQUENCE SPACES

Lemma 3.1. Let ® be a MO function. which has §; condition at zero and K C he.
Suppose that K fails to have equi-absolutely continuous norms. Then there are
0 > 0 and sequences {1} C K. {pn,qn}py: Pnrtn € N pn < g < prsa-
limy, s pr = lim,, .~ g, = 00 such that

Qn
S aVe > e | (1)

=P
for every n € N.

Proof. Since K does not have equi-absolutely continuous norms there are £ > 0,
{an}nen, an € Nand {z("} C K such that

o<
Z zf")ei > €.
1=y
Let ny = 1. We choose ns > n; such that
a,,z—l
(m1)
'i=01:|
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Put py = an,, q1 = apn, — 1, M) = 20m) We choose n3 > n» such that

oy, —1

Z 2"ell > ¢ /2.

1=p,

Put P2 = Qny,y (2 = Gy, — 1, 1-(2) — z(ng).
If we have selected I(l)‘£(2)a v »x(k) bV .'B(s) = Z("«), Ps = Qn, Qs = QO — 1
for 1 < s <k, then we choose nj.41 > nx such that

a,,,‘_.w—l

Z 2l S £/,

i="ﬂ;...,.,

Now we put pri1 = Qpyy s Qi1 = Gy, — 1 (k1) — S(nkgr)
Obviously the sequence {;r”")}'k’il verifies (1) with g9 = z/2. O

Lemma 3.2.(/2/) Let X be a Banach space. Suppose that {r,} C X is weakly
null and {x}} C X* is weakly* null. Then for each ¢ > 0 there is a subsequence
{nk}3%., of positive integers so that for each k € N holds:

2

i#k
Theorem 1. Let ® be a MO function. which has 8, condition at zero and with
a complementary function ¥ :,uch that hy is stabilized asymptotic ¢, with respect
to the unit vector basis {€;}32,. Then any weakly null sequence in {y has equi-
absolutely continuous norms.

*

'T'nl (me) <E&.

Proof. Suppose the contrary. There is a weakly null sequence {z(™}> | C ¢4 that
fails to have equi-absolutely continuous norms. By Lemma 3.1 there exist g > 0
and strongly increasing sequences {pn,}5%,, {¢n}2% 1, Pns@n € N, pn < @0 < Prsa

such that
'

Z el > <.

i=pn
Choose y™ € hy such that supp y™ = {i}% S W(y (")) < 1 and

1=pn? k=p.,
‘}:,\,.. o y M| > > 3¢y. For a fixed & € ¢y by Holder’s Inequality:
>

=13 mal?| < |3 e Hv‘“’ll
As z is fixed and lim,, .~ P = lim,, .~ g, = 00 it follows that

k=p. k—pn

=Pn P
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Thus {y("}>, is weak® null sequence. By Lemma 3.2 there is a subsequence of
naturals {ng}, so that

an;
DD e < 2o/2.
J#k i=p,,.‘

We claim that

~ y(-nk) Gy, (1)‘)
. i — N —
kliﬂ)lczqf]( 3 )_klgi 2 ( ) 0, (2)

J=Pny

where A > 1 is the constant from Proposition 2.1. Indeed, by assumption hy

is a stabilized asymptotic f, space and there exists A > 1 such that for every
qﬂ‘.

m € N there is N € N so that whenever Z v (yﬁ"*)) < 1 then the inequality
J'=Pn,‘

Gy (n")
Z ¥, (yj,\ ) < 1/m holds for every ¢,, = pn, = N.

j=l’nk

Gy y(nk)
Thus "}lﬁl'ix Z | ( R )=0.

J=pPu
Therefore there is subsequence {ng,, }._, such that

Z IZ W, ( b )) 1.

m= lz—p,‘

Let y = >.°_, y™). Obviously y € hy and since {1} | is weakly null we
must have

q?l‘
(na )y — () 2"
m e = tim 35 4 <o
7=1=p, "k,
But
Y ( g, i (ne.)
"J; (n 11 ) (n ‘";) (n T ) nki ("'km )
Z A P I DA B D D DI
j=1 pnk i=p""m j#Fm 1:=p,,""i
3 1 1
> —g0— €0 = 7€
21 0= 580 =7 0
a contradiction. ]

Let us recall that C is weakly sequentially compact if every sequence of points
in ' has a subsequence weakly convergent to a point of C'.
For the proof of the next result we need:
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Theorem 2.(Eberlein-Smulian. see e.g. [8]) Let X be a separable Banach space
and C' be a weakly closed subset of X. Then C is weakly compact if and only if C
1s weakly sequentially compact.

By Theorem 1 it follows immediately:

Corollary 3.1. Let ® be a MO function which has d5 condition at zero and with
a complementary function W such that hy is stabilized asymptotic €. with respect
to the basis {€;}72,. Then a bounded set K C {4 is relatively weakly compact iff
K has equi-absolutely continuous norm.

Proof. Necessity. Suppose that K C hg is relatively weakly compact. If K fails to
have equi-absolutely continuous norms then by Lemma 3.1 there are ¢ > 0 and
sequences {2} 1 C K, {payqn}21s Pustn €N, pp < gn < prs such that

Gu

Z rg")e,; > g9

i=p,

for every n € N.
By Eberlein-Smulian theorem there are z € 4 and a subsequence {z("+)}>
such that z{™) — z weakly in 3. Thus by Theorem 1 {z(") — z}7¢ has

equi-absolutely continuous norms. Hence limy_, ~ “Efz;, (:z:f"“) - :r,-,)c,-” = 0 and
"k

obviously limy_ ”Zl z,e,-,“ = (). But

Q)rk . q:‘k an
iy 11¥S
£g < E :rf el < E el + E (:r§ «) —xi)eill — 0,
. . < k—ofx
=P, i=pu, =Py,

which is a contradiction.

Sufficiency. Let K be a bounded set with equi-absolutely continuous norms.
q
Let {x(™}>_| be an arbitrary sequence of elements in K. Obviously there exists L

such that |z\")| < L for every n,k € N. Thus there exists a subsequence EALE

such that lin;_,~, :z'{"‘) = . for every k € N.

Let ¢ > 0. There exists N € N such that for every s > N and every i € N the
mequahty holds ”ZL < (" )ek“ < ¢/3. Fix s > N. There is M € N such that for

every n;,n; > M and every k = 1,2,..., s the inequality lec ) T, ’)I < 57 holds.
Thus we can write the inequalities:

|z = 2| = szc: L2 - 32X i) “
< E a-(n ) Zs () 0 (n ) ~c (n )

ke ITA-'li) (n )|e ” + “ZL s+1 "’(n )"k” + ”Zx——sﬂ 1'(11 ! k“

ns+5+5=¢
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Consequently {r(™}2%, is a Cauchy sequence and thus it is norm convergent
to r € £4 and thus it is weakly convergent. O

Remark. Let us mention that for the proof of the sufficiency in Corollary 3.1
we do not need that (g is stabilized asymptotic £, with respect to the unit vector
basis {€]}32,.

4. FIXED POINT PROPERTY FOR MO SEQUENCE SPACES

The next Lemma is similar to that in [17], where it is shown that for every
normalized block basis {z(™}2%; of the unit vector basis {€;}7<; in €4 contains a
subsequence such that [z("]%  is isomorphic to ¢;.

Lemma 4.1. Let ® be a MO function. which has 82 condition at zero and hy.
generated by the MO function V. complementary to ®. is stabilized asymptotic €
with respect to the unit vector basis {€}}7%,. Then every normalized block basis

{x("}> . of the unit vector basis {e; }J , in Ly contains a subsequence {'L(" 5l

such that [x")])2, is asymptotically isometric to €;.

1=

Proof. Let {x{™}2% | be a normalized block basis of the unit vector basis {¢;}7Z,

MMy 41 (n)

in (g, where r(") = Zj-,,,,,ﬂ ;€5 {m,}>2, strictly increasing sequence of nat-

urals. Let {\,}7%, be an mcreasmg sequence, such that lim,,_~, A, = 1. For every
n € N there exists y(") =Dl yj ej € hy such that

i‘p] (n) Z (n) ("—) > Ap.

j=1

WLOG we may assume that supp y™ = supp z(™.
For the sequence {y(™}>° | and the constant A > 1 from Proposition 2.1 holds:

y(n) My 1 (n)
J — .
"angCle ( A )—nh_l};"f ;+lq’ ( )

The proof is essentially the same as for (2).
Now passing to a subsequence we get a sequence

"l"k +1

{l/(nk)}kGN , y(nk) — Z y('nk) ’t

J=ny,, +1

o Mg+l (nn)
3 \p( ) L

k=1j=m,, +1

such that
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Denote y = Y7, y'™) = S22, (an_""“ y(."")e’f>. Obviously y € fy and

J‘“""uk +1 J .1

lylle < A. As
Moy, 41
lim ("*) el =
Jim Z Z i =0
k=s j=m, v
there exists so € N such that
Io S In,,k;q
> Yyl <5
€; 5
h=sy j= =my,, +1 v
Consequently
o
fo'v m, L mnk+l
(nk) * ("k) *
PO TR IS i R
_50,’ 'n’u‘ +1 ‘—9()1 mn‘ +1 7,

Denote 7 = 7 zg‘pk yﬁ"") *. Then [|7]|9 < 1. Now using Holder’s inequality

for any sequence {t,,}72, such that 5 < P th—sy+ 1) € £y we get

nll*-*l
) (rx) (ny)
Z tk«-m+l~7'(mL =y ”() Z Z ‘t""”"H L |
k=3 Yy k=s, j= m,k+1
gk X
(i) (ng)
2 Z tk—so+1] Z THRE LT Y [T DS
k=sq j=7n'nk+1 k=sqy

g

Theorem 3. Let ® be a MO function. which satisfies the 8 condition at zero and
hg. generated by the MO function ¥. complementary to ®. is stabilized asymp-
totic €~ with respect to the unit vector basis {€}}7<,. Then {s is saturated with
asymptotically 1sometric copies of ¢,.

Proof. According to a well known result of Bessaga and Pelczinski [3] every infinite
dimensional closed subspace Y of ¢4 has a subspace Z isomorphic to a subspace of
{s, generated by a normalized block basis of the unit vector basis of f4. Now to
finish the proof it is enough to observe that by Lemma 4.1 the space Z contains an
asymptotically isometric copy of ¢;. O

By using a result from [7] that states that a Banach spaces containing an

asymptotically isometric copy of ¢, fail the fixed point property for closed, bounded,
convex sets and non—expansive (contractive) maps on them, we easily get
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Corollary 4.1. Let ® be a MO function. which has 6> condition at zero and hy.
generated by the MO function W. complcmentary to ®@. is stabilized asymptotic £
with respect to the unit vector basis {€; }72 =1 Then (e fails the fized point property
(fop) for closed. bounded. conver sets in o and non-expansive (or contractive)
maps on them.

We give at the end some examples of MO sequence space, saturated with
asymptotically isometric copies of ¢;.

Example 1.([17]) Sometimes we know only the complementary funct.ion v,

For example let the MO function ¥ = {¥;}72, be defined by ¥; = e¥e 17,
where lim; .« a; = co and 0 < ¢;. T hen {y is stabilized a,sympt;otlc { with
respect to the unit vector basis {e’ }"° because

L ;(2x)
— <<
lim mf{ v 0<z _1}

= i(z)
. . o ; —r—--r-z'.." =L . ”_.___2".1' —!
= lim inf<e "2/ 0 <ax<lp= lime "' 2 =o0.
J—oc j—nc

Thus we conclude that €4 is saturated with asymptotically isometric copies of {; and
fails fpp for closed. bounded, convex sets in £ and non-expansive (or contractive)
maps on them.

Example 2.([5]) Consider the Nakano sequence space £y, ), where p, =
log,(n +1)

n+1\"
log, ( 5 )
log,(n +1)

Gn = logs(n +1). It is easy to see that lim, .~ pn = lim, .~ 1\ 1
log, ( )

It is well known that €7, , = (g1, where 1/p, +1/q, = 1, ie.

2
and thus according to [4] and [12] £y, } is saturated with spaces isomorphic to
¢1. Moreover according to (5] €14, is stabilized asymptotic £, with respect to the
unit vector basis {€7}°2, and thus £, ; is saturated with asymptotically isometric
copies of £, and falls fpp for closed, bounded, convex sets in £4 and non-expansive
(or contractive) maps on them. :
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