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The automorphisms of the lattice £{V.. ) have been completely characterized. However,
the question about the number of automorphisms of the lattice £*(Vx ) has been open
for almost thirty years. We use some of our recent results about the structure of
L*(V ) to answer questions related to automorphisms of £*(Vy.). We prove that any
finite number of partial automorphisms of filters of closures of quasimaximal sets can
be extended to an automorphism of L*(Vx) . As a corollary we obtain that closures
of quasimaximal sets of the same type are elements of the same orbit in £* (Vi ).

1. INTRODUCTION

The vectors in the space V.. are codes of finitely nonzero infinite sequences of
elements of the underlying computable field F. The computably enumerable (c.e.)
subspaces of V.. are the closures of c.e. subsets of V... The c.e. subspaces of
V4 with the operations of intersection and closure of union form a lattice that is
denoted L£(V4). The lattice £(Vx) modulo finite dimension is denoted £*(V4).
Both £(V,.) and £*(V4 ) are nondistributive modular lattices. In this respect the
study of the structure and automorphisms of £*(V) is an interesting, modular -
counterpart of the study of the lattice £* of c.e. sets modulo =*. Friedberg proved
the existence maximal sets as part of Post’s program. Maximal sets are c.e. sets
with "thin” complements. The complements of maximal sets are called cohesive
sets. A set R is cohesive if for every c.e. set W either WNR or WNR is finite. From
a lattice theoretic point of view however, the =* equivalence classes of maximal sets
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are co-atoms in £*. According to Sacks (7] it was the Friedberg’s construction of
maximal sets that “ignited interest” in the lattice £*. The structure of the filters
and the automorphisms of £* have then been extensively studied (see [8]).

An interesting class of filters in £* are the principal filters of quasimaximal
sets!. These are exactly the finite Boolean algebras. In [1], [2], and [3] we studied
the structure of the principal filters of closures of quasimaximal subsets of a fixed
computable basis Iy of V.. Throughout the paper A =* B will mean that (A4 —
B)U (B — A) is finite. If A =* B, then we will also say that A and B are almost
equal. By cl(A) we will denote the linear span of the vectors in the set A. The
relation V =* W between vector spaces will mean that there are finite sets 4 and
B such that ¢/(V U A) = el(W U B). The relation C* between sets (spaces) is
defined similarly. For any c.e. set A the set of elements enumerated into A by the
end of stage s will be denoted as A*. If the partial computable function ¢ halts
on input x by stage s we will denote this fact by ¢*(z) |. Otherwise we will write
©*(2) 1. To simplify the notation in equalities used for defining partial computable
functions we will assume that the function on the left side is defined when all of
the elements on the right hand side are defined and the expression is acceptable.
For the same reason we will use the same notation (F') for a field F as a structure
and its underlying set F.

Before stating the main result of [3] we give some definitions.

Definition 1.1. Two sets A and B have the same 1-degree up to =* (denoted
A =} B) if there are Ay =* A and B; =" B such that A; =, B).

Definition 1.2. Let R be a cohesive set. The R~ cohesive power of the com-
putable field F is a structure F in the language of fields such that:

1. F = {¢: ¢ isapc function. R C* dom(p) Arng(p) C F}/ =g . Here
w1 =r w2 Hf RC* {z: o (x) = pa(x)} The equivalence class of p w.r.t.
=p will be denoted by [p|r or simply [p] when the set R is fized.

2. [p1) + lw2) = l1 + 92}, and [p1] - [p2] = [¢1 - 2]

3. 0F and 17 are the equivalence classes of the recursive functions with constant
values 0F and 1F respectively.

It is not difficult to see that F is a field. See [4] about cohesive powers of
general first order structures.

P
Theorem 1.1. [3]. Let Iy,. .., I, be maximal subsets of Iy and let Q = [ I;.
j=1

! Intersections of finitely many maximal sets are called quasimaximal.
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1. If L,..., I have the same 1-degree up to =™, then
L= Lp, i’)z

2. If I; are partitioned into m equivalence classes w.r.t. =7 and n; is the number
of elements in the i — th class. then

n

L (el(Q), 1) = HE (n;, F,

The isomorphism established in the proof of (1) is based on the idea that the
spaces in L*{cl(Q), 1) are spaces spanned by the union of the the c.e. set I and a

P N
finite number c.e. set which we formally denote > a;I; where [o;] € F for j < p.
=1

p.
The set that is formally denoted 3 «;I; is in fact a c.e. set of linear combinations

j=1
v = ai1(y)y + c2(y1)y2 + ... + ap(y1)yp where (y1,y2,...,y,) is an orbit. Th__e
orbit, a notion defined in a dlfferent context helow, is an element of 7} x I x ... x I,

at the time the vector v is enumerated into the set Z ol
=)

2. AUTOMORPHISMS OF £*(Vy)

Theorem 2.1. Let Jy,....J;, be quasimazimal subsets of Iy. Suppose that for
ST
k<m Jy = () Iij where I (for j = 1,...,n) are mazimal subsets of Iy of the
i=1
same 1-degree up to =*. Suppose also that the equivalence classes w.r.t. =5 of Iy,
and Iy, are different for each ky, ko < m such that ki # ko. For k < m let Wy be

an ny dimensional vector space over the field ﬁ = [] F' such that the lattice Ly of
Ty
subspaces of Wy, is isomorphic to L*(cl(Jx),1). Finally let fi be an automorphisms
of L*(cl(Jy). 1) that is induced by a linear transformation of Wi.
We claim that there is an automorphism f of L*(V) such that f|c+ (. =
fr for all k < m.

2The field F is the T;-cohesive power of the field F and L{m, F) is the lattice of subspaces
of an m-dimensional space over the field F. Note that in [3] the notion of cohesive power of a
structure has not yet been developed.

3F; is the cohesive power of F w.r.t. a cohesive set that is the complement of a maximal set
from the i — th equivalence class w.r.t. =
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Proof. Before we construct a computable linear transformation ® such that
dom(®) =* V. =" rng(®P) that induces the automorphism f with the desired
properties we will introduce some notions.

Suppose we have a fixed simultaneous enumeration of the c.e. sets Ix; and let
Pkj be computable permutations such that Iy; =* py;(Ix;) for all k = 1....,m and
J = 1,...,n4. The existence of such computable permutations with the property
that Vaf[pf.j (z) = x| was proved in [3]. There we also introduced the notion of an
orbit with respect to our fixed enumeration.

Definition 2.1. Let k < m be fived. An n-tuple (y1,y2,...,Yn,) Such that
y; = Prj(y1) is called an Jy. — orbit at stage s if

Vi <mVi < mel(G #0) = (u € I Ay € I))-

We now outline the idea behind this definition. At stage s the Jie — orbit
(Y1, 42, - - Yn, ) is an element of Ty X Tyy X ... X Iy, . In the process of describing
the structure of a space V' € L*(cl(Ji), ) in [3] we enumerate .J, — orbits as they
appear into a c.e. set Og. The set O is such that E C* prj(Ox) for every
J=1,...,nk. The underlying set {y1,y2,-..,yn, } of almost every J. orbit that is
enumerated at some stage into Oy will eventually be either a subset of Ji or the
orbit (y1,y2,....yn,) itself will remail an element of Ty x Trg X ... X In, . If the
latter happens, then we call such orbit a Ji orbit. Additionally, the underlying sets
of almost every two different J — orbits are disjoint.

We now introduce some notation to describe the isomorphism between the
lattice Lj of subspaces of an n, dimensional space W} over Fj and L(cl(Jp), T).
Following the proof of Theorem 1.1 in [3] we can select a basis {w¥,...,wk } of W
in such a way that the vector w¥ € Wy “corresponds” to the partial computable
function pg;|p, that is the restriction of the permutation pg; to the c.e. set By =
pr1(Ok). The set By has the properties that I, C* By and Ty, C* pri(Bk). For
each vector 3 = (Br, B2y .., Bn,) € Wi define a c.e. set of linear combinations

nj

5= {Zu ()pki(wn) = (1 € Bi) AVi < ne(Bily) 1)}
It is important to note that
cl(Jk) V el(I5) = el(Je) v el (£ Biwr)pri(v1) - 11 € Tax })-
=]

For each W € L such that W = cl{/)’_;_,...,[T,,} define a c.e. Viy € L*(cl(Jx). 1)
such that

Viv = cl(Ji) v el(| I5,)-

i=1
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In [3] we proved that the function that maps W € Li to iy € L*(cl(Ji), 1) is an
isomorphism between Ly and £*(cl(Jx). T).
Suppose that the automorphism fi. of £L*(cl(Jk), 1) is induced by a computable

linear transformation ®; of W} such that & (u ") = af where a (a a;‘m )
and a ; € Fk (for i < ny) are the coordinates of the image of u' mt,h respect to
the l)asm {wh, ... uwk }.

We assume that the automorphism fi of L*(cl(Jx),1) corresponds, via the
isomorphism W — Wiy, to the automorphism of L that is induced by ®. We then
have -

feVa) = cl(Ji) v el(| ] @x(T5))
i=1

where

g N

{30 8i(un)afi(y)pri(y) -

i=111=1
(yi € Br) AV <mi(Biy) | AVG < neladi(mn) 1))}

@i (13)

We will define a computable linear transformation ® with co-finite dimensional

domain and co-finite dimensional range in V,. In the construction below ®(y) will
be defined for almost every y € Iy. Then ® will be extended to a liner map. For
the construction we will need the following

Definition 2.2. (y1,%2,...,¥Yn,) is a generalized Ji orbit at stage s if:
(i) (y1.Y2,- .., Yn,) 18 a Jy. — orbit at stage s,
(1) Vi <mpVi <mlj # k — yi € J7]

Construction:

Stage 0: ®° = 0.

Stage s+1:

(A) If there is y € I* = () J; such that ®**'(y) has not yet been defined,

i=1
then let @11 (y) = y.

(B) See if for some k < m there is a tuple (y1,¥2,...,Yn,) such that:
(b1) (yl,yz, .., Un,) is a generalized Ji. orbit at stage s,
(h2) a #(y1) | for every i,j < ng,
(b3) Vz < ng (@ (yi) 1]

In this case for every j < ny let

& (y;) = ey (y)yn + - + @ (1)U
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(C) go to the next stage.
End of Construction.

In the lemmas that follow we will prove that the linear extension of the map
® induces an automorphism of £*(V ) with the desired properties. 0

Lemma 2.1. ®(y) is defined for almost every y € I.

Proof. We assmned that [,; (for kK < m and j = 1,...,ns) are different
maximal sets. Using the fact that these sets are maximal we can prove that for
almost every y € Iy either y € I or there are unique k, < m and j, < ny, such

that y € I, ;. .

m

Case 1: If y € [ = J;j and ®(y) has not defined by the stage s when
=1

J

m
y € 1I” =[] J;, then ®(y) = y at stage s + 1.
=1
Case 2: Suppose y ¢ I and let k, < m and j, < ny, be such that y € Iy ;. Let
(Y1,Y2,-- - Yn,, ) be such that y, = p,:’lqu (y) and y; = pi_;(y1) for j < ng, (notice
that in this setting y = y;,). By the definition of the permutations py ; we notice
that for almost every such y ¢ I we will have

(1) {y1,y2,- - yn,, } N T =B, and
(2) Vi # kyl{y1 vy - ymg, } C T
This means that (y;,yo.. ... Yn,,, ) Will be identified as a a generalized I orbit

at some stage s when (b2) in the construction above will also be satisfied for k = ky.
Using the fact that the underlying sets of different Ji orbits are disjoint we conclude
that (b3) above will also be satisfied for k = k, at stage s and therefore ®(y) will

be defined. [
Lemma 2.2. The linear span of rng(®) is cofinite dimensional in Vs .

Proof. Notice that either ®(y) = y or ®(y) is defined by means of part (B)
of the construction. In the latter case, it may happen that all the elements of
the underlying set {yi,y2,...,yn,} of the generalized orbit (yy,y2,...,un,) of ¥
will be later enumerated into 7. In all cases ® is a linear transformation such
that ®(cl{y1,y2,....Yn, }) = cl{y1,y2,...,yn, }. Using also the previous lemma we

conclude that
Voe =" cl{®(y) : y € Io A P(y) |}.

Lemma 2.3. If f is the automorphism of L*(Vy) that is induced by the linear
extension ®E of ®, then f|;, = fr.

Proof. By the previous two lemmas @ is computable map such that cl(dom(®)) =*
Vi =* cl(rng(®))* and therefore ®* is a computable linear map that induces an

*C. Ash conjectured that all automorphisms of £*(Va) are induced by computable semilinear
niaps that satisfy this property. For more information see [5)].
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automorphism of £*(Vy ). Fix & < m. We know that if W € L is such that
W = cl{B1,.... 3.}, then fi(Vix) =" cl(Jx) Vv el U i (I5)). Also, for almost.

every yy € By such that y, € I} (an therefore y, 6 lk b} the definition of orbit)

we will have {y;,y2..... Un, } = {pcr (1), Pr2(¥1)s - - - Prny (1)} € Ji. This means
that .
Fi(Viw) =" cl(J) V el(| ) Bx(F5)7) (#)
i=1
where
for 3 = (B1.825---+ 30, ) we let

Or(lz)” = *{ZZﬂj(yi)a;(yl)pki(y]):y, €T}

=1 1=1

Notice that every Jx orbit (yi.y2....,yn,) will be identified as a generalized Ji
orbit at some stage s; of the construction of the map ® and without loss of gener-
ality assume that af] "(y;1) |. At such stage we define ®(y;) = S ,cvﬁ(yl)yl =

Sty ok (y)pri(yr) for every j < .
That means that f(Viy) =" cl(®(Ji)) V cl(|J ®(I5;)) where
i=1

ny ng

O(F) = D) Buabyprly) -

j=11=1
(yi € Ck)AYi < mi(Bi(yr) | AV) < ni(ali(yr) 1))}, and

Cr = {y:3s[(b1),(b2),and (b3)

from the construction are satisfied at s]}.

Finally using that (1) c(®(Ji)) =" cl(Jx), (2) Ty C* Cx C* By, as well as identity
(#) above, we can now conclude that f(Viw) =" fi.(Viw). O

Tk

Definition 2.3. Two quasimazrimal subsets Qy = ﬂ ﬂ Ii;; and Qy =
k=1j=1
m  my

N N Jij of Io have the same type if Iy; and Ji; are mazimal subsets of Iy and
k=1 j3=1
the following hold:

1. m=n and Yk < n{my = ng)
2. ij EI Ik.j, zﬁk =k and ka E’; Jk,j, zﬁ k =k
3. ij EI ka
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Corollary 2.1. Suppose that the quasimazimal Q; and Q2 have the same type.
Then there is an automorphism [ of L*(Vy) such that f(cl(Q:1)) =" cl(Q2) and

fel(Q2)) =" el(Q1).

no g nony

Proof. Let Qv = () () Ixj and Q2 = () ) Ji; where Ii; and Ji; are as in
k=1 j=1 k=1 j=1

_ the definition above Let Ji,...,J, are quasimaximal subsets of 10 such that for & <
n;.

nJy = () Ii;N ﬂ Jij. Let the automorphisms fi of £*(cl(Jy), 1) in the statement
F=1 7=1

of Theorem 2.1 be such that fi(cl(I;)) = cl(Jx;) and fi(cl(Jx;)) = cl(Ix;). Notice

that it is easy to construct a linear transformation ®; of W) that induces such

corresponding automorphism fi of L*{(cl(Jy),T). Let f be the automorphism from

the conclusion of Theorem 2.1. Notice that cl(Q,) = /\ /\ cl{Iy;) and cl(Q2) =
. k=1 j=1

/\ /\ cl(Jy;j). Then
k=1j=1

1258

Fl@) = /\ A filel(liy)) = /\ /\ Fel(Txy))

k=1 j=1
n ng

= A N dlJi) = cl(Q2)

k=1 j=1

We similarly observe that f(cl(Q2)) =" cl(@Q1). O
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