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1. INTRODUCTION

The incidence 3D geometry consists of 3 different sorts of objects: points, lines
and plains and 3 relations called incidences. We introduce an equivalent one-sort
aeometrical structure, called a structure of incidence, which is suitable for modal
considerations. The approach is the same as in the papers of Balbiani et al. [1],
2] but extended to 3D geometry.

In the beginning we present the 3D geometrical space of incidence and the
one-sort geometrical structure of incidence. The category of incidence spaces cor-
responds closely to the geometry and its properties and its semantics is taken from
it. One-sort geometrical structure of incidence is a structure which contains only
one sort objects and 3 equivalence relations. Each object can play as a point, a line
or a plane at the same time, and the incidence relations are expressed as composi-
tion of the equivalence relations. The equivalence of the category of the incidence
spaces and the category of the structures of incidence is proven by defining functors
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from the incidence spaces to the structures of incidence and from the structures of
incidence to the incidence spaces.

The one-sort objects based structures of incidence with 3 relations of equiv-
alence and the difference relation are suitable for frames of a modal logic. The
language of the modal logic contains 3 unary modalities for the equivalence rela-
tions and the difference operator representing inequality. The semantics uses the
structures of incidence for frames of this logic.

The deductive system uses well-known rules as Modus Ponens, Generalization
for each modal symbol, and the irreflexivity rule proposed by Gabbay [3]. The
completeness proof does not use the irreflezivity rule directly but replaces it with
an infinitary rule deductively equivalent to it. For that equivalent deductive system
we prove the completeness. The completeness is proved using maximal consistent
theories and the canonical frame and model. The completeness of the original
system is a consequence of the deductive equivalence between these two rules.

The geometrical modal logic is derived from the minimal one with adding
several axioms for each property of the incidence frames. Each property of the
incidence frames is axiomatized and it is a canonical property. So the proposed finite
axiomatization is the axiomatization of the logic which frames are the structures
of incidence.

2. INCIDENCE GEOMETRY AND INCIDENCE FRAMES

First we show briefly the category of 3D geometrical incidence space. It is
consisted of points, lines and planes, and the relations: a point belongs to a line,
a line lays into a plane, and a point lays into a plane. So these relations are
called incidence relations. Another relation which is also important is the difference
between 2 points, 2 lines and 3 planes.

The incidence frames are explained afterward and the relations of incidences
are replaced with 3 equivalence relations and the difference. The definition of the
incidence frames and the equivalence between incidence frames and the category of
incidence geometry is the topic of this first chapter.

2.1. THE CATEGORY OF INCIDENCE SPACES AND THE INCIDENCE GEOMETRY

Definition 2.1. Incidence space we call any multi-sort system of the type
S = (PO, Li,Pl,El,g,el,g), where:

e Po is a non-empty set which elements are called points. We note them with
upper case Latin letters.

e Li is a non-empty set which elements are called lines. We note them with
lower case Latin letters.
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e Pl is a non-empty set which elements are called planes. We note them with
Greek letters.

¢ c12 C Pox Li,ey 5 is a two-sort relation between points and lines. It says
that a point is into a line.

e £13C Pox Pl,e;3 is a two-sort relation between pomts and planes. It says
that a point lays onto a plane.

e PonLi=0,PoNPl=0,LiNPl=0. There aren’t any objects that are points
and lines. points and planes or planes or lines.

e Po. Li. Pl &y2 and =, 3 must have the properties (geomeltry axioms ) below:

1. (3X € Po,3Y € Po)(X #Y). There are at least 2 different points.

0

(VX € Po,YY € Po)(3z € Li)(Xe122AYe) 22). For each 2 points there is a
line which goes through them. The points are incident with the line.

3. (VX € Po,YY € PO)(VZ e Li,Vt € L'I,)(X 7 Y/\XS],QZAYELQZ/\XE]Qt/\Yel’Qt
= z =t). For 2 different points there is mazimum one line which is incident
with them.

4. (Vz € Li)(3X € Po,3Y € Po)(X # YAXej22AY e 22). For each line there
are at least 2 different points that are incident with the line.

<t

(Vz € Li)(3X € Po)(—~X € z). For each line there is a point that is not
incident with the line.

6. (VX € Po,YY € Po,YZ € Po)(3a € Pl)(Xe, 3anYe 3anZe; 3a). For each
3 points there is a plane that is incident with them.

7. (VX € Po,YY € PoNZ € Po)(Va € PILV3 € PO((Vl € Li){((-X €
I)V(‘*Y € l)V(ﬁZ € l))AXe13aAY e 3aNZe, 3aNXey 38NY 138N Z¢y. 33 =
o = 3). For each 3 points that is not incident with the same line. there is
mazimum one plane that is incident with all 3 points.

8. (Va € PI)(3X € Po)(Xel,ga). For each plane there is a point that is incident
with the plane.

9. (Va € PI)(3X € Po)(—Xe;3a). For each plane there is a point that is not
incident with the plane.

10. (VI € Li)(Va € Pl)(VX € Po,VY € Po)(X # YAXe2lAYey9lAXe, 3QA
Yeisa = (VZ € Po)(Zey ol = Zeysa)). If 2 different points are incident
with a line and with a plane at the same time, then each point which is incident
with the line is incident with the plane too. So if 2 different points from a
line are incident with the plane then the whole line lays onto the plane.
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11. (Va € Pl)(V3 € Pl)(3X € Po)(XeyzanXe1 38 = (FY € Po)(X # YA
Yei3anY e 33)) If 2 planes have a point which is incident with both. then
the planes have another point different from the first one which is also incident
with the 2 planes.

These relations £, » and 2.3 we call the incidence relations.
The relation €33 C Li x Pl which says that a line lays onto a plane, is ex-
pressible with the incidence relations =; » and &, 3.

Definition 2.2. The line lays onto a plane if any point that is incident with
the line is incident with the plane. We can express that relation =5 3 C Li x Pl with
the equivalence:

les 3 & (VX € Po)(Xey ol = Xey ga). where l is a line and o is a plane.

This way the relation if a line is incident with a plane ( lays onto a plane ) is
expressible with the other 2 incidence relations.
The incidence spaces we call them just spaces. And we turn them into cate-

gories with defining the notion of homomorphism between spaces.
Let § = (Po,Li, Pl.ey,¢13) and §" = (Po', L', P\ &' ,, €] 3) be 2 incidence
spaces.

Definition 2.3. Homomorphism between incidence spaces. We says that the
2 incidence spaces has a homomorphism f from S into S’ if the f is a function with
domain PoU LiU Pl and range Po' UL’ GPI'. f: PoULiUPl — Po' ULi'UPl'.
which follows the conditions:

1. (VX € Po)(Vy € Li)(Va € PL)(f(X) € Po'Af(y) € Li'Af(a) € Pl')
2. (VX € Po)(¥y € Li)(Xe¢12y = f(X)ef 2/ (1)
3. (VX € Po)(Va € Pl)(Xe, 300 = f(X)el s f(a))
f is an isomorphism if it follows the additional conditions:
4. f:Po— Po. f:Li— Li'. f: Pl — PU all these are bijective.
5. (VX € Po)(Vy € Li)(f(X)e) 2f(y) = Xe12y)
6. (VX € Po)(Va € Pl)(f(X)g} 3f(a) = X<=130)

2.2. STRUCTURE OF INCIDENCE

The aim is to introduce a new kind of structures which contains only one sort
objects, and it is suitable for frames of modal languages. The new structures are
equivalent to the incidence spaces and the properties of the incidence spaces are
translated as properties of the structures.

So we introduce a construction with which from an incidence space we can cre-
ate a new kind of one-sort structure. That structures are the structure of incidence.
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Definition 2.4. Let S = (Po, Li,Pl.zy2.€1.3) be an incidence space and
we call the structure W(S) = (W(S).=;,=2,=3) structure of incidence over an

incidence space S. if:
1. The set W(S) is defined as:
= {(X, y-a)l(X € Po)A(y € Li)Ne € Pl)/\(Xel.‘zy)/\(!/c”z.:m)}

2. The relations =,, =2, =3 are defined as:
(X1, y1.01) =1 (X2, 92, 2) & X1 = X3

(X1, y1,01) =2 (X2.y2,2) © Y1 = 2
(X1 y1,01) =3 (X2, y2,02) & ) = @2

where (X1,y1.a1) € W(S) and (X2, y2,2) € W(S5).

" The relations =, =2, =3 are equivalence relations.

Elements of W (S) are triples of a point, a line and a plane, such that the point
s incident with the line and the line is incident with the plane. Each triple of W(S)
plays as a point, a line and a plane at the same time. See the figure:

o
A a

As subsequence of that, the point is incident with the plane too - if (X, y.a) €
I1(S) then Xz; 3a. We call W(S) only W for shortly.

Definition 2.5. The relations €1.2,€1,3,€2.3 tnto W(S) defined with the
cquations are called structure incidence relations:
(X1,y1,) €12 (X2.y2,22) & Xi€1202
(X1, 01, 01) €13 (X2, y2, a2) & X121 302
(X1,y1,01) €23 (X2,y2.02) & 182,302
where (X1,y1,a1) € W(S) and (X2, y2,a2) € W(S).

These relations €; 2, €1.3, €2.3 which corresponds to the incidence relations are
expressible as compositions of the equivalence S5 relations =, =9, =3
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Lemma 2.1. The equations are valid:

Proof. Using the definitions 2.1, 2.4, 2.5 it is easy to prove that:

TEI2Y& (33 € ‘V)(i =1 ZAZ =9 y)
rE€izye (Fre W)z =, 2A2=3y
&I 62'3 Yy = (32 S l’V)(.T =9 22 =3 y)

The proofs of the implications above in the direction " <" are very simple. We
show the proof for (FZ e W) (T =1 ZAZ =2 9) > T €127 :

Let T = (X,z,0),7=(Y,y,8), 2= (Z, 2,7).

If for some Z € W is true that T =, Z and Z =, ¥ then from the definition of
=) and =; it follows that X = Z and z = y. And from Z&; 32 we conclude that
Xey3y which is (X, z,a) €2 (Y,y,3) and that’s the definition of 7 €, 5 §. The
other 2 implications are proved in the same way.

Proofs of the implications of the direction ”=" are also simple. We show the
proof for T €137 = (FZ e W) T =, ZAZ=37) :

Let T = (X,z,0), ¥ = (Y,y,3). We must find a suitable Z = (Z, z,). From
T €13 ¥ it follows that Xe; 38 and from & € W(S) follows that X¢e; 3. So both
planes a and 8 have a common point X. From the definition 2.1 axiom (12)
it follows that there is another point Z different from X, which belongs to both
planes. 3Z € Po,X # ZAZe\3aNZe, 33. For the 2 different points X and Z
from the definition 2.1 axiom (3) there is a line z that is incident with the 2
points, 3z € Li, X¢e1 p2AZ¢e; 32 We choose Z = (X, z, 3) and we have proved so far
that X # ZAXe1 380N Z¢1 38AXe122AZ¢< 2z, then from the definition 2.1 axiom
(11) we can conclude that it is true (VI' € Po)(Te122z = Tey133), which is the
definition of z&2 38. So we discovered a triple Z = (X, z, 8) such that Xe; 92A2¢62 33
so z € W(S), and (X,z,0) =, (X,z,0), and (X,z,8) =3 (Y,y,3), finally the
Z = (X, 2,0) suffice z =y 2A2 =3 4.

The remaining 2 implications are simple. O

The reverted relations € fﬁ, e[},. =Y :13 of €12, €1 3, €23 are also expressed with
a composition of the equivalence relations.

-1 __ —

-1 __ —

il
I

-1
62,3= 30=
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Lemma 2.2. Let S = (Po, Li, Pl,e1,9,61.3) be an incidence space and W(S)
is the structure of incidence over S. Then the following conditions are true:

1. If X is a point then exist a line z and a plane a such that the triple (X,z,a) €
W (S).

2. If z is a line then exist a point X and a plane o such that the triple (X,r,a) €
W(S).

9. Ifa is a plane then exist a point X and a line & such that the triple (X, z,a) €
W(S).

Proof. For the first one:

Let X € Po is a point, then from the definition 2.1 axiom (1), there is 2
different. points Y; € Po, and Y2 € Po and Y] # Ya. So because Y) # Y, then if
X =Y, then X # Y;. Let’s note with Y the point of ¥; and Y, which is different
from X.

Apply the definition 2.1 axiom (3) and let y be the line incident with X and
Y. XE]fgyf\YEI‘gy.

Apply the definition 2.1 axiom (7) for the 3 points X,Y,Y and let v be the
plane that is incident with X and Y.

From the definition 2.1 axiom (11) and from the definition 2.2 for

X # YAXe12yAYe12yAXe 3yAX e 37 we conclude that ye2 37.

Similar reasoning proves 2 and 3. : O

The meaning of this lemma is that each point, line or plane can be completed
with redundant points, lines and planes to produce a triple that belong to the
structures of incidences. This way the working with multi-sort points, lines and
planes can be replaced with one-sort objects which are points, lines and planes at
the same time. All geometrical properties can be translated as properties of these
one sort objects.

Lemma 2.3. Let S = (Po, Li, Pl,e1.2,€1.3) be an incidence space and W(S)
(W(S), =1, =2, =3) is the structure of incidence over S. Then for the structure of
incidence W(S) the following conditions are true.

o The relations =1, =2, =3 are equivalence relations and they follow the condi-
tions below:

* (Yz e W(S))(Vy € W(S))((z =1 YA =2 y)Az =3y) = T =)

= (Yr € W(S)(Vy € W(S)(Vz € W(S))(z €12 ¥y €23 2) =
(3t € W(S)((z =1 )A(y =2 )A(z =3 1))

#xx (Yo e W(S))(Yy € W(9))((Vz € W(S))(z €12 2Nz €13Y) = T €23 Y)

The next conditions correspond to the geometrical axioms of the incidence
space:
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1. (3a3y € W(S))(~x =, y)
2. (VaVy e W(S))(Fz € W(S))((z €12 2)A(y €12 2))

3. (VaVyvevt € W(S)H((-x =1 yNMz €12 2)Ay €12 2Nz €12 t)A
(y €121) = (2 =21))

4. (VeFyTz € W(S))(~y =1 2)A(Y €12 T)A(z €12 7))
(v23y € W(S))(=y €1, )
(V.’L‘Vsz (S W(S))(Ht (S I’V(S))(.’l’ €13thy€13thz €13 t)

<

=S

(VaVyVz € W(S))(Vuve € W(S))((x €13 u)A(y €13 u)A(z €13 u)A(z €53
VIN(Y €13 VIA(z €13 v)AVI € W(S))((—x €12 I)V(~y €12 V(-2 €12
1)) = (’IL =3 l»’))

8. (Vrdy € W(S))(y €13 )
9. (Vr3dy € W(S9))(~y €13 x)

10. (VaVyvavt € W(S))((-z =1 y)A(x €12 2Ny €12 2)A(x €13 A(Y €13
t) = (Z €93 t))

11. (VaVyVz € W(S))(3t € W(S))((z €13 2)A(z €13 y) = (=t =1 2)A(t €13
)Nt €13 Y))

Proof. It is a simple check with applying the definitions and use the lemma 2.2.
a

Thus the lemma 2.3 gives us the confidence to introduce the next abstract
definition od the notion of structure of incidence.

Definition 2.6. We say that the structure W = (W,=,,=,,=3) is an inci-
dence structure if the set is a non empty set W # 0 and the relations =), =5, =3
are relations of equivalence. and they follow all the conditions from the lemma 2.3.
where €1 2==; 0 =3,€, 3= 0 =3, Eg3==9 0 =3.

Now we turn the class of the structures of incidences into a category with
introducing the notion of the homomorphism.

Definition 2.7. Let W = (W,=,,=2,=3) and W' = (W', =], =}, =) be
two structures of incidence. and f : W — W’ is a function. We says that f is a
homomorphism if it follows the next condition:

1. (Ve e W)Vy e W)(z =,y = f(z) =L fly)) for eachi=1,2,3

We says that f is a isomorphism if it follows the next conditions:

2. [ s a bijection.
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3. (Ve W)Yy e W)(f(z) =! fly) = = =i y) for each i =1,2,3

The category of the structures of incidences we note with ®;. And the category
of incidence spaces we note with X;.

2.3. EQUIVALENCE BETWEEN THE CATEGORIES OF THE INCIDENCE SPACES AND
THE STRUCTURES OF INCIDENCES

Similarly to the functional correspondence from definition 2.4 which for each
incidence space finds a structure of incidence, we make another functional corre-
spondence which for each structure of incidence finds an incidence space.

Let W = (W, =,,=»,=3) be a structure of incidence then we can split. the set
11" into equivalence classes with each equivalence relations.

Definition 2.8. For each x € W we define the classes:
2]y = {y € Wiz =1y}, |zl = {y € Wiz =2y}, |2ls = {y € Wiz =3 y}
These classes are equivalence classes.

Definition 2.9. Let W = (W,=,,=2,=3) be a structure of incidence then we
define S(W) to be the structure S(W) = (Po(W), Li(W), PI(W),e1.2(W), 21 3(W))
where:

Po(W) =W/ == {|z||lxr € W}

Li(W) = W/ =y= {|z]2[x € W}

PIW) = W/ =3= {|z|3|x € W}
e12(W) = {(|z1, lyl2)|ze1 2y}
s13(W) = {(|z]1, [yla)|zer 3y}

Lemma 2.4. The following conditions are true:
1. The definition of the relations &1 o(W) and ;1 3(W) is correct.

2. Po(W) N Li(W) =0, Po(W) N P W) =0, LiW)NPI(W) =0

Proof. For 1 we have to proof that the relations €1 (W) and €, 3(W) are inde-
pendent from the concrete representatives of the equivalence classes.

From the definition 2.6 it follows that €, ==, 0 =3, €;3=; o =3 and the
relations =, =9, =3 are relations of equivalence.

So let xe) oyAx =) 2'Ay =2 y'. From €)=, o =, it follows that there is
: € W such that  =; zAz =, y. Because the =, and =, are equivalence relations
it follows that &’ =, 2Az =, 9/, thus we conclude that z’¢; oy’. The same way we
can see that for any x,x’,y,y’ it is true zey syAx =) ©'Ay =3 ¢’ = '€y 3y
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We can prove 2 with accepting the opposite and proof the contradiction. Let
us assume that there are |z|q, |2|2, |yl2, |y|3 equivalence classes such that |z} |y, or
lz|1 = |yls, or |z]2 = |y|s, and from that it follows — there is x € W such that
lz]1lz]2 or |z|1 = |x[s, or |z|2 = |z|s.

Let us assume that there is * € W such that [z|;|z|2. From the definition 2.6
of the incidence structure the axiom (4) we know that (Vx € W)(3y € W)(3z €
WY((my =1 2)Ay €12 Az €12 x). Applying that "axiom” for the r we find
yeW,ze Wandy €2« and 2 €, 2 x and (—-y =, z). From the definition of €; »
and €) 3, it follows that there are u € W and v € W such that y =, uAu =2 z and
z =1 AV =9 . So u € |z|s,v € |z]2. Form (—y =1 2)Az =1 vAy =, u we conclude
that (-~u =, v). But if |z|; = |z|2 and u € |z|2,v € |x|2 then u € |z|,,v € |z|; and
u =; v contradiction with (-u =; v). Finally we proved that for any xr € W it is
true that |z}, # |z|..

From the definition 2.6 axioms (8) and (11) it follows that:

(Vx3z € W)(z2 €13 2))A((VaVaVz e W)(3t €e W)(z €13 zAz €13 = (—t =
Z)At €13 *At €13 1)) and from that we can conclude that for any ”plane” there are
2 different "points” that belong to the "plane” (Vo € W)(3z € W)(3t € W)((~t =,
2)Az €13 TAt €13 r). From that statement we can proof-that |z|; # |z|3 in the
same way as for |z|; # |z|2.

The proof of the4 statement |x|2 # |z|3 uses the proof of the statement (Vx €
W)(3y € W)(3z € W)((~y =3 z)Ax €33 yAx €23 2z) which speaks that for any
“line” there are 2 different ”planes” that contain the "line”, next using the definition
of €23 it follows that there are u € W and v € W such that z =, uAu =3 y and
T =9 vAv =3 2z, because (—y =3 z) then (—u =3 v), but because u =, r =5 v then
u € |x|2 and v € |z)2 and if we assume that |z|> = |z|; then u € |z|3 and v € |z]3
and it follows the contradiction u =3 v with ~u =3 v, so |z|3 # |z|2.

The proof of the fact (Vr € W)(3y € W)(3z € W)((—~y =3 2)Az €23 yAT €23

z). A

Let x € W is the "line”. Using the definition 2.6 axiom (4) there are "points”
z; € W and xo € W such that (-x; =, x9)Ax; €12 TAZ2 €19 z. From axiom
(6) there is u € W such that x; €, 3 uAzs €, 3 u. For the "plane” u using axiom
(9) we find a "point” z3 € W such that —x3 €; 3 u. Using again the axiom (6) for
the points x,, 22,23 there is a "plane” v € W which contains that points x; €, 3
vAZg €13 vAx3 €13 v. If we assume that u =3 v then from z3 €, 3 v it follows that
thereist € W and z3 = tAt =3 vand v =3 u, so thereist € W and z3 = iAt =3 u
which is z3 €, 3 v contradiction with —z3 €, 3 u. So it is true that ~u =3 v. And
because both "planes” contains the "points” z,,z2 and (-z; =) z2), and the "line”
contains x;, s too, using axiom (10) we conclude that x €53 uAx €93 v. Thus we
proved that (Vo € W)(3u € W)(3v € W)((—u =3 v)Az €23 uAx €93 v).

Note! The statement (Vz € W)(3y € W)(3z € W)((—~y =2 2)Ay €23 TAz €23
x) which says that for any "plane” there is 2 different ”lines” that lays onto that
"plane” has more complex proof.
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Finally we proved that for any z € W it is true that: |z|; # |z|2 and |z|; # |z|3,
and |x]3 # |r|2. Which proof that the sets W/ =4, W/ =,, W/ =3 have no common
(:'If‘ments O

Lemma 2.5. If W is a structure of incidence then S(W) defined with the
definition 2.9 is an incidence space.

proof. To prove that, we need to check each of the statements from definition of
incidence space 2.1 for Po(W).Li(W), PI(W),e12(W), &1 3(W).

From the previous lemma 2.4 it follows that the defined sets and relations at
the definition 2.9 are correct. Also no ”point” is a "line”, no "line” is a "plane” and
no “plane” is a "point”. So the statement Po(W)N Li(W) = 0, Po(W) N PI(W) =
9. Li(W)N PL(W) = @ is exactly (1) from the definition 2.1 of the incidence space.
The rest of the statements from definition 2.1 - the statements from (2) until (12),
are checked easily with using the corresponding ”axiom” from (1) unti] (11) from
the definition of the structure of incidence - the definition 2.6. 0

Lemma 2.6. |z|se23(W)|yls & = €23y

Proof.  According to the definitions 2.2 and 2.9 the following equivalences are
tlruf’? [zloe2,3(W)lyls & (YZ € Po(W))(Zer2(W)lzlz — Zers(W)lyls) « (V= €

(2hera(W)lzlz — |zher s(W)lyls) & (V2 € W)(z €122 — 2 €13 9)

From the incidence structure property (¥***) it follows that (Vz € W)(z €12
r—2€13Y)=>TE23Y

Let for any z € W be true that z €, 5 = and from x €33 y according to the
incidence structure property (**) it follows (3t € W)(z = tAzx =, tAy =3 t). From
lemma 2.1 from z =; tAy =3 t it follows 2 €, 3 y. So we proof z €23 y = (Vz €
Wiz €iox—2€13Y)- a

Theorem 2.1. Representing structures of incidences as spaces of incidences.

Let W = (W, =1, =5.=3) be a structure of incidence.

Let S(W) = (Po(W), Li(W), PL{W), &, 2(W),e1.3(W)) be an incidence space
over S(W).

Let W(S(W)) = (W', =1, =5,=3)" be a structure of incidence over S(W).

Then there is an isomorphism from the structure of incidence W to the struc-
ture of incidence W (S(W)). The structures of incidences W and W(S(W)) are
isomorphic.

Proof.  We define function f : W — W’ this way f(z)(|z|1,|z|2, |z|3) for every

€ W. First we must check that the definition is correct. For every z € W we
must check that (|z|1,|z|2, |z|3) € W'. So let x € W, and from =; 3 3 equivalence
relations then: r = zAzr =2 r and £ =9 Az =3 . From the definition of 2.6
T €122 and x €23 . From the definition 2.9 we conclude that |z[e1 2(W )|x| and
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from lemma 2.6 we conclude that |z|es 3(W)|z], so the triple (|z|, |z|2, |z|3) € W'

according to the definition 2.9.

Check for that f is a homomorphism is also easy:

I =123 Y < |-‘l?|1.2,3 = |yli23 < (lzfi, |2]2 zls) =123 (lyli. [yle, lylz) <
f(x) =123 f(y), so f is a homomorphism.

If we finally proof that f is a bijection then we can conclude f is an isomor-
phism.

First we proof that f is a surjective. For any element of (||, |y|2,|z[3) € W'
there is t € W such that f(t) = (|z|i, |y|2, |z|3)- Let (|z|1,]yl2.|2|3) € W’. From
the definition 2.4 we know that |z|;e12(W )|yl and [y|2e2.3(W)|z]3. From the
definition 2.9 and from lemma 2.6 we conclude that z € 1,2yAy € 2,3z. Now
we apply the statement (**) from the definition of the structure of incidence 2.6,
and we find t € W such that =, tAy =3 tAz =3 t, and for that ¢ it is true that
(Il [tl2, [tl3) = (Izl, yl2, [z]3). So f is a surjective.

Let’s now proof that f is an injective function. Solet z,y € W and f(x) = f(y).
From the definition of f we have that (|z|1, |z|2, |z|3) = (lyl1, |yl|2, l¥]3) which means
that the equivalence classes of z and y for each relation are the same: |z|; = |y|1,
|zl = |ylo and |z|3 = |y|l3- And we conclude that the elements x and y are
equivalent by each relation: 2 =, yAr =, yAz =3 y. Now we use the statement (*)

from the definition 2.6 and conclude that r and y are equal, z = y, which proofs |

that f is an injective function.
The defined here function f preserves the relations, and also is a bijection from
W to W’ So f is an isomorphism. O

Theorem 2.2. Representing spaces of incidences as structures of incidences.

Let S = (Po, Li, Pl, gy 2,¢1,3) is an incidence space.

Let W(S) = (W, =,,=3,=3) be the structure of incidence over the space S.

Let S(W(S)) = (Po(W), Li(W), PI(W),e1.2(W),e1.3(W)) be the incidence
space over the structure of incidence W(S).

Then there is an isomorphism from the incidence space S to the incidence space
S(W(S)). The incidence spaces incidences S and S(W(S)) are isomorphic.

Proof. We know from the definition 2.9 that:
Po(W(S)) = W(S)/ =1= {l(X,y, )1 |(X,y,a) € W(5)}
Li(ﬂ(s)) W(S)/ == {|(X,y,0)|2|(X,y,a) € W(S)}

PI(W(S) [ =3={|(X,y,a)s](X.y,a) € W(S)}
e1.2(W(S)) = {( I(X' Y, a') In,I(X” Y o)Xy e 2 X"y ")}
e13(W(S)) = {((X", ¢/, a" )i (X" y", ")) (X', ¥ &' )ea 3(X", 4", @)}

And from definition 2.4 we know the equivalences:
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(XY o )era( X", y", ") o X'z 0y and (X', a')ey 3( X", y", @") « X'y 30"
This way we see that the relations &1 o(W(S)).e1.5(W(S)) follows the next condi-
tions:

(X" ¥ @ )2 (SIX",y", a”)l2 & X'e129"
(X" ¢ o) e s(WSHIX", y". a”)]2 = X'e130"

Now let’s define the function f : PoU Li U Pl — Po(W(S)) U Li(W(S)) U
PI{W(S)). For each point X € Po from lemma 2.2 statement (1) we know that
there is a line incident with the point and a plane incident with the line, so there
are y € Li.a € Pl such that (X,y,a) € W(S). Then we define f(X)|(X,y,a)|;.
For each line y € Li using lemma 2.2 statement (2) we know that there are incident
a point and a plane, so the triple (X,y,a) € W(S). Then we f(y) = |(X,y, a)l2.
For each plane « € Pl using using lemma 2.2 statement (2) there are a point and
a line such that (X, y,a) € W(S). Then we define f(a)|(X,y,a)l3

f is a function. That means the result of f is independent of the exact choice of
the fictive points, lines, and planes which were chosen to make a triple from W(S).
We shall prove it for points only for lines and planes it is the same. So let X € Po
and let y',y" € Li and o', a” € Pl such that the triples: (X,y’,a’) € W(S) and
(X.y". ") € W(S). It doesn’t matter which one we choose for f(X): |(X,y',a')|s
or |(X.y",a”)’|1, because (X,y',a’) =; (X,y",a”) then |( X,y 0" )i |(X,y”,a");.

Ve have to check that the incidence relations are preserved by the function f.

90 let X € Po,y € Li,a € Pl and f(X)|(X, y )|y, and f(y)|(X",y,a”)|2,
and f(a) = (X", y", a)|3, where X", X" € Po,y',y" € Li, o, a" € Pl. Next we
use the already proven statements about the relations ¢, o(W (S )) and €, 3(W(S)):

F(X)er2W(SHF(y) « [(X,y, ") ie120W(SHIX", y,a”)|2 < Xe1 2.

[ X)e13(W(S)) f(a) « [(X, ¥, &) 151 s(W(SHIX™, ¥, a)|3 « Xei 3a.

[t is easy to check that f | Po is a bijection from Po to Po(W (S)).

f 1| Po is an injective function. Let X, X2 € Po, and f(X,) = f(X3). Let
SEXDI(Xq. Y, a') and f(Xa) = |(X2,y",a”)|h, then [(X1, ¥/, o)1 [( X2, y". "),
and from that we conclude that the triples are equivalent with =1, (X»,y”.a”) =,
(X2.y".a"), from the definition 2.4 we know that X; = X5. So f | Pois an
injection. R

f | Po is an surjective function. Let X € Po(W(S)), so X is an equivalence
class generated by the triple: X|(X,y, a)l1, then f(X) = |[(X,y, a)[lX So f| Po
Is surjection.

The same way we proof that f | Li and f | Pl are surjective and injective
functions. And this way we proof that f is bijection, which with the preserving the
relations turns f into isomorphism. W]

If we consider S(W) and W (S) as functionals that convert an incidence spaces
into structures of incidences, and structures of incidences into incidence spaces,
then the conclusion of these 2 theorems is that the 2 functionals behaves as the
Opposite ones — if S is an incidence space then S(W(S)) is isomorphic to S, and
if W is a structure of incidence then W(S(W)) is isomorphic to W. To proof
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the equivalence of the category of the incidence spaces and the category of the

structures of incidences, we need to turn that functionals into functors . To do that

we have to extend the functional S(W) over the class of homomorphisms between

structures of incidences and the functional W (S) over the class of homomorphisms

between incidence spaces.

Definition 2.10. Let S and S’ are incidence spaces and let W(S) = (W, =,

=9, =3) and W(S') = (W', =,=5,=5) are the corresponding structures of inci-

dences. For any homommphzsm f from S to S’. we define the function W(f) :
W — W' this way:
For any triple (X, z,) € W we define W (f)((X z,a)) = (f(X), flz), fla)).

Definition 2.11. Let W(S) = (W, =,,=2,=3) and W(S') = (W', =|,=5.=} ‘

) are structures of incidences and let S(W) = (Po, Li, Pl,ey 2,£13) and S(W') =
(Po’, Li', PU',£} 5,€ 3) are the corresponding incidence spaces. For any homomor-
phism f from W to W'. we define the function S(f): PoULiUPl — Po'ULi'UPl
this way: :

For any x € W we define S(f)(|x]:) = |f(z)ly and S(f)(Jz|2) = |f(x)|2. and
S(H)(lzls) = |f(x)ls.

Lemma 2.7. The definitions above 2.10 and 2.11 are correct.

Proof. For the definition 2.10 it uses the properties of the homomorphism and
the definition of W (S5), see definition 2.4. For the definition 2.11 we use the deﬁ-
nition 2.9 that Po = ”/r/ =1, L?W'/ =5, Pl = H// =3 and POII/V’/ :'1 L?’H"/ _o,

PU'W’'/ =/ and the properties of homomorphisms. The properties of the homo-

morphism f is used to proof that the definition S(f)(|z|;) = |f(z)|; is independent
from the concrete example x € W. O

Theorem 2.3. W is a functor.

Proof. First we shall proof that the defined above W( f)isa homomorphism from
W(S) to W(S’). Let (X', 2',a’) € W and (X”,2",&") € W/, and (X', 2',a/) =
(X" 2" a"), then from the definition 2.4 we know that the points are the same
X' X", and f(X") = f(X"), again with the definition 2.4 we conclude that
(FX), £@), f(@)) =1 (F(X"), f(z"), f(a")). In the same way we proof that
the function f preserves the relations = and =3.

The next question is about the composition of homomorphisms. Let f is a
homomorphisms from S to S’ and g is a homomorphism from S’ to S”. Then go f
is a homomorphism from S to S”. We must proof that W(go f) = W{(g) o W(f).

W(go /)((X,z,a)) = (W(go f)(X),W(go f)(z),W(go f)(a))

= (W(g)(W(F)(X)), W(g)(W(f)(z)), W(g)W(f)()))

= W(g)(W()(X),W(f)(z), W(f)(a)))

=W(g)(W(/)(X,z,a))) = (W(g) e W(f)((X,z,0)). O
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Theorem 2.4. S s a functor.

Proof. ~ We must check that S(f) is a homomorphism from S(W) to S(W').
Let |z)y € Po(W), |yl € Li(W), and |z|1£12(W)|yla. From definition 2.9 we
know the equivalence |z|ie; o(W)|yl2 < = €12 y. From f homomorphism and the
definition of €; 2 we conclude that f(z) €}, f(y). Again applying the definition
2.9 we proof that |f(z)]1€] 2(W)|f(y)l2, which is S(f)(|z])e] 2(W)S(f)(lyl2). In
the same way from |x|i£1,3(W)|z|s we proof that S(f)(|z|:)e] 3(W')S(f)(lz]3). So
S(f) is a homomorphism.

Let f is a homomorphism from W to W', and let g is a homomorphism from
11" to W”. Then Then go f is a homomorphism from W to W". Let’s check that
S0 £)S(g) 0 S(f). Let |t 23 € Po(W), Li(W), PI(W), then S(go f)(|al1.2.5) =
(go N E)h2s = lg(f(@)23S(@)(f(z)h.2.3) = S(@)(S(f)(|z]12.3))- o

With these theorems 2.1, 2.2, 2.3 and 2.4 we conclude that the category of
incidence spaces is equivalent to the category of the structures of incidence.

3. MODAL LOGIC FOR INCIDENCE GEOMETRY

3.1. MODAL LANGUAGE

The language is a modal language with 4 different modal operators. 3 of the
operators [=1], [=2], [=3) are interpreted with equivalence relations =, =», =3, and
the 4th one [#] with the relation difference #. The language is consisted also of the
set of propositional variables {p,, p2, ps,...} and logical operators A, V, -, —, <.

3.2. SEMANTICS

The semantics is the Kripke semantics over the frames W = (W, =,, =,, =3, #)
where W # 0 and =,, =5, =3, # are binary relations over W. The relation # has
a special meaning difference between 2 elements of W. The elements of W are
called worlds .

If we assign binary values to the propositional variables, called valuation, we
may assign a truth values to all modal formulas. If v is a valuation of propositional
variables and W is a frame then M = (W, v) is called a model for that modal logic.

If we have a model M = (W, v) we can extend the truth value over all formulas
using next definition.

Definition 3.1. The truth value of a modal formula.
x F, A means the formula A is true in the world x according to the valuation

T ¥, A means the formula A is false in the world x according to the valuation
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1. &, p s v(x,p) = true. for any p € {p1,p2,...} propositional variable.
2. vk, A= a ¥, A

3. zF, (AAB) >z F, A and x F, B.

4. zF, [R|JA < (Vy € W)(zRy — yF, A). where R € {=,=2,=3.#}.

Definition 3.2. We say that A is true into the frame W. W E A if for each
valuation v and for each world x € W it is satisfied x F,, A.
We say that A is true into a class ¥ of frames if A is true into each of frames

from that class.
If X is a class of frames then the set of all formulas A which are true at that
class ¥ forms the logic over that class, and it is noted with L(L).

Frames which are interesting for us are frames with =,,=,, =3 being equiva-
lence relations and the relation # the difference relation. So the class of such frames
we note with ¥g. And the logic over that class L(Xp) is the minimal logic L. First
we make the axiomatization of that logic Lg. Next we proceed with axiomatization
of the logic over the class of structure of incidences 2.6. That is an extension
of the minimal one Ly with adding axioms for base geometrical properties of the
structure of incidences, see 2.6, and next we proof that each of those geometrical
properties is a canonical property. We note the class of frames which are structures
of incidences with X,,;. And the geometrical logic is noted with L(X,;).

3.3. DEFINABLE MODALITIES IN X

Some relations has modal operators that are definable with these modal ope-
rators : =, =9, =3, #.

1. Incidence Relations, Like €;2,€1,3,€23 and e;{,,e[;,eg_ 3, The modal
operators associated with these relations are [€1 2], [€1.3], [€2.4). [€] 3], [€T 5],

€23)

2. Universal Relation. Universal relation U means that every two world are in
relation, it connects any with any. So U = {< z,y > |r € WAy € W}. The
modality for it is M.

The relations below uses the semantics attached with the structures of inci-
dences.

3. Two lines has an incident point.
4. Two planes has an incident point.

5. Two planes has an incident line.
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Lemma 3 1. The modalities with incidence relations €1.2,€13,€23 and
€7 2s €13 €5 4 3 are definable as:

[€1.2] = [=1][=a), [€15] = [=4][=3], [€2.4] = [=2)[=]
([€72] = [=2](=1], [673] = [=5)[=), (€23] = [=4][=2]
Lemma 3.2, The modality with universal relation is expressible with:
WA = AA#)A
Lemma 3.3. If W is q structure of incidence then the relations are expressed:
Ny ==30=0 =5
M31==30=0=3,M33 ==3 0= 0 =3,M3.2 = N3 1

Lemma 38.4. The relations about two lines has a common pownt and two planes
has a common point, line are definable:

[N2] = [=2)[=)[=)
(N3] = (=3][=1][=3), [N 5] = [=3][=2][=3]

3.4. AXIOMATIZATION FOR THE MINIMAL LOGIC L(%)

Axioms

[

. All Propositional Tautologies.
[Rl(A= B) = (|R]A > [R]B), where R ¢ {=1,=0,=3, #).

N

3. S5 axioms for modalities [=1], [=2), [=4).
[=i]A = A noted with (7).
<=;> [=i]A = A noted with (B;).
[=:i]4 = [=,]|=:)A noted with (4;).

4. <#> [#]4 = 4 noted with (Bg). The relation # is a symmetric.
9. <HE>HES A= (AV <#> A).
6. WA = [=;]A.
Deductive Rules
L. Modus Ponens (MP) A, A= B\ B.
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2. Normality (Ng) AF [R]B, where R € (=1, =2.=3, #}

3. Irreflexivity (Irr) (pA[#]-p) = A, the variable p does not enter A+ A.

Definition 3.3. Formal proof with the deductive system we call any sequence
of formulas each of them could be a variant of one of the axiom schemas or produced
by some rule from the previous formulas. :

I A There is a formal proof of A without using the rule (Irr).
7. A There is a formal proof of A with using the rule (Irr).

Lemma 3.5. - A = A ¢HA = A BA = RRA

To proof the completeness we will use another rule for irreflexivity which will
offer simpler completeness proof, and next the deductive equivalence of the two
rules will proof completeness of the logic L(Zo).

3.5. DIFFERENT IRREFLEXIVITY RULES AND THEIR DEDUCTIVE EQUIVALENCE

The all mentioned deductive systems will contain the axioms 1 - 6 and the
rules M P and N=, =, =, #, they will only differ with the irreflexivity rule.

The new infinite irreflexivity rule is:

(Irr*) (pA[#]-p) = A, for each variable p H* A.

This rule makes the ordinary definition of formal proof not appropriate and
requires a new definition. The set of axioms 1 - 6 we note with Ag.

Definition 3.4. Infinite formal proof of the formula ¢ is the ordered pair
(T, p), where T is a tree with a finite path from the root to any leaf. and p is the
correspondence between each tree node and a formula from the modal language. For
[ and p it is true that:

1. if v is a leaf from the tree then p(v) € Ao

2. if v is not a leaf then p(v) is a formula which is a conclusion of some of the
rules.

3. if v is the root of the tree then p(v) = ¢.

We can note such infinite proof of ¢ with > ¢. The "triangle” sign symbolizes
the infinite tree with finite path to the leaves. if the rule (Irr) is used then we use
> ¢, else if the rule (Ir*) is used we use B* ¢. So the formula ¢ is proved with
(Irr), e ¢ if and only if there is > ¢. Also ¢ is proved with (Irr*), Frpev © if
and only if >* ¢.

Lemma 3.6. b ¢ if and only if Frrre .
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Proof. If b1, ¢ then there is a infinite proof > ¢. Next with induction over the
max tree path length we can create infinite proof &>* ¢. The only interesting case is
when ¢ is a conclusion of irreflexivity rule. Let the proof looks like > ((pA[#]-p) =
o) F ©, where the variable p does not enter ¢. Then everywhere inside the infinite
proof & ((pA[#]-p) = ¢) we can replace the variable p with any other variable ¢,
<o the result will be the infinite proof &> ((gA[#]—~g) = ¢), ¢ remains unchanged
hecause p dOGb not enter ¢. So for each infinite proof by induction assumption we
have ¥ ((gA[#]—q) = ¢), for each variable q. Now applying of the infinite rule
Jrr* we conatrwt the infinite proof &>* ¢.

In the other direction if we have the infinite proof >* ¢, again mdut:mon over the
height of the tree, also the interesting case is with ¢ is being conclusion of the infinite
rule Irr*. The proof for ¢ looks like: > ((q1A[#]=q1) = @), ..., X ((guA[#]gn) =
o). ... F ¢. Because ¢ has a finite number of variables we can choose one variable
p which does not enter ¢ and for which there is a proof &>}, ((pA[#]-p) = @), now
applying the inductional assumption and applying the finite Irr rule we receive the
proof >* @.

The obvious observation that if (I', p) is an infinite proof but if it uses only
finite rules then it is equivalent to the ordinary finite proof. O

The conclusion of this lemma 3.6 is that the formal systems with the infinite
rule Irr* is deductive equivalent with the formal system with the finite rule Irr.

Because all our relations are symmetric for all the modalities (=], [=2],[=3
I. [#], there are the axioms for symmetric relation: < R > [R]¢ = ¢.

Lemma 3.7. (Rike [5]) If for one modal operator we have the symmetric
ariom < R > [R]¢ = ¢. then: + & = [R]Y if and only if F< R > ¢ = ¥

Proof. It is used contraposition, the normality rule Ng, the axiom 2 [R](¢ =
= ([R])¢ = [R|¥). and the above axiom Br < R > [R]¢ = ¢, and propositional
tautologies.

Let F< R > ¢ => ¢, then using Ng, we have - [R](< R > ¢ = 1), using
axiom 2 and M P, we have F [R] < R > ¢ = [R]y¥. Now with contraposition we
have - —[R]y» = —=[R] < R > ¢, which is the same as F< R > ¢ =< R > [R]-¢.
Now using the Bg axiom for ~¢, < R > [R]-¢ = —¢ and tautology we have that
F< R > —) = —¢, contraposition, - ¢ = [R]. O

This lemma gives us the opportunity to use an infinite many rules instead of
a single irreflexivity rule:

Definition 3.5. Long Irreflezive Rules. For each natural number n 2 0 :

(AdmoIrr*) is (Irr®).

(Adm,Irr*) Ay = [R](A2 = [Rs](As... = [Rn]((p/\[;é]ﬂp) = A)...)). for
cach variable p - A; = [R](A2 = [R2)(As = ... = [R,](A)...)), where n > 0.
{Rl.Rz,...Rn} C_: {51,52,53,#}.
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Lemma 3.8. If into the proof of the formula ¢ the rule Adm, Irr* is used for
some n. then that proof can be reworked into a proof of ¢ with the rule AdmyIrr*
eliminated and replaced with Irr*.

Proof.  Induction over n can show the elimination and the replacement of the

rule Adm,, Irr* with the rule Irr*, also we choose to eliminate the Adm, Irr* rule

closest to the leaves of the infinite proof.

If n = 0 then Adm,Irr* is Irr*.

If n = 1 then Adm Irr* is: A; = [R))((pA[#]-p) = A), for each p I A =
[R1]A. Because ke A1 = [R\)((pA[#]-p) = A), for each p, and using the
lemma 3.7 Frre< Ry > A1 = ((pA[#]-p) = A), according to the tautology :
Frees (< Ry > Al/\(p/\[#l—‘p)) = A), and Frppe (p/\[:,é]—:p) = (<R >4 = A)),
for each p, then applying the rule Irr*, we get Fjpre < R, > A = A, again using
the lemma 3.7 we proof that /.. Ay = [R1]A.

Let's for some n the assumption is true.

Let’s have the occurrence Admg,iIrr*, the closest to the tree-proof leaves.
and it is look like: |

(A[ = [Rll(Ag = [RQ](A‘; = .. = [Rn+1]((p/\[9é]—»p) = A)))), for each
variable p F (4; = [Ri](A2 = [R2|(A3 = ... = [Rn41](A4)..2)))-

Let’s note with ©¥(p) = [R2)(43 = ... = [Ray1)((PA[#]-D) = A)...)), for each
p. Let’s note with y = [Ra}(A3 = ... = [Rn+1](A)...)). Now the rule is written as
. Ay = [R1](A2 = ¢¥(p)), for each pt- A; = [Ry](A2 = X)-

Because by A1 = [R1](A2 = v¥(p)) then using the lemma 3.7 we get
that Free< Ry > A1 = (A2 = ¥(p)), propositional tautology, Fjrre (< Ry >
A1AAz) = ¥(p), for each p. Now we can apply the rule Adm,Irr* and also the
inductive assumption, and the result is : by (< Ry > A1AA2) = X, that formula
is proved with Irr* only. Using propositional tautology : b (< R1 > A1 =
(A2 = x)). Again from the lemma 3.7 we receive Frrere Ay = [R1)(A2 = x). This
shows how to eliminate the Adm,,Irr* rule. O

Theorem 3.1. The rules Irr. Irr*, and the set Adm,, Irr* of rules are de-
- ductive equivalent: {§| Frrr 0} = {0l Frrre ¢} = {®| F Adm, 1rre D}

Note: The rule is needed only to proof the lemma 3.14, neither deduction
lemma 3.11 nor Lindenbaum’s lemma 3.13 needs that rule and they can be proofed
with the finite irreglexivity rule, but the rules Admy,Irr* change the nature of the
w-theories.

3.6. COMPLETENESS THEOREM FOR THE MINIMAL LOGIC L(Xo).

We proof now the completeness of the minimal logic for axioms from 1 to 6 and
the rules M P, N=, =, =, and the set of long infinite irreflexive rules Adm,Irr*
instead of the finite irreflexive rule Irr.

Let @ be the set of all modal formulas.

Let with L = {&| Frrr ¢} = {8 Firre 0} = {S| Fadm, 177 ¢} we note the set
~of all logical theorems.
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Definition 3.6. w-theory — Any set of modal formulas X C ® such that:

~

- L =A{¢|Fadm,1rr &} C X All logical theorems belongs to X .

<

2. X closed under (M P).
3. X closed under (Adm,Irr*).

Note: The w-theories are not closed undeér the normality rules Nz, =, =, «.
Definition 3.7. The w-theory X is inconsistent if and only if X = &,
Definition 3.8. The w-theory X is consistent if and only if X # ®.

Also X is inconsistent w-theory if and only if 1 € X , and X is consistent if
and only if L ¢ X.

Lemma 3.9. Intersection of two w-theories is a w-theory.
This lemma 3.9 gives us the opportunity to give the next definition:

Definition 3.9. For each set of formulas Y € P, the set of formulas Th(Y)
is the smallest w-theory that contains Y.

Lemma 3.10. Th(Y) = ({X|X is a w-theory. and ¥ C X}.
So for each set Y it is true that:

1. LCTh(Y),

.Y CTh(Y),

. Th(Y) is closed under (M P),

o

. .

4. Th(Y') is closed under all rules (Adm,, I ).
Lemma 3.11. Deduction Lemma. Let ¢ formula and X w-theory, then:
(6=9Y)eX e ThXU{p})

Proof. Let’s choose Y = {Yl(é=v) e X}.

1. Let’s proof that X C Y. Let v € X. Because (¥ = (¢ = v)) is a classical
axiom, and X closed under (M P) then (¢ = ¥) € X, and according the definition
of Y,veY, soX C Y. Also from L C X we conclude that L C Y, all logical
theorems belong to Y.

2. (06 =>9)e L, it is a classical theorem, this way (¢ = ¢) € X, so from the
definition of Y, ¢ € Y. .

3. Let y € Y and (¢ = y), so (¢ = ¥) € X and (¢ = (¢ = x)) € X, now
using the classical axiom d=wW=x)=(¢= ¥) = (¢ = X)), and X closed
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under (M P), then (¢ = x) € X, and it follows that x € Y, so Y is closed under
(MP). :

Let ((pA[#]-p) = ¥) € Y, for each variable p. Then (6 = ((pA[#]-p) = ¥)) € X,

1
{

!

4. Finally we proof that Y is closed under Irr* the infinite irreflexivity rule. "

for each variable p. Using propositional tautologies we conclude that for each |

variable p the formulas ((pA[#]-p) = (¢ = ¥)) € X. X is closed under (IT7*), s0

(0 =>¢¥)e X,y €Y and we conclude that Y is closed under (Irr").

Y is an w-theory, (X U {¢}) C Y, and Th(X U {¢}) is the minimal w-theory
containing (X U {¢}). That’s why Th(X U {¢}) C Y.

Now if ¥ € Th(X U{¢}). then 1y € Y, and from the definition of Y, (¢ = ') €

i
|

X. Dg

Lemma 3.12. If X is an w-theory. and ¢ ¢ X then Th(X U {—¢}) is a

consistent w-theory.

Proof. Let’s assume that Th(X U {-¢}) is inconsistent, then L € Th(X U {-¢}),
now using deduction lemma 3.11 we have that (~$ = L) € X, now apply classical
tautology we get that ¢ € X, which contradicts with ¢ ¢ X. a

Long infinite rules are hard to write that’s why we can specify some short writ-
ing form. If the formula ¢ is graphically equal to: (¥o = [Ro)(¥n = [Ry)(-.cc(¥orm =
[Rm](¥))--.))), then we note with Uy(p,i) = (Yo = [Rol(¥r = [Ry)(...(vy =
(RI((pAED) = Wis1 = [Ris1)(@rs2 = [Bm]()..))-.))), where i > 0, and
U,(p,0) = ((pA[#]-p) = ¢). If the formula ¢ is not of the above form then only
¥(p,0) makes sense. As a conclusion we can say that for each formula @, if we
can specify W4(p,i), then ¢ can be a conclusion of the rule Adm;Irr*. The rule
Adm; Irr* looks like: Wy(p, i), for each pF ¢.

Lemma 3.13. Lindenbaum’s lemma. Let X is an w-theory and ¢ ¢ X then
there is a mazimal consistent w-theory Y such that X CY and ¢ ¢Y.

Proof. Let’s order all modal formulas into a sequence starting with —¢ as the
first formula: —¢ = &g, b1, 02, ...0n, ... Now we define a sequence of consistent
w-theories : Xp € X; € X2 C ... € X, C ... inductively. For Xo we choose
Th(X U {=¢}), according lemma 3.12 it is a consistent w-theory. Also X C Xj.
~ Let’s assume for some n the sequence Xg, ..., X, is created. Now we must define
X1, and there are two cases:

(i). If Th(X, U {én41}) is a consistent w-theory, then we choose : X, 41 =
Th(XnU{dns1}). It is easy seen that X, € X,41 and ¢py1 € Xnt1-

(i1). U Th(Xp,U{dn+1}) is a inconsistent w-theory, then L € Th(X,U{dns1})
and according the deduction lemma 3.11, (¢n1 = 1) € X,, and w-theories are
closed under propositional tautologies, 0 ®n41 € X,,. The right choice for X, 41
could be X, , but we must do something more to guarantee that the infinite se-
quence union would not accumulate all formulas for the infinite rules Irr* and

58 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 37-67.



AdmpIrr®,m > 1 that can produce ¢, 4, and this way the infinite union be-
comes inconsistent. If the formula ¢, is graphically equal to: v, = [Ro](vn =
(R1)(o-(¥m = [Rm[(¥))...)), then this formula can be a result of any of the rules
[rr* Admolrr*, AdmyIrr*, ..., Adm,, Irr*. If the formula ®n+1 1s not of that form
then it can be a result of the rule I'rr* = AdmgyIrr* only.

Now we define the sequence Y_1,Yy, Y;, ..., Y., of w-theories, where Y_, = X,,,
and the aim is for each of Y; to prevent ability to produce ¢,; from the rule
Adm;Irr*. Inductively. Y_, = X,, is a consistent and “@Pn+1 € Y_,. Let’s we have
defined already some Y;_;, now we can define Y;.

Let’s assume that for each variable p, W, . (p,i) € Yi.,. Then é,., is
a conclusion of the rule Adm;Irr* and Y;_; is an w-theory, thus it is closed
under Adm;Irr*, then the formula ¢,.; € Y;, but —¢ns1 € Y:, contradiction
with ¥;1 Is a consistent w-theory. So we conclude that there must be a vari-
able p; such that Wy . (p;i,7) € Y;_;. From the lemma 3.12 it follows that the
w-theory Th(Yi_y U {=W,  (pi,i)}) is a consistent. Thus we choose for Y, =
Th(YiciU{=¥, ., (pi,i)}). This way the sequence Y_,, Y0, Y1, ..., Y, is defined. It
is not hard to see that X,, CY, C ¥, C ... CY,,, and “¢n € Yy, and for each
of the chosen variables pg, p1,...p,, during the inductive definition, it is true that:
(-—.lllc,"“ (pie 7)) € )/m .

We choose for X, = Y,,. This way the inductive definition for consistent
w-theories is complete.

Let’s X, = ooy Xn.

I. X, is a consistent. Let’s assume that X is inconsistent, then L € X,
and according definition of X, then there is m : 1 € Xom, and X, is inconsistent
which is a contradiction with the build of X,,.

2. From L C X C X, C X,,, we get that L C X, and X C X,.

3. Because the sequence is monotonic X, C X, C ... C X, C ... and each set
is closed under M P then X, is closed under M P.

4. Because of the inductive construction, for each formula oy, it is true: ¥ € X,
or ~w € X,,. Also ¢ € Xy C X,,, then ¢ ¢ X,.

5. Let’s assume that X, is not closed under some AdmyIrr* rule, then there is
a formula ¢ such that for each variable p, Ys(p,n) € X,,and ¢ ¢ X,,. According to
the previous point, there is an index m: ¢m = ¢, and ~¢ € X,,,. According to the
inductive construction, the case (1) was chosen, and there is a variable Py, such that
the formula Wu(ph'in) € Xp, and X,, C X, it follows that -Wu(pton) € X,,.
This way we conclude that 1| € X, contradiction with 1. X, is closed under any
Adm, Irr* rule, and it is w-theory.

6. X, is a maximal according the subset relation "C”. O

Definition 3.10. [R]X = {¢|[R]¢ € X}, where R € {=,, =y, =5, #}.

Lemma 3.14. If X is an w-theory then [R]X is an w-theory.
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Proof. 1. Let ¢ € L, logical theorem, then by normality rule N it is a theorem
[Rl¢ € L, L C X, then [Rl¢p € X,and ¢ € [R]X,s0 L C [R]X.

2. Let ¢ € [R]X and (¢ = v) € [R]X, then [R]¢ € X and [R](¢ = ¥) € X.
It is an axiom [R](¢ = ) = ([R]¢ =) € L € X. Because X is closed under M P,
[R]y € X, and finally v € [R]X, [R]X is closed under MP.

3. Let (¢1 = [Ri](¢2 = [R2)(¢s3.. = [R:)((pA[#]-p) = 9)..))) € [R] X,
for each variable p. Then [R](¢1 = [Ri](¢2 = [R2)(¢5... = [Ra]((pAl#]-p) =
$)...))) € X, it can be written into equivalent form (T = [R](¢1 = (R ](¢2 =
[Ra2)(¢3... = [Ra]((PA[#]-P) = $)...)))) € X, for each variable p. The w-theory
X is closed under Admy4Irr*, then (T = [R](¢1 = [Ri)(¢2 = [Ra2)(¢3... =
[Rn)(¢).-.)))) € X, and back using the definition of [R]X, we get that (¢1 =
[Ri](¢2 = [R2)(¢s... = [Rn)(9)..))) € [R]X. So the set [R]X is closed under
Adm,, Irr* rule, and it is closed under the whole set of rules Admyfrr*, n =2 0. 0O

Now we can define canonical frame using w-theories. Canonical frame would
not be perfect for difference # relation and will be improved to generic canonical
frame in which the difference is a real difference.

Definition 3.11. Canonical Frame. Wy = (Wky =1ks =2k, =3k, #k). where
Wi = {X|X is a mazimal consistent w theory . Xz Yo [=]XCY. X =x
Yo [=]XCYV. X=3Y e [=XCY. X #. Y « [#XCY.

Definition 3.12. Canonical Evaluation. Vi.(X,p) = true = p€ X, for each
variable p.

Definition 3.13. Canonical Model. My = (Wi, Vi).

Lemma 3.15. Truth Lemma
Let My = (Wi, Vi) canonical model, then for each formula ¢. and for each
mazimal w-theory X it is true that: Vi(X, ) =true < ¢ € X.

The relations =k, =2k, =3k are equivalence relations because of S5 axioms for
each of them. Alas the relation #1x is not exactly the difference relation, that’s
why we will rework this canonical model into a new one.

Definition 3.14. Let’s X and Y are mazimal consistent w-theories. Then
we say that Y is a finite reachable from X, X ~ Y. if there is a finite se-
quence of mazimal consistent w-theories X = Zo, ZvyZm-1yZm =Y. and rela-
tions Rik, Rak, ..., Rmk- Rik € {=1k, Sok, =3k, )
such that X = ZoR1xZ1Rok...Zem—1BmkZm = Y.

Definition 3.15. Generic Canonical Frame. Let X is a mazimal consistent
w-theory. The generic canonical frame is Wi = (Wy s =g Shps Sher Fk)- where
W, = {Y|X ~ Y}. the set of finite reachable from X. The relations =\, =b;, =3k

, #}. are restrictions of =1k, =2k, =3k #i over the set W.
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The generic canonical model A}, = (W[, V}) is defined in the same way, and
also the truth lemma 3.15 is true for the generic canonical frames and generic
models.

Lemma 3.16. The relations =’ , =/ =4y are equivalence relations and the
1k> =2k =3k
relation #{, is a symmetric relation.

Analogically to the definition 3.10 we can define WX , where X is an w-theory.
BX = {¢|Mo € X}, from the definition of Wo = (pA[#]p), we see that:" BX =
{olon[#]¢ € X} = {¢]¢ € X} n {0ll#]p € X} = X N [#]X, intersection of
«-theories is a w-theory, so MX is an w-theory. Now we can define the relation
YW.Z — BY C Z, and we can see that it is the universal relation into W/, any 2

objects are with relation W}

Lemma 3.17. For any two mazrimal w-theories X € Wi and Y € W/, then
BY CY. o T

Proof. First we proof that if [R]X CY then X C Y, and for that we use that it is
an axiom: W¢ = [=;]¢. When R is # then we use the tautology (dA[#]¢) = [#]o.
Second from the lemma 3.5 we know that - B¢ = WMo, and using that theorem we
can proof that if X C Y, and WY C Z, then BX C Z, so B_is a transitive. Thus
finally if X, ¥ € W/, then there is a finite sequence X = ZoR\Z\R)...R., , Zm =
}", now applying what we have proof, leads to BX C Y. O

The formulas pA[#]-p, where p is a variable, have special meaning, they "lock”
the variable to be true at exactly one world and false in any other. So we can call
them constants.

Definition 3.16. If p is a variable then the formula noted with Op. Op =
(pA|#)=p) is called a constant.

Lemma 3.18. If X is a mazimal consistent w-theory then there is a variable
p. such that the constant Op € X .

Proof.  Let’a assume that for each variable p, Op € X, because X is a maximal
consistent w-theory, then =Op € X, the equivalent from is Op = 1) e X, for
each p, X is closed under Irr* = AdmolIrr*, then L € X, contradiction with X
consistent. O

Lemma 3.19. For any variable p there is a maximal consistent w-theory X .
such that Op € X, it contains the constant of p.

Proof.  -Op ¢ L. If it were —Op € L, then the formula ~Op must be true in
any frame in any evaluation, it is simple to show a frame and an evaluation, and a
world x such that z ¥, —~Op, thus -Op ¢ L.

L is a consistent w-theory, and —Op ¢ L, according to lemma 3.13 there is a
maximal consistent w-theory X such that L CX,and ~Op ¢ X, thus Ope X. OO
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Lemma 3.20. Canonically defined #y. is irreflexive. For any mazimal consts-
tent w-theory X. [#X € X.

Proof. Let’s assume that for some X maximal consistent w-theory, [#]X C X.
From lemma 3.18, there is p, and the constant Op € X, (pA[#]-p) € X, sope X
and [#]-p € X, —p € [#]X, and from [#]X C X, we conclude that —p € X and
from p € X, X is an inconsistent, which is the contradiction. a

Lemma 3.21. Let Wy = ( =) e Sy S #4,) be a generic canonical frame,
then for cach X € W}, and Y € Wi. and X # Y. then X# Y, [#XCY.

Proof. Because X,Y € W/ from lemma 3.17, then BX C Y. From X # Y the
there is a formula ¢: ¢ € X and ¢ ¢ Y. Let’s now assume that [#]X € Y. so there
is a formula ¥: ¥ € [#X and ¢ Y. For Y maximal consistent w-theory we have
—(¢pvep) € Y or (oVV)) ¢Y. FromBX CY it follows that B(oVY) ¢ X, next we
have ~((6V¥)A[#|(#Ve)) € X.

From the classical axiom (¢ = (¢V¥)) € X, and ¢ € X, we conclude that
(¢pvep) € X. From the classical axiom F (¢ = (¢V)), now applying the normality
rule Ny, b [#](¥ = (6V¥)), and from the monotonic axiom F [#](¥ = (éVy)) =
(10 5 [A(6Ve)). we get the theorem ([#¢ = [#|(6v¥)) € L € X, and [#]v €
X, then [#](¢V¥) € X, thus we get that (oV)A[#(oVY) € X. Contradiction
with X consistent. 0

The conclusion of the last lemma is that the generic canonical frames belongs
to the class of frames ¥, and it gives us the completeness theorem.

Theorem 3.2. Completeness theorem for the minimal logic. Each formula ¢
that is true at the class of frames Zg is provable, - rrr .

Proof. Contraposition. Let ¥jrr ¢, ¢ is not a theorem, then ¢ ¢ L, using the
Lindenbaum’s lemma 3.13, there is a maximal consistent w-theory X, such that
¢ ¢ X. Let’s get the generic canonical frame and model, in which W}, = {Y|X ~
Y}, generated from X. That frame belongs to the class . In that model using
the truth lemma 3.15, we get that Vi(X,¢) = false, because ¢ ¢ X. And the
deductive equivalence of the rules makes no difference between Irr and AdmyIr7*.

O

In the end, some properties about constants and maximal consistent w-theories
that are useful and reveals the character of the maximal consistent w-theories are
expressed: '

Lemma 3.22. Let X and Y are mazimal consistent w-theories such that they
are finite reachable. WX C Y. If there is a variable p such that Op € X andp € Y
then X =Y.
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Proof.  Let’s assume that X # Y, because X ~ Y, BX C Y, then from lemma
3.21, we conclude the key fact that [#]X C Y. From Op € X it follows: PA#]=p €
X.sop€ X and [#]-p€ X, -p € [#]X. From [#]X C Y, then -p € Y, and
p €Y, contradiction with Y consistent. O

If two maximal consistent w-theories possess the same constant Op, they are
the equal w-theories.

Lemma 3.23. [R]X CY if and only if there is a variable p such that OpeY
and < R > Op € X. where R € {E] =, =3, 1, Gz'j}.

Proof.  Let [R]JX C Y, then from lemma 3.18, there is a constant Op € Y,
then =Op ¢ Y, and from [R]X C Y, ~Op ¢ [R]X. then [R]-Op ¢ X, and finally
~[R]=Op € X, whichis < R>Op € X.

Let there is a constant Op € Y and < R > Ope X. From < R>0Op e X
it follows that [R]-Op ¢ X, and -~Op ¢ [R]X. From lemma 3.14 then [R]X is an
~-theory. Because -Op ¢ [R]X, then [R]X we know that it is a consistent theory.
Now applying Lindenbaum’s lemma 3.13 we get that there is Z maximal consistent
«-theory such that [R]X C Z, and ~Op ¢ Z. Z is a maximal, then Op € Z, but
Op €Y. from lemma 3.22,Y = Z, and from [RIX C Z, then [R]X C Y. a

Next three lemmas are related with expressible modalities as the incidences:
[€12]. [€13], [€23), [€,), [€74), [€54'], or simply about [€;;]. Actually €;;==; o =,.

Lemma 3.24. If X is an w-theory then (€:;]X is an w-theory.

Proof. It uses that [€;][=/][=,], thus [€,;]X = {ol[=i][=;]6 € X}, so [€;;]X[=;
I[=,] X, and now applying lemma 3.14. 0

Lemma 3.25. The expressible relations are compliant with the canonical
model.

€ XCY o XenY « 32X = ZAZ =k Y)

Lemma 3.26. X ¢,;;, Y -V Eix X or[€]X CY & {e;_‘]}’ CX

3.7. AXIOMATIZATION FOR THE STRUCTURES OF INCIDENCES LOGIC L(Z¢sy).

The axioms of the logic L(Xgs:) will contain all axioms of the minimal logic
L(Xy). and the rules are M P and Irr, the finite one, and also several other axioms
specific for the geometrically related properties of the structures of incidences. Each
axiomatic property of the structures of incidences have a corresponding modal
axiom, which modally expresses it. and also it makes that property a property of
the generated canonical frame — canonical property. The new axioms are:

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 37-67. 63



Ay (€=1> Oph <=2> OpA <=3> Op) = Op, axiom for the property:
(VI € W'(S))(Vy € ‘V(S))(II' =, YAT =9 ’y/\:lT =3Y =T = y)

Ayt <€12> (OpA <€r2> 0q) =<=> (<=2> OpA <=3> Ogq), axiom for the
property:
(Vo € W(S))(vy € W(S))(Vz € W(S))(x €12y Ay €23 2= (3t € W(S))(x =1
tAy =9 tAZ =3 t))

AT 0()p/\[€,_21] <€,3> Op =< Ey3> Op, axiom for the property:
(Vz € W(S))(vy € W(S))((Vz € W(S5))(z €12 TNz €13 y) = T €2,3Y)

e The property (Jz3y € W(S))(~z =i y) does not need an axiom.

A, 4A ==><€12><€;21> A, axiom for the property:
(Vzvy € W(S))(3z € W(S))(x €12 2Ay €12 2)

As $OpA|=1)-OpA <€12> (Ogn <€p,> Op) = [€12)(<€y > Op =<=2>
Ogq), axiom for the property:
(VIL‘VyVZVt e W(9))(~r =1 yAT €12 2Ny €12 2AT €12 thy €12t = 2 =2 t)

Ay Op =><=,> [=|-0p, axiom for the property:
(VaTy3z € W(S)(-y =1 2AY €12 TA2 €12 T)

As Op = #(|€12]-0p), axiom for the property:
(Vxdy € W(S))(~y €12 7)

Aq ¢OpN@0q =<€13> (<€ > OpA < €y > Og), axiom for the property:
(VaVyVz € W(S))(3t € W(S))(z €13 tAY €13 LAz €13 t)
Aq QOpAQOQ/\[€12]([€;T2I]—rOpV[Ele]—'Oq)/\ <ei> (Ora <er] > ~OpA <ETE

~0q) = [€13)(<€T > OpA <€) > Og =><=3> Or), axiom for the prop- |
erty:

(VxVyVz € W’(S))(VUV‘U e W(S))(z €13 uNy €13 uAz €13 UNT €13 ;
vAy €13 vAz €13 AV € W(S))(—x €12 VY €12 V2 €12 1) = u=3v)

e The property (Vz3y € W(S))(y €13 z) does not need an axiom.

Ay Op = #{€33]-Op, axiom for the property: 1
(Vrdy € W(S))(~y €1.3 2)

Ao #OpA[=1]-0pA <€12> (OrA <erl> Op)A <€13> (Ogh <€y > Op) = ’
B(Or =<€23> Oq), axiom for the property: ‘

(VaVyVzaVt € W(S))(~x =1 yAT €12 2AY €12 2AT €1z tAYy €13t = 2 €23

t)
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A1 #0pA <€ > (Ogn <€13> Op) =<€73 > (<€13> OpA[=1]-0q), axiom for
the property:

(VaVyvz € W(S))(3t € W(S))(z €13 zAz €13 y = (-t =1 2)At €13
TAt €13 )

Lemma 3.27. All that modal formulas are true at the class of structures of
incidences Xy

Proof.  Simple check that each modal formula is true at frames with the corre-
sponding property, using contraposition. If the formula is not true then the frame
does not have the corresponding property. a

Lemma 3.28. All the modal formulas above modally expresses their corre-
spondent properties of the structures of incidences.

Proof.  Simple check for each modal formula using contraposition. If the frame
does not possess its correspondent property then there is an evaluation in which
the the formula is not true. ' a

Lemma 3.29. Adding each formula from above list as an axiom, makes the
generic canonical frame to posses the same property. which the axiom modally ez-
presses — generic canonical frame is a structure of incidence.

Proof. Check that adding each modal formula, makes its property a property of the
generic canonical frame, using properties of the constant formulas and maximal
consistent w-theories — lemmas 3.19 and 3.18. We can demonstrate it for 2
formulas, for A4 and Ag:

Aq: Let we have added the axiom Ay, so Op =<=2> [=,]-0p € L, for any
variable p. Let X is a maximal consistent w-theory, according to lemma 3.18, then
there is a variable py, such that the constant Op; € X, and also Op, =<=9> [=,
]=Op; € L C X. X closed under MP, then <=;> [=;]-0p; € X, equivalent
to =[=2]n[=1]-0p1 € X, X is a maximal, then [=5]=[=,]-0p; ¢ X, and then
according to 3.10, ~[=1]-0p; ¢ [=2]X, from the lemma 3.14 it follows that [=,]X
is an w-theory, from Lindenbaum’s lemma 3.13, there is a maximal consistent w-
theory Z, such that [=2]X C Z and —~[=|-0p\ ¢ Z, <=1> Opy ¢ Z. From X =
Z, reachable from Z, then Z is into the domain of the generic canonical model, see
definition 3.15. Now if we assume that X = Z from lemma 3.23 <=;> Op, € Z,
contradiction, so ~(X = Z). From X =, Z, and =5 equivalence relation we
have Z =4 X, and =y, equivalence relation we get that Z =z X =2 X and
X =14 X =g X, from the lemma 3.25 Z €191 X, and X €y X. As conclusion
we can say that for each maximal consistent w-theory X we found a maximal
i()ﬂsistent w-theories Y = X and Z such that —~(Y =, Z) and Z €12 X and

S o X,
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Also it is seen that the property (Vz3y3z € W(S))(~y =) zAy €12 TAz €12 1)
is equivalent to the property (Vz3z € W(S))(~z =, zAz =; 2).

Ag: Let we have added the axiom Ag. Let X, Y and Z are maximal consistent
w-theories such that they belong to the generic canonical frame, thus X C Y,
BX C Z. From lemma 3.18 there is a variables p, ¢ such that Op € Y and
Og € Z, now from lemma 3.23, it follows that OOp € X and #0q € X. Ag
axiom is #OpA\@Og =<€13> (<€7) > OpA <€74> Oq), and X is closed under
MP, then <€;3> (<€3 > OpA <€14> Oq) € X SO [613]—-(<e, 4> OpA <€ >
Oq) ¢ X, from lemma 3.25 we get that ~(<€,'> OpA <€7!> Og) ¢ [€13]X,
and [€13]X w-theory. Lindenbaum’s lemma 3.13 found that there is a maximal
consistent w-theory T such that [€,5]X C T and ~(<€3' > OpA <€!> Oq) ¢ T,
or (<€1‘; > OpA <€14'> 0q) € T. From the lemma 3.23 we conclude for T that
€T C Y and [€5,']T C Z, and finally from the lemma 3.26 we conclude for T
that: Y €13 T and Y €3x Z. And from [€13]X C T then X €13x 7', which shows
that we found T' maximal consistent w-theory from generic canonical frame that
suffices the property: (VaVyVz € W(S))(3t € W(S))(z €13 tAy €13tAz €15 t). O

Theorem 3.3. The logic with the aziomatization above is complete for the
class of structures of incidences.

This completes the axiomatization of L(X;) logic of the class of structures of
incidences.

3.8. OPEN QUESTIONS

Besides the axiomatization with finite number of axiom schemas for the logic
of the structures of incidences, and ability to proof geometrically related properties
with it. There are several open question unsolved up to now.

(1 Is it decidable? It is not clean if there is an algorithm about checking if a
formula is a theorem or not.

Q2 Is it useful to proof some interesting? Some simple properties that are easy
proofed with first order logic are not seen how to be proof with this modal
logic. For example the property that: ”for each line there is another line that
is crossed to the first one, the 2 lines has no common point”. That property is
modally definable with the formula: Op = #[=;|[=1][=2]-Op or it’s seman-
tically equivalent form Op => ¢(=;][=]|[=2]-p. Desarque’s Theorem is also
modally definable. Both modal formulas should be theorems, but the proof
is not seen.

(3 Is it has a simpler axiomatization? For example is it possible to eliminate the
rule Irr. Also it is not known if the rule I7r is useful in any proofs with the
current axiomatization.
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